Features

- Utilizes the AVR[®] RISC Architecture
- AVR High-performance and Low-power RISC Architecture
 - 120 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
- Up to 20 MIPS Throughput at 20 MHz
- Data and Non-volatile Program and Data Memories
 - 2K Bytes of In-System Self Programmable Flash Endurance 10,000 Write/Erase Cycles
 - 128 Bytes In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
 - 128 Bytes Internal SRAM
 - Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes
 - Four PWM Channels
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
 - USI Universal Serial Interface
 - Full Duplex USART
- Special Microcontroller Features
 - debugWIRE On-chip Debugging
 - In-System Programmable via SPI Port
 - External and Internal Interrupt Sources
 - Low-power Idle, Power-down, and Standby Modes
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-out Detection Circuit
 - Internal Calibrated Oscillator
- I/O and Packages
 - 18 Programmable I/O Lines
 - 20-pin PDIP, 20-pin SOIC, 20-pad QFN/MLF
- Operating Voltages
 - 1.8 5.5V (ATtiny2313V)
 - 2.7 5.5V (ATtiny2313)
- Speed Grades
 - ATtiny2313V: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V
 - ATtiny2313: 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
- Typical Power Consumption
 - Active Mode
 - 1 MHz, 1.8V: 230 μA
 - 32 kHz, 1.8V: 20 µA (including oscillator)
 - Power-down Mode
 - < 0.1 µA at 1.8V

8-bit **AVR**[®] Microcontroller with 2K Bytes In-System Programmable Flash

ATtiny2313/V

Preliminary

Summary

NOTE: Bottom pad should be soldered to ground.

Overview The ATtiny2313 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny2313 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

² ATtiny2313

Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny2313 provides the following features: 2K bytes of In-System Programmable Flash, 128 bytes EEPROM, 128 bytes SRAM, 18 general purpose I/O lines, 32 general purpose working registers, a single-wire Interface for On-chip Debugging, two flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, or by a conventional non-volatile memory programmer. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATtiny2313 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATtiny2313 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

4

Pin Descriptions

VCC	Digital supply voltage.

GND Ground.

Port A (PA2..PA0) Port A is a 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATtiny2313 as listed on page 53.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny2313 as listed on page 53.

Port D (PD6..PD0) Port D is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATtiny2313 as listed on page 56.

- **RESET** Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 34. Shorter pulses are not guaranteed to generate a reset. The Reset Input is an alternate function for PA2 and dW.
- **XTAL1** Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL1 is an alternate function for PA0.
- **XTAL2** Output from the inverting Oscillator amplifier. XTAL2 is an alternate function for PA1.

General Information	
Resources	A comprehensive set of development tools, application notes and datasheets are available for downloadon http://www.atmel.com/avr.
Code Examples	This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
Disclaimer	Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F (0x5F)	SREG	1	т	н	S	V	N	Z	с	8
0x3E (0x5E)	Reserved	-	_	-	-	_	-	_	-	0
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C (0x5C)	OCR0B			1	Fimer/Counter0 –	Compare Registe	er B			77
0x3B (0x5B)	GIMSK	INT1	INT0	PCIE	-	-	-	-	-	60
0x3A (0x5A)	EIFR	INTF1	INTF0	PCIF	-	-	-	-	-	61
0x39 (0x59)	TIMSK	TOIE1	OCIE1A	OCIE1B	-	ICIE1	OCIE0B	TOIE0	OCIE0A	78, 109
0x38 (0x58)	TIFR	TOV1	OCF1A	OCF1B	-	ICF1	OCF0B	TOV0	OCF0A	78
0x37 (0x57) 0x36 (0x56)	SPMCSR OCR0A	-	-		CTPB Fimer/Counter0 –	RFLB	PGWRT	PGERS	SELFPRGEN	155 77
0x35 (0x55)	MCUCR	PUD	SM1	SE	SM0	ISC11	ISC10	ISC01	ISC00	53
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	37
0x33 (0x53)	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	76
0x32 (0x52)	TCNT0				Timer/Co	unter0 (8-bit)	•	•		77
0x31 (0x51)	OSCCAL	-	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	26
0x30 (0x50)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	73
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1BO	-	-	WGM11	WGM10	104
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	107
0x2D (0x4D)	TCNT1H				er/Counter1 – Co					108
0x2C (0x4C)	TCNT1L				er/Counter1 – Co	ů	,			108
0x2B (0x4B)	OCR1AH				/Counter1 – Com					108 108
0x2A (0x4A) 0x29 (0x49)	OCR1AL OCR1BH				/Counter1 – Com /Counter1 – Com					108
0x28 (0x48)	OCR1BL				/Counter1 – Com		* /			109
0x27 (0x47)	Reserved	_	_	-		-	-	_	_	100
0x26 (0x46)	CLKPR	CLKPCE	-	_	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	28
0x25 (0x45)	ICR1H			Timer/	Counter1 - Input (109
0x24 (0x44)	ICR1L			Timer/	Counter1 - Input	Capture Register	Low Byte			109
0x23 (0x43)	GTCCR	_	-	-	-	-	-	-	PSR10	81
0x22 (ox42)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	108
0x21 (0x41)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	42
0x20 (0x40)	PCMSK	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	61
0x1F (0x3F)	Reserved	-	-	-	-	-	-	-	-	
0x1E (0x3E)	EEAR	-				ROM Address Re	egister			16 17
0x1D (0x3D) 0x1C (0x3C)	EEDR EECR		_	EEPM1	EEPROM EEPM0	Data Register EERIE	EEMPE	EEPE	EERE	17
0x1B (0x3B)	PORTA	_	_	-	-	-	PORTA2	PORTA1	PORTA0	58
0x1A (0x3A)	DDRA	_	_	_	_	_	DDA2	DDA1	DDA0	58
0x19 (0x39)	PINA	-	-	-	-	-	PINA2	PINA1	PINA0	58
0x18 (0x38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	58
0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	58
0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	58
0x15 (0x35)	GPIOR2					se I/O Register 2				21
0x14 (0x34)	GPIOR1					se I/O Register 1				21
0x13 (0x33)	GPIOR0 PORTD		DODTDA	DODTOS		se I/O Register 0			DODTDO	21
0x12 (0x32) 0x11 (0x31)	DDRD	-	PORTD6 DDD6	PORTD5 DDD5	PORTD4 DDD4	PORTD3 DDD3	PORTD2 DDD2	PORTD1 DDD1	PORTD0 DDD0	58 58
0x10 (0x30)	PIND		PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	58
0x0F (0x2F)	USIDR					a Register	1 11102		1 1100	144
0x0E (0x2E)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	145
0x0D (0x2D)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	145
0x0C (0x2C)	UDR		·	·		Register (8-bit)	·	·	·	129
0x0B (0x2B)	UCSRA	RXC	TXC	UDRE	FE	DOR	UPE	U2X	MPCM	129
0x0A (0x2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	131
0x09 (0x29)	UBRRL		1	r		RH[7:0]		r		133
0x08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	149
0x07 (0x27)	Reserved	-	-	-	-	-	-	-	-	
0x06 (0x26)	Reserved	-	-	-	-	-	-	-	-	
0x05 (0x25) 0x04 (0x24)	Reserved Reserved	-	-	-	-	-	-	-	-	
0x04 (0x24) 0x03 (0x23)	UCSRC		– UMSEL	– UPM1	– UPM0	– USBS	- UCSZ1	– UCSZ0	- UCPOL	132
0x03 (0x23) 0x02 (0x22)	UBRRH		UNISEL -		UPINIU _	0303		RH[11:8]	UUPUL	132
0x01 (0x21)	DIDR	_	_	-	_	-	-	AIN1D	AIN0D	150
0x00 (0x20)	Reserved	-	_	-	-	-	-	-	-	
· · · · /										

- Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
 - Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
 - 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses.

ATtiny2313

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTION	3	·		
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR COM	Rd, Rr Rd	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$ $Rd \leftarrow 0xFF - Rd$	Z,N,V Z,C,N,V	1
-		One's Complement			
NEG SBR	Rd Rd,K	Two's Complement	$Rd \leftarrow 0x00 - Rd$ $Rd \leftarrow Rd v K$	Z,C,N,V,H Z,N,V	1
CBR	Rd,K	Set Bit(s) in Register Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V Z,N,V	1
INC	Rd, Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
BRANCH INSTRUCT		bernegister		None	'
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP	ĸ	Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL	ĸ	Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V= 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V=1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(1 = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST		Set Pit in I/O Degister		Nonc	2
SBI	P,b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$ $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
		Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$ $Rd(n) \leftarrow CRd(n+1), Rd(n) \leftarrow Rd(n)$	Z,C,N,V	
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, Rd $\leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	1,00, 2 '	Store Program Memory	$(Z) \leftarrow R1:R0$	None	-
IN	Rd, P	In Port	$(2) \leftarrow R1.R0$ Rd $\leftarrow P$	None	- 1
OUT	P, Rr	Out Port	$Ru \leftarrow P$ $P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack	$P \leftarrow RI$ STACK $\leftarrow Rr$	None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS		r up negister ituiti Statik		NULLE	2
		No Operation		None	1
NOP		No Operation		None	1
SLEEP		Sleep Wetchdez Decet	(see specific descr. for Sleep function)	None	1
WDR BREAK		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
	1	Break	For On-chip Debug Only	None	N/A

ATtiny2313

Ordering Information

Speed (MHz) ⁽³⁾	Power Supply (V)	Ordering Code ⁽⁴⁾	Package ⁽²⁾	Operation Range
10	1.8 - 5.5	ATtiny2313V-10PU ATtiny2313V-10SU ATtiny2313V-10SUR ATtiny2313V-10MU ATtiny2313V-10MUR	20P3 20S 20S 20M1 20M1	Industrial (-40°C to +85°C) ⁽¹⁾
20	2.7 - 5.5	ATtiny2313-20PU ATtiny2313-20SU ATtiny2313-20SUR ATtiny2313-20MU ATtiny2313-20MUR	20P3 20S 20S 20M1 20M1	Industrial (-40°C to +85°C) ⁽¹⁾

Notes: 1. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

- 3. For Speed vs. V_{CC} see Figure 82 on page 180 and Figure 83 on page 180.
- 4. Code Indicators:

- U: matte tin

- R: tape & reel

	Package Type
20P3	20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline Package (SOIC)
20M1	20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (MLF)

Packaging Information

20P3

20M1

Errata The revision in this section refers to the revision of the ATtiny2313 device.

ATtiny2313 Rev C No known errata

ATtiny2313 Rev B

- Wrong values read after Erase Only operation
- Parallel Programming does not work
- Watchdog Timer Interrupt disabled
- EEPROM can not be written below 1.9 volts

1. Wrong values read after Erase Only operation

At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

2. Parallel Programming does not work

Parallel Programming is not functioning correctly. Because of this, reprogramming of the device is impossible if one of the following modes are selected:

- In-System Programming disabled (SPIEN unprogrammed)
- Reset Disabled (RSTDISBL programmed)

Problem Fix/Workaround

Serial Programming is still working correctly. By avoiding the two modes above, the device can be reprogrammed serially.

3. Watchdog Timer Interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog timeout following an interrupt, the device works correctly.

Problem fix / Workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.

4. EEPROM can not be written below 1.9 volts

Writing the EEPROM at V_{CC} below 1.9 volts might fail.

Problem fix / Workaround

Do not write the EEPROM when V_{CC} is below 1.9 volts.

ATtiny2313 Rev A Revision A has not been sampled.

Datasheet Revision History	Please note that the referring page numbers in this section refer to the complete document.					
Rev. 2543L - 8/10	Added tape and reel part numbers in "Ordering Information" on page 215. Removed text "Not recommended for new design" from cover page. Fixed literature number mismatch in Datasheet Revision History.					
Rev. 2543K - 03/10	1. Added device Rev C "No known errata" in "Errata" on page 219.					
Rev. 2543J - 11/09						
	1. Updated template					
	2. Changed device status to "Not recommended for new designs."					
	3. Updated "Stack Pointer" on page 11.					
	4. Updated Table "Sleep Mode Select" on page 30.					
	5. Updated "Calibration Byte" on page 160 (to one byte of calibration data)					
Changes from Rev.						
2543H-02/05 to	1. Updated typos.					
Rev. 2543I-04/06	2. Updated Figure 1 on page 2.					
	3 Added "Resources" on page 6.					
	4. Updated "Default Clock Source" on page 23.					
	5. Updated "128 kHz Internal Oscillator" on page 28.					
	6. Updated "Power Management and Sleep Modes" on page 30					
	 Updated Table 3 on page 23, Table 13 on page 30, Table 14 on page 31, Table 19 on page 42, Table 31 on page 60, Table 79 on page 176. 					
	8. Updated "External Interrupts" on page 59.					
	 Updated "Bit 70 – PCINT70: Pin Change Enable Mask 70" on page 61. 					
	10. Updated "Bit 6 – ACBG: Analog Comparator Bandgap Select" on page 149.					
	11. Updated "Calibration Byte" on page 160.					
	12. Updated "DC Characteristics" on page 177.					
	13. Updated "Register Summary" on page 211.					
	14. Updated "Ordering Information" on page 215.					
	15. Changed occurences of OCnA to OCFnA, OCnB to OCFnB and OC1x to OCF1x.					
Changes from Rev.						
2543G-10/04 to Rev. 2543H-02/05	1. Updated Table 6 on page 25, Table 15 on page 34, Table 68 on page 160 and Table 80 on page 179.					
	2. Changed CKSEL default value in "Default Clock Source" on page 23 to 8 MHz.					

ATtiny2313

	3. 4. 5.	Updated "Programming the Flash" on page 165, "Programming the EEPROM" on page 167 and "Enter Programming Mode" on page 163. Updated "DC Characteristics" on page 177. MLF option updated to "Quad Flat No-Lead/Micro Lead Frame (QFN/MLF)"
Changes from Rev. 2543F-08/04 to Rev. 2543G-10/04	1. 2. 3. 4. 5.	Updated "Features" on page 1. Updated "Pinout ATtiny2313" on page 2. Updated "Ordering Information" on page 215. Updated "Packaging Information" on page 216. Updated "Errata" on page 219.
Changes from Rev. 2543E-04/04 to Rev. 2543F-08/04	1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Updated "Features" on page 1. Updated "Alternate Functions of Port B" on page 53. Updated "Calibration Byte" on page 160. Moved Table 69 on page 160 and Table 70 on page 160 to "Page Size" on page 160. Updated "Enter Programming Mode" on page 163. Updated "Serial Programming Algorithm" on page 173. Updated Table 78 on page 174. Updated "DC Characteristics" on page 177. Updated "ATtiny2313 Typical Characteristics" on page 181. Changed occurences of PCINT15 to PCINT7, EEMWE to EEMPE and EEWE to EEPE in the document.
Changes from Rev. 2543D-03/04 to Rev. 2543E-04/04	1. 2. 3. 4. 5.	Speed Grades changed - 12MHz to 10MHz - 24MHz to 20MHz Updated Figure 1 on page 2. Updated "Ordering Information" on page 215. Updated "Maximum Speed vs. V _{CC} " on page 180. Updated "ATtiny2313 Typical Characteristics" on page 181.
Changes from Rev. 2543C-12/03 to Rev. 2543D-03/04	1. 2. 3. 4. 5.	Updated Table 2 on page 23. Replaced "Watchdog Timer" on page 39. Added "Maximum Speed vs. V _{CC} " on page 180. "Serial Programming Algorithm" on page 173 updated. Changed mA to μA in preliminary Figure 136 on page 207.

- Changed mA to μA in preliminary Figure 136 o "Ordering Information" on page 215 updated. MLF package option removed 6.

- 7. Package drawing "20P3" on page 216 updated.
- 8. Updated C-code examples.
- 9. Renamed instances of SPMEN to SELFPRGEN, Self Programming Enable.

Changes from Rev. 2543B-09/03 to Rev. 2543C-12/03	1.	Updated "Calibrated Internal RC Oscillator" on page 25.
Changes from Rev.		
2543A-09/03 to Rev. 2543B-09/03	1.	Fixed typo from UART to USART and updated Speed Grades and Power Consumption Estimates in "Features" on page 1.
	2.	Updated "Pin Configurations" on page 2.
	3.	Updated Table 15 on page 34 and Table 80 on page 179.
	4.	Updated item 5 in "Serial Programming Algorithm" on page 173.
	5.	Updated "Electrical Characteristics" on page 177.
	6.	Updated Figure 82 on page 180 and added Figure 83 on page 180.
	7.	Changed SFIOR to GTCCR in "Register Summary" on page 211.
	8.	Updated "Ordering Information" on page 215.
	9.	Added new errata in "Errata" on page 219.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.