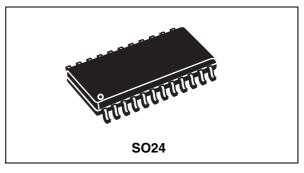


Stepper motor driver

Datasheet - production data


Features

- Drives both windings of a bipolar stepper motor
- Output current up to 750 mA for each winding
- Wide voltage range: 10 V to 46 V
- Half-step, full-step and microstepping mode
- Built-in protection diodes
- Internal PWM current control
- Low output saturation voltage
- Designed for unstabilized motor supply voltage
- Internal thermal shutdown

Description

The L6219DSA is a bipolar monolithic integrated circuit intended to control and drive both windings of a bipolar stepper motor or bidirectionally control two DC motors.

With only a few external components, the L6219DSA controls and drives the circuit for LS-TTL or microprocessor-controlled stepper motor systems. The power stage is a dual full bridge sustaining 46 V and including four diodes for current recirculation.

Cross conduction protection is provided to avoid simultaneous cross conduction during switching current direction.

An internal pulse-width modulation (PWM) controls the output current to 750 mA with peak startup current up to 1 A.

A wide range of current control from 750 mA (each bridge) is permitted by two logic inputs and an external voltage reference. A phase input to each bridge determines the load current direction. Thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

Table 1. Device summary

Order code	Package	Packing
E-L6219DSA	SO24	Tube
E-L6219DSATR	SO24	Tape and reel

Contents L6219DSA

Contents

1	Bloc	k diagram	. 3
2	Func	tional description	. 7
	2.1	Input logic (I0 and I1)	. 7
	2.2	Phase	. 7
	2.3	Current sensor	. 7
	2.4	Single-pulse generator	. 8
	2.5	Output stage	. 8
	2.6	VS, VSS, VRef	. 9
3	Appli	ication information	. 9
4	Pack	age mechanical data	10
5	Revie	sion history	11

L6219DSA Block diagram

1 Block diagram

Figure 1. Block diagram

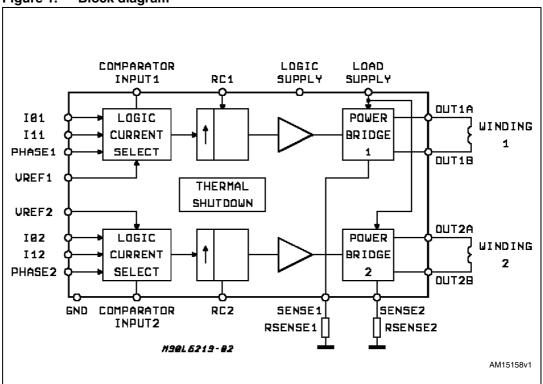


Table 2. Absolute maximum ratings

Parameter	Description	Value	Unit
V_s	Supply voltage	50	V
I _O	Output current (peak)	±1	Α
I _O	Output current (continuous)	±0.75	Α
V _{ss}	Logic supply voltage	7	V
V _{in}	Logic input voltage range	-0.3 to +7	V
V _{sense}	Sense output voltage	1.5	V
Tj	Junction temperature	+150	°C
T _{op}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range -55 to +150		°C

Block diagram L6219DSA

Figure 2. SO24 pin connection (top view)

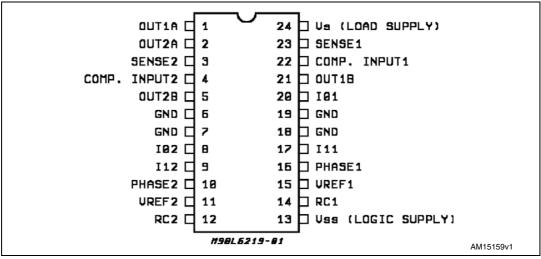


Table 3. Pin functions

Pin #	Name	Description	
1, 21	Output of bridge 1	See pins 2, 5	
3, 23	Sense resistor	Connection to lower emitters of output stage for insertion of current sense resistor	
4, 22	Comparator input	Input connected to the comparators. The voltage across the sense resistor is feedback to this input throught the low passifilter RC CC. The higher power transistors are disabled when the sense voltage exceeds the reference voltage of the selected comparator. When this occurs the current decays for a time set by R_T C_T ($t_{off} = 1.1$ R_T C_T). See <i>Figure 3</i> .	
2, 5	Output of bridge 2	Output connection. The output stage is a H bridge formed by four transistors and four diodes suitable for switching applications.	
6, 7, 18, 19	Ground	Ground connection. They also conduct heat from die to printed circuit copper	
8, 20	Input 0	See input 1 (pins 9, 17)	
9, 17	Input 1	These pins and pins 8, 20 (input 0) are logic inputs which select the outputs of the comparators to set the current level. Current also depends on the sensing resistor and reference voltage. See Section 2: Functional description.	
10, 16	Phase	These TTL-compatible logic inputs set the direction of current flow through the load. A high level causes current flow from output A (source) to output B (sink). A Schmitt trigger on this input provides a good noise immunity and delay circuit prevents output stage short-circuits during switching.	
11, 15	Reference voltage	A voltage applied to this pin sets the reference voltage of the comparators, this determining the output current (also thus depending on Rs and the two inputs input 0 and input 1)	

L6219DSA Block diagram

Table 3. Pin functions (continued)

Pin #	Name	Description
12, 14	RC	A parallel RC network connected to this pin sets the off time of the higher power transistors. The pulse generator is a monostable triggered by the output of the comparators ($t_{\rm off}$ = 1.1 R _T C _T)
13	V _{SS} - Logic supply Supply voltage input for logic circuitry	
24	V _S - Load supply	Supply voltage input for the output stages

Note:

ESD on GND, VS, VSS, OUT 1 A and OUT 2 A is guaranteed up to 1.5 kV (human body model, 1500 W, 100 pF).

Figure 3. Timing diagram

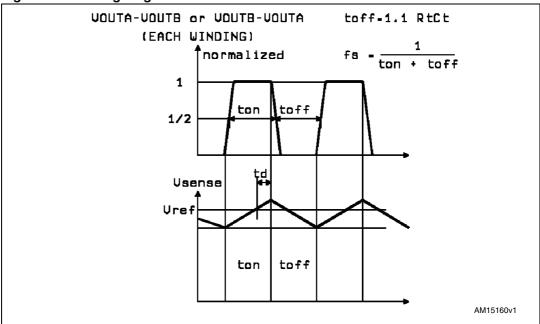


Table 4. Thermal data

Parameter	Description	PDIP	Unit
R _{thj-case}	Thermal resistance junction-case max.	18	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	75 ⁽¹⁾	°C/W

^{1.} With minimized copper area.

Block diagram L6219DSA

Table 5. Electrical characteristcs

(T_j = -40 °C to -125 °C, V_S = 46 V, V_{SS} = 4.75 V to 5.25 V, V_{REF} = 5 V, unless otherwise specified) See *Figure 5*.

Parameter	Description	Test condition	Min.	Тур.	Max.	Unit
Output drive	Output drivers (OUT _A or OUT _B)					
V _S	Motor supply range		10	-	46	V
I _{CEX}	Output leakage current	$V_S = 52 \text{ V } V_{OUT} = 50 \text{ V}$ $V_S = 52 \text{ V } V_{OUT} = 1 \text{ V}$	-200	-	200	μ Α μ Α
V _{CE(sat)}	Output saturation voltage	Sink driver, I_{OUT} = +500 mA Sink driver, I_{OUT} = +750 mA Source driver, I_{OUT} = -500 mA Source driver, I_{OUT} = -750 mA		- - -	0.75 1.15 1.6 1.8	V V V
V_{F}	Clamp diode forward voltage	High stage $I_F = 750 \text{ mA}$ Low stage $I_F = 750 \text{ mA}$		-	1.7 1.6	V V
I _{S(on)}	Driver supply current	Both bridges ON, no load	-	-	17	mA
I _{S(off)}	Driver supply current	Both bridges OFF	-	-	12	mA
Control logi	c					•
V _{IN(H)}	Input voltage	All inputs	2.4	-	-	V
V _{IN(L)}	Input voltage	All inputs	-	-	0.8	٧
I _{IN(H)}	Input current	V _{IN} = 2.4 V	-	<1	20	μΑ
I _{IN(L)}	Input current	V _{IN} = 0.84 V	-	-3	-200	μΑ
V_{REF}	Reference voltage	Operating ⁽¹⁾	1.5	-	7.5	V
I _{SS(ON)}	Total logic supply current	$I_0 = I_1 = 0.8 \text{ V}$, no load	-	-	76	mA
I _{SS(OFF)}	Total logic supply current	$I_0 = I_1 = 2.4 \text{ V}$, no load	-	-	15	mA
Comparator	Comparators					
		$I_0 = I_1 = 0.8 \text{ V}$	9.5	10	10.5	-
V_{REF}/V_{sense}	Current limit threshold (at trip point)	$I_0 = 2.4 \text{ V}, I_1 = 0.8 \text{ V}$	13.5	15	16.5	-
	- F F	$I_0 = 0.8 \text{ V}, I_1 = 2.4 \text{ V}$	25.5	30	34.5	-
t _{off}	Cut off time	$R_t = 56 \text{ K}\Omega$, $C_t = 820 \text{ pF}$	-	50	-	μs
t _d	Turn off delay	Figure 3	-	1	-	μs
Protection						
T_J	Thermal shutdown temperature		-	170	-	°C

^{1.} To reduce the switching losses the base bias of the bridge's low side NPN transistor is proportional to the DAC output, then the output current driving capability is also proportional to the DAC output voltage, having as reference 750 mA with V_{REF} = 5 V and DAC = 100%. For example using V_{REF} = 2 V and DAC = 67% the output maximum current driving capability will become 750 mA*(2 V*0.67)/(5 V*1) = 200 mA.

2 Functional description

The circuit is intended to drive both windings of a bipolar stepper motor.

The peak current control is generated through switch mode regulation. There is a choice of three different current levels with the two logic inputs I_{01} - I_{11} for winding 1 and I_{02} - I_{12} for winding 2.

The current can also be switched off completely.

2.1 Input logic (I_0 and I_1)

The current level in the motor winding is selected by these inputs. (See *Figure 4*). If any of the logic inputs is left open, the circuit treats it as a high level input.

Table 6. Current levels

I ₀	I ₁	Current level
Н	Н	No current
L	Н	Low current 1/3 I _O max
Н	L	Medium current 2/3 I _O max
L	L	Maximum current I _O max

2.2 Phase

This input determines the direction of current flow in the windings, depending on the motor connections. The signal is fed through a Schmidt trigger for noise immunity, and through a time delay in order to guarantee that no short-circuit occurs in the output stage during phase-shift. A high level on the Phase input causes the motor current flow from out A through the winding to out B.

2.3 Current sensor

This part contains a current sensing resistor (R_S), a low pass filter (R_C , C_C) and three comparators. Only one comparator is active at a time. It is activated by the input logic according to the current level chosen with signals I_0 and I_1 . The motor current flows through the sensing resistor R_S . When the current has increased so that the voltage across R_S becomes higher than the reference voltage on the other comparator input, the comparator goes high, triggering the pulse generator.

The max peak current I_{max} can be defined by:

Equation 1

$$I_{max} = \frac{V_{ref}}{10R_s}$$

2.4 Single-pulse generator

The pulse generator is a monostable triggered on the positive going edge of the comparator output. The monostable output is high during the pulse time, t_{off} , which is determined by the time components R_t and C_t .

$$t_{off} = 1.1 \cdot R_t C_t$$

The single pulse switches off the power feed to the motor winding, causing the winding current to decrease during t_{off} . If a new trigger signal should occur during t_{off} , it is ignored.

2.5 Output stage

The output stage contains four Darlington transistors (source drivers) four saturated transistors (sink drivers) and eight diodes, connected in two H bridge.

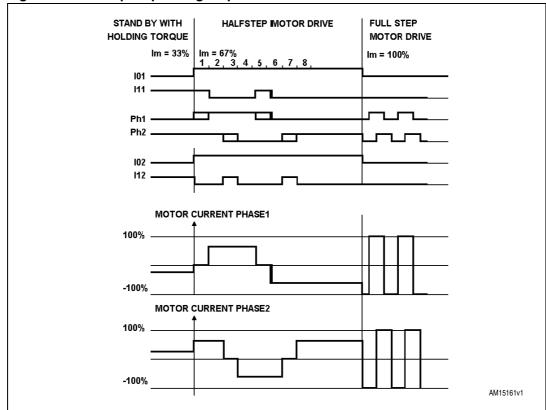


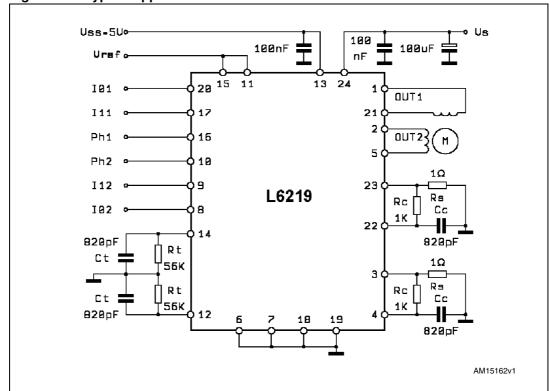
Figure 4. Principle operating sequence

The source transistors are used to switch the power supplied to the motor winding, thus driving a constant current through the winding. It should be noted however, that is not permitted to short-circuit the outputs.

Internal circuitry is added in order to increase the accuracy of the motor current particularly with low current levels.

V_S, V_{SS}, V_{Ref}

The circuit withstands any order of turn-on or turn-off of the supply voltages V_S and V_{SS} . Normal dV/dt values are then assumed.


Preferably, V_{Ref} should be tracking V_{SS} during power-on and power-off if V_{S} is established.

3 Application information

Some stepper motors are not designed for continuous operation at maximum current. As the circuit drives a constant current through the motor, its temperature might increase exceedingly both at low and high speed operation. Also, some stepper motors have such high core losses that they are not suited for switch mode current regulation.

Unused inputs should be connected to proper voltage levels in order to get the highest noise immunity. As the circuit operates with switch mode current regulation, interference generation problems might arise in some applications. A good measure might then be to decouple the circuit with a 100 nF capacitor, located near the package between power line and ground. The ground lead between $R_{\rm s}$, and circuit GND should be kept as short as possible. A typical application circuit is shown in *Figure 5*. Note that $C_{\rm t}$ must be NPO type or similar else. To sense the winding current, paralleled metal film resistors are recommended $(R_{\rm s})$.

Package mechanical data 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 7. SO24 mechanical data dimensions

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
А	2.35		2.65	
A1	0.10		0.30	
В	0.33		0.51	
С	0.23		0.32	
D	15.20		15.60	
E	7.40		7.60	
е		1.27		
Н	10.00		10.65	
h	0.25		0.75	
L	0.40		1.27	
k	0		8	
ddd			0.10	

Note: Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs do not exceed 0.15 mm per side.

hx45° ddd **SEATING** PLANE С 0,25 mm GAGE PLANE 0070769 C

SO24 mechanical data drawing Figure 6.

L6219DSA Revision history

5 Revision history

Table 8. Document revision history

Date	Revision	Changes	
12-Nov-1998	1	Initial release.	
29-Apr-2008	2	Document reformatted	
05-Sep-2008	3	Added note 1. to Table 5.	
24-Oct-2012 4		Changed the title of the document. Reformatted document to current standards. Minor text changes to improve the readability.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 4970 Rev 4

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.