features

- 500mA Output Drive Current
- 50MHz Bandwidth, $A_{V}=2, R_{L}=25 \Omega$
- 900V/ $\mu \mathrm{s}$ Slew Rate, $A_{V}=2, \mathrm{R}_{\mathrm{L}}=25 \Omega$
- Low Distortion: -75dBc at 1MHz
- High Input Impedance, $10 \mathrm{M} \Omega$
- Wide Supply Range, $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Full Rate, Downstream ADSL Supported
- Low Power Shutdown Mode
- Power Saving Adjustable Supply Current
- Stable with $C_{L}=10,000 \mathrm{pF}$
- Power Enhanced Small Footprint Packages

TSSOP-20, S0-20 Wide

- Available in a 20-Lead TSSOP Package

APPLICATIONS

- ADSL HDSL2, G.lite Drivers
- Buffers
- Test Equipment Amplifiers
- Video Amplifiers
- Cable Drivers

DESCRIPTIOn

The LT ${ }^{\circledR 1} 1795$ is a dual current feedback amplifier with high output current and excellent large signal characteristics. The combination of high slew rate, 500 mA output drive and up to $\pm 15 \mathrm{~V}$ operation enables the device to deliver significant power at frequencies in the 1 MHz to 2 MHz range. Short-circuit protection and thermal shutdown insure the device's ruggedness. The LT1795 is stable with large capacitive loads and can easily supply the large currents required by the capacitive loading. A shutdown feature switches the device into a high impedance, low current mode, reducing power dissipation when the device is not in use. For lower bandwidth applications, the supply current can be reduced with a single external resistor.

The LT1795 comes in the very small, thermally enhanced, 20-lead TSSOP package for maximum port density in line driver applications.
$\overline{\mathbf{\Sigma Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Low Loss, High Power Central Office ADSL Line Driver

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage
 \qquad
 Input Current
 \qquad $\pm 15 \mathrm{~mA}$
 Output Short-Circuit Duration (Note 2)
 \qquad Indefinite
 Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
 PACKAGE/ORDER INFORMATION

Specified Temperature Range (Note 3) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full specified temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CM}}=\mathbf{0 V}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$, pulse tested, $\mathrm{V}_{\text {SHDN }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDNREF }}=0 \mathrm{~V}$ unless otherwise noted. (Note 3)

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full specified temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CM}}=\mathbf{0 V}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$, pulse tested, $\mathrm{V}_{\text {SHDN }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDNREF }}=0 \mathrm{~V}$ unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
RIN^{+}	Input Resistance	$\begin{aligned} & V_{I N}= \pm 12 \mathrm{~V}, V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}= \pm 2 \mathrm{~V}, \mathrm{~V}_{S}= \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 1.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
ClN^{+}	Input Capacitance	$\mathrm{V}_{\text {IN }}= \pm 15 \mathrm{~V}$			2		pF
	Input Voltage Range (Note 5)	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} \pm 12 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 13.5 \\ \pm 3.5 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{C M}= \pm 12 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{C M}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 60 \end{aligned}$		dB dB
	Inverting Input Current Common Mode Rejection	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{C M}= \pm 12 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{C M}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$	$\mu \mathrm{A} / \mathrm{N}$ $\mu \mathrm{A} / \mathrm{V}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet	60	77		dB
	Noninverting Input Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		30	500	nA/V
	Inverting Input Current Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		1	5	$\mu \mathrm{A} / \mathrm{V}$
A_{V}	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}, R_{\mathrm{L}}=12 \Omega \end{aligned}$	\bullet	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 68 \\ & 68 \end{aligned}$		dB dB
R_{OL}	Transresistance, $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{l}_{\mathrm{IN}}{ }^{-}$	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=12 \Omega \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\mathrm{k} \Omega$ $\mathrm{k} \Omega$
V OUT	Maximum Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega$	\bullet	$\begin{aligned} & \pm 11.5 \\ & \pm 10.0 \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 11.5 \end{aligned}$		V
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=12 \Omega$	\bullet	$\begin{aligned} & \pm 2.5 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \end{aligned}$		V
IOUT	Maximum Output Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \Omega$	\bullet	0.5	1		A
Is	Supply Current Per Amplifier	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=2.5 \mathrm{~V}$	\bullet		29	34	mA mA
	Supply Current Per Amplifier, $\mathrm{R}_{\text {SHDN }}=51 \mathrm{k}$, (Note 6)	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	\bullet		15	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	mA mA
	Positive Supply Current, Shutdown	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0.4 \mathrm{~V}$	\bullet		1	200	$\mu \mathrm{A}$
	Output Leakage Current, Shutdown	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0.4 \mathrm{~V}$			1	200	$\mu \mathrm{A}$
	Channel Separation	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \Omega$		80	110		dB
$\mathrm{HD}_{2}, \mathrm{HD}_{3}$	2nd and 3rd Harmonic Distortion Differential Mode	$f=1 \mathrm{MHz}, V_{0}=20 V_{P-p}, R_{L}=50, A_{V}=2$			-75		dBc
SR	Slew Rate (Note 7)	$A_{V}=4, R_{L}=400 \Omega$		400	900		$\mathrm{V} / \mu \mathrm{S}$
	Slew Rate	$A_{V}=4, R_{L}=25 \Omega$			900		$\mathrm{V} / \mu \mathrm{s}$
BW	Small-Signal BW	$\begin{aligned} & A_{V}=2, V_{S}= \pm 15 \mathrm{~V}, \text { Peaking } \leq 1.5 \mathrm{~dB} \\ & R_{F}=R_{G}=910 \Omega, R_{L}=100 \Omega \end{aligned}$			65		MHz
		$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=2, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { Peaking } \leq 1.5 \mathrm{~dB} \\ & \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=820 \Omega, \mathrm{R}_{\mathrm{L}}=25 \Omega \end{aligned}$			50		MHz

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Applies to short-circuits to ground only. A short-circuit between the output and either supply may permanently damage the part when operated on supplies greater than $\pm 10 \mathrm{~V}$.
Note 3: The LT1795C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet these extended temperature limits, but is not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LT1795I is guaranteed to meet the extended temperature limits.

Note 4: Thermal resistance varies depending upon the amount of PC board metal attached to the device. If the maximum dissipation of the package is exceeded, the device will go into thermal shutdown and be protected.
Note 5: Guaranteed by the CMRR tests.
Note 6: $\mathrm{R}_{\text {SHDN }}$ is connected between the SHDN pin and V^{+}.
Note 7: Slew rate is measured at $\pm 5 \mathrm{~V}$ on a $\pm 10 \mathrm{~V}$ output signal while operating on $\pm 15 \mathrm{~V}$ supplies with $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{G}}=333 \Omega\left(\mathrm{~A}_{\mathrm{V}}=+4\right)$ and $R_{L}=400 \Omega$.

SmALL-SIGחAL BAחDUIDTH

$R_{S D}=0 \Omega, I_{S}=30 \mathrm{~mA}$ per Amplifer, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$,
Peaking $\leq 1 d B, R_{L}=25 \Omega$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$-3 \mathrm{~dB} \mathbf{B W}$ $\mathbf{(M H z)}$
-1	976	976	44
1	1.15 k	-	53
2	976	976	48
10	649	72	46

$R_{S D}=51 \mathrm{k} \Omega, I_{S}=15 \mathrm{~mA}$ per Amplifer, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$,
Peaking $\leq 1 d B, R_{L}=25 \Omega$

$\mathbf{A}_{\boldsymbol{V}}$	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{G}}$	$\mathbf{- 3 d B} \mathbf{B W}$ $\mathbf{(M H z)}$
-1	976	976	30
1	1.15 k	-	32
2	976	976	32
10	649	72	27

TYPICAL PGRFORMAOCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTGRISTICS

LT1795 G07

Second Harmonic Distortion vs Frequency

Third Harmonic Distortion vs
Frequency

Second Harmonic Distortion vs Frequency

Third Harmonic Distortion vs Frequency

Second Harmonic Distortion vs
Frequency

TYPICAL PERFORMANCG CHARACTERISTICS

Third Harmonic Distortion vs Frequency

Slew Rate vs Supply Current

1795.G21

Third Harmonic Distortion vs
Frequency

-3dB Bandwidth vs Supply Current

APPLICATIONS InFORMATION

The LT1795 is a dual current feedback amplifier with high output current drive capability. The amplifier is designed to drive low impedance loads such as twisted-pair transmission lines with excellent linearity.

SHUTDOWN/CURRENT SET

If the shutdown/current set feature is not used, connect SHDN to V^{+}and SHDNREF to ground.

The SHDN and SHDNREF pins control the biasing of the two amplifiers. The pins can be used to either turn off the amplifiers completely, reducing the quiescent current to less then $200 \mu \mathrm{~A}$, or to control the quiescent current in normal operation.

Figure 1. RSHDN Connected Between V^{+}and SHDN (Pin 10); SHDNREF (Pin 11) = GND. See Figure 2

Figure 2. LT1795 Amplifier Supply Current vs R SHDN. $^{\text {R }}$ SHDN Connected Between V^{+}and SHDN, SHDNREF = GND (See Figure 1)

When $V_{\text {SHDN }}=V_{\text {SHDNREF }}$, the device is shut down. The device will interface directly with 3 V or 5 V CMOS logic when SHDNREF is grounded and the control signal is applied to the SHDN pin. Switching time between the active and shutdown states is about $1.5 \mu \mathrm{~s}$.
Figures 1 to 4 illustrate how the SHDN and SHDNREF pins can be used to reduce the amplifier quiescent current. In both cases, an external resistor is used to set the current. The two approaches are equivalent, however the required resistor values are different. The quiescent current will be approximately 115 times the current in the SHDN pin and 230 times the current in the SHDNREF pin. The voltage across the resistor in either condition is $\mathrm{V}^{+}-1.5 \mathrm{~V}$. For example, a 50 k resistor between V^{+}and SHDN will set the

Figure 3. R ${ }_{\text {SHDNREF }}$ Connected Between SHDNREF (Pin 11) and GND; SHDN $($ Pin 10 $)=V^{+}$. See Figure 4

Figure 4. LT1795 Amplifier Supply Current vs RShDNREF. RSHDNREF Connected Between SHDNREF and GND, SHDN = V^{+}(See Figure 3)

APPLICATIONS InFORMATION

quiescent current to 33 mA with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. If $0 \mathrm{~N} / 0 \mathrm{FF}$ control is desired in addition to reduced quiescent current, then the circuits in Figures 5 to 7 can be employed.

Figure 5. Setting Amplifier Supply Current Level with ON/OFF Control, Version 1

Q1A, Q1B: ROHM IMX1 or FMG4A (W/INTERNAL RB)

Figure 6. Setting Multiple Amplifier Supply Current Levels with ON/OFF Control, Version 2

Figure 7. Setting Amplifier Supply Current Level with ON/OFF Control, Version 3

Figure 8 illustrates a partial shutdown with direct logic control. By keeping the output stage slightly biased on, the output impedance remains low, preserving the line termination. The design equations are:

$$
\begin{aligned}
& \mathrm{R} 1=\frac{115 \cdot \mathrm{~V}_{\mathrm{H}}}{\left(\mathrm{I}_{\mathrm{S}}\right)_{\mathrm{ON}}-\left(\mathrm{I}_{\mathrm{S}}\right)_{\text {OFF }}} \\
& \mathrm{R} 2=\frac{115 \cdot\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{SHDN}}\right)}{\left(\mathrm{V}_{\text {SHDN }} / \mathrm{V}_{\mathrm{H}}\right) \cdot\left[\left(\mathrm{I}_{\mathrm{S}}\right)_{\mathrm{ON}}-\left(\mathrm{I}_{\mathrm{S}}\right)_{\mathrm{OFF}}\right]+\left(\mathrm{I}_{\mathrm{S}}\right)_{\text {OFF }}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{H}}=\text { Logic High Level } \\
& \text { (} \left.I_{S}\right)_{\text {ON }}=\text { Supply Current Fully On } \\
& \text { (IS })_{\text {OFF }}=\text { Supply Current Partially On } \\
& \mathrm{V}_{\text {SHDN }}=\text { Shutdown Pin Voltage } \approx 1.4 \mathrm{~V} \\
& V_{C C}=\text { Positive Supply Voltage }
\end{aligned}
$$

Figure 8. Partial Shutdown

THERMAL CONSIDERATIONS

The LT1795 contains a thermal shutdown feature that protects against excessive internal (junction) temperature. If the junction temperature of the device exceeds the protection threshold, the device will begin cycling between normal operation and an off state. The cycling is not harmful to the part. The thermal cycling occurs at a slow rate, typically 10 ms to several seconds, which depends on the power dissipation and the thermal time constants of the package and heat sinking. Raising the ambient tempera-

APPLICATIONS INFORMATION

ture until the device begins thermal shutdown gives a good indication of how much margin there is in the thermal design.

For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. For the TSSOP package, power is dissipated through the exposed heatsink. For the SO package, power is dissipated from the package primarily through the V^{-}pins (4 to 7 and 14 to 17). These pins should have a good thermal connection to a copper plane, either by direct contact or by plated through holes. The copper plane may be an internal or external layer. The thermal resistance, junction-to-ambient will depend on the total copper area connected to the device. For example, the thermal resistance of the LT1795 connected to a 2×2 inch, double sided 2 oz copper plane is $40^{\circ} \mathrm{C} / \mathrm{W}$.

CALCULATING JUNCTION TEMPERATURE

The junction temperature can be calculated from the equation:

$$
\mathrm{T}_{\mathrm{J}}=\left(\mathrm{P}_{\mathrm{D}}\right)\left(\theta_{\mathrm{JA}}\right)+\mathrm{T}_{\mathrm{A}}
$$

where
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Device Dissipation
$\theta_{\mathrm{JA}}=$ Thermal Resistance (Junction-to-Ambient)

Differential Input Signal Swing

The differential input swing is limited to about $\pm 5 \mathrm{~V}$ by an ESD protection device connected between the inputs. In normal operation, the differential voltage between the input pins is small, so this clamp has no effect. However, in the shutdown mode, the differential swing can be the same as the input swing. The clamp voltage will then set the maximum allowable input voltage.

POWER SUPPLY BYPASSING

To obtain the maximum output and the minimum distortion from the LT1795, the power supply rails should be well bypassed. For example, with the output stage supply-
ing 0.5 A current peaks into the load, a 1Ω power supply impedance will cause a droop of 0.5 V , reducing the available output swing by that amount. Surface mount tantalum and ceramic capacitors make excellent low ESR bypass elements when placed close to the chip. For frequencies above 100 kHz , use $1 \mu \mathrm{~F}$ and 100 nF ceramic capacitors. If significant power must be delivered below 100 kHz , capacitive reactance becomes the limiting factor. Larger ceramic or tantalum capacitors, such as $4.7 \mu \mathrm{~F}$, are recommended in place of the $1 \mu \mathrm{~F}$ unit mentioned above.
Inadequate bypassing is evidenced by reduced output swing and "distorted" clipping effects when the output is driven to the rails. If this is observed, check the supply pins of the device for ripple directly related to the output waveform. Significant supply modulation indicates poor bypassing.

Capacitance on the Inverting Input

Current feedback amplifiers require resistive feedback from the output to the inverting input for stable operation. Take care to minimize the stray capacitance between the output and the inverting input. Capacitance on the inverting input to ground will cause peaking in the frequency response (and overshoot in the transient response), but it does not degrade the stability of the amplifier.

Feedback Resistor Selection

The optimum value for the feedback resistors is a function of the operating conditions of the device, the load impedance and the desired flatness of response. The Typical AC Performance tables give the values which result in less than 1 dB of peaking for various resistive loads and operating conditions. If this level of flatness is not required, a higher bandwidth can be obtained by use of a lower feedback resistor.

For resistive loads, the COMP pin should be left open (see Capacitive Loads section).

Capacitive Loads

The LT1795 includes an optional compensation network for driving capacitive loads. This network eliminates most of the output stage peaking associated with capacitive loads, allowing the frequency response to be flattened.

APPLICATIONS INFORMATION

Figure 9 shows the effect of the network on a 200pF load. Without the optional compensation, there is a 6 dB peak at 85 MHz caused by the effect of the capacitance on the output stage. Adding a $0.01 \mu \mathrm{~F}$ bypass capacitor between the output and the COMP pins connects the compensation

Figure 9
and greatly reduces the peaking. A lower value feedback resistor can now be used, resulting in a response which is flat to $\pm 1 \mathrm{~dB}$ to 45 MHz . The network has the greatest effect for C_{L} in the range of 0 pF to 1000 pF .

Although the optional compensation works well with capacitive loads, it simply reduces the bandwidth when it is connected with resistive loads. For instance, with a 25Ω load, the bandwidth drops from 48 MHz to 32 MHz when the compensation is connected. Hence, the compensation was made optional. To disconnect the optional compensation, leave the COMP pin open.

DEMO BOARD

A demo board (DC261A) is available for evaluating the performence of the LT1795. The board is configured as a differential line driver/receiver suitable for xDSL applications. For details, consult your local sales representative.

PACKAGE DESCRIPTION

SW Package
20-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

PACKAGG DESCRIPTION

FE Package

20-Lead Plastic TSSOP (4.4mm)
(Reference LTC DWG \# 05-08-1663)
Exposed Pad Variation CA

recommended solder pad layout

NOTE:

1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE
2. DIMENSIONS ARE IN $\frac{\text { MILLIMETERS }}{\text { (INCHES) }}$

FOR EXPOSED PAD ATTACHMENT
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH
3. DRAWING NOT TO SCALE

SImPLIFIED SCHEmATIC

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1497	Dual 125mA, 50MHz Current Feedback Amplifier	$900 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
LT1207	Dual 250mA, 60MHz Current Feedback Amplifier	Shutdown/Current Set Function
LT1886	Dual 200mA, 700MHz Voltage Feedback Amplifier	Low Distortion: -72 dBc at 200kHz

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

