

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

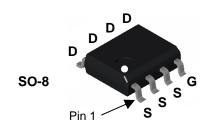
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild <a href="general-regarding-numbers-n

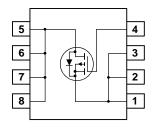
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

NDS9407

60V P-Channel PowerTrench® MOSFET

General Description


This P-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gate drive voltage ratings (4.5V-20V).


Applications

- Power management
- Load switch
- · Battery protection

Features

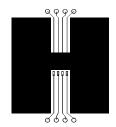
- -3.0 A, -60 V. $R_{DS(ON)} = 150 \ m\Omega \ @ \ V_{GS} = -10 \ V$ $R_{DS(ON)} = 240 \ m\Omega \ @ \ V_{GS} = -4.5 \ V$
- Low gate charge
- · Fast switching speed
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	
V _{DSS}	Drain-Source Voltage		-60	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	-3.0	A
	- Pulsed		-12	
P _D	Maximum Power Dissipation	(Note 1a)	2.5	W
		(Note 1b)	1.2	
		(Note 1c)	1.0	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
		(Note 1c)	125	
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	25	


Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
NDS9407	NDS9407	13"	12mm	2500 units

Symbol	cal Characteristics T _A = 25°C unless otherwise noted Parameter Test Conditions			Tyro	Max	Units
Symbol	Parameter	Test Conditions		Тур	IVIAX	Ullits
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	-60			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C		-45		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			−1 −10	μА
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1	-1.6	-3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -10 \text{ V}, \qquad I_D = -3.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}, \qquad I_D = -1.6 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -3.0 \text{ A}, T_J = 125^{\circ}\text{C}$		78 99 122	150 240 250	mΩ
D(on)	On–State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-12			Α
9rs	Forward Transconductance	$V_{DS} = -15 \text{ V}, I_{D} = -3.0 \text{ A}$		8		S
_	Characteristics	, ,				
C _{iss}	Input Capacitance	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V},$		732		pF
Coss	Output Capacitance	f = 1.0 MHz		86		pF
C _{rss}	Reverse Transfer Capacitance	1		38		pF
Switchir	ng Characteristics (Note 2)					•
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -30 \text{ V}, \qquad I_D = -1 \text{ A},$		8	16	ns
· ,	<u> </u>	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$		11	20	ns
t _r	Turn-On Rise Time	· ·		10	20	
	Turn–On Rise Time Turn–Off Delay Time				20	ns
t _{d(off)}		- -		10	20	ns
$t_{d(off)}$	Turn-Off Delay Time	I _F = -3.0 A,				_
d(off)	Turn-Off Delay Time Turn-Off Fall Time	$I_F = -3.0 \text{ A},$ $d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$		10		ns
t _{d(off)} t t rr Q _{rr}	Turn-Off Delay Time Turn-Off Fall Time Diode Reverse Recovery Time			10		ns nS
t _{d(off)} t _f t _{rr} Q _{rr}	Turn-Off Delay Time Turn-Off Fall Time Diode Reverse Recovery Time Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$		10 24 66	20	ns nS nC
id(off)	Turn-Off Delay Time Turn-Off Fall Time Diode Reverse Recovery Time Diode Reverse Recovery Charge Total Gate Charge	$d_{iF}/d_{t} = 100 \text{ A/}\mu\text{s}$ $V_{DS} = -30 \text{ V}, \qquad I_{D} = -3.0 \text{ A},$		10 24 66 16	20	ns nS nC nC
tr td(off) tt trr Qrr Qg Qgs Qgd	Turn-Off Delay Time Turn-Off Fall Time Diode Reverse Recovery Time Diode Reverse Recovery Charge Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} &d_{iF}/d_t = 100 \text{ A/}\mu\text{s} \\ &V_{DS} = -30 \text{ V}, &I_D = -3.0 \text{ A}, \\ &V_{GS} = -10 \text{ V} \end{aligned}$		10 24 66 16 2.2	20	ns nS nC nC
td(off) tf trr Qrr Qg Qgs Qgd	Turn-Off Delay Time Turn-Off Fall Time Diode Reverse Recovery Time Diode Reverse Recovery Charge Total Gate Charge Gate-Source Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$ $V_{DS} = -30 \text{ V}, \qquad I_D = -3.0 \text{ A},$ $V_{GS} = -10 \text{ V}$ and Maximum Ratings		10 24 66 16 2.2	20	ns nS nC nC

Notes:

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper

b) 105°C/W when mounted on a .04 in² pad of 2 oz copper

c) 125°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

Typical Characteristics

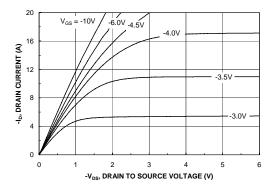


Figure 1. On-Region Characteristics.

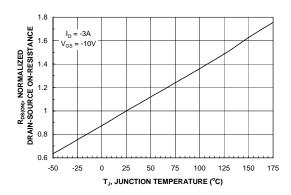


Figure 3. On-Resistance Variation with Temperature.

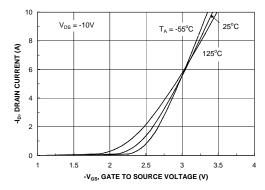


Figure 5. Transfer Characteristics.

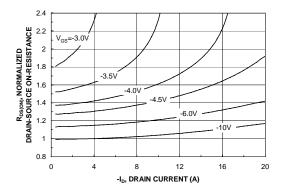


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

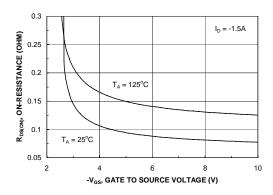


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

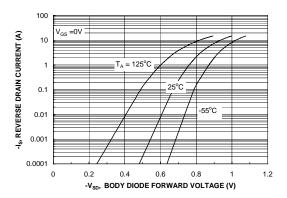
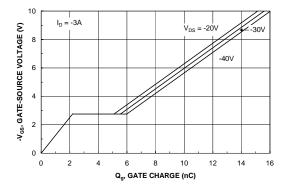



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

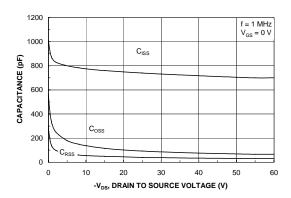
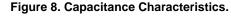
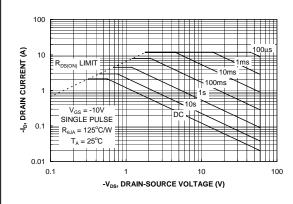




Figure 7. Gate Charge Characteristics.

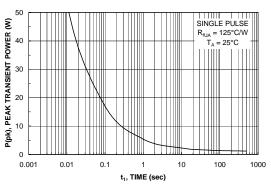


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

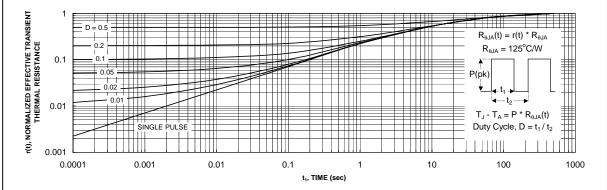


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c.

Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST ® SILENT SWITCHER® UHC™ ACEx™ MICROWIRE™ SMART START™ UltraFET® FASTr™ Bottomless™ OPTOLOGIC® VCX™ SPM™ CoolFET™ FRFET™ OPTOPLANAR™ GlobalOptoisolator™ STAR*POWER™ CROSSVOLT™ PACMAN™ DenseTrench™ GTO™ РОР™ Stealth™ SuperSOT™-3 DOME™ HiSeC™ Power247™ I²CTM SuperSOT™-6 EcoSPARK™ PowerTrench ® SuperSOT™-8 E²CMOSTM ISOPLANAR™ QFET™ QS™ SyncFET™ EnSigna™ LittleFET™ TinyLogic™ FACT™ MicroFET™ QT Optoelectronics™ FACT Quiet Series™ MicroPak™ TruTranslation™ Quiet Series™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H5

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NDS9407

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.