

ESDALC6V1-1BM2

Single line low capacitance Transil™ for ESD protection

Features

- Single line low capacitance Transil diode
- Bidirectional ESD protection
- ESD protection > 30 kV (IEC 61000-4-2 contact discharge)
- Breakdown Voltage V_{BR} = 6.1 V min.
- Low diode capacitance (22 pF typ. at 0 V)
- Low leakage current: < 100 nA at 3 V</p>
- Very small PCB area: 0.6 mm²
- Leadfree package

Benefits

- High ESD protection level
- High integration
- Suitable for high density boards

Complies with the following standards

- IEC 61000-4-2 level 4
 - 15 kV (air discharge)
 - 8 kV (contact discharge)
- MIL STD 883G Method 3015-7: class 3B
 - Human body model

Applications

Where transient overvoltage protection in ESD sensitive equipment is required, such as:

- Computers
- Printers
- Communication systems
- Cellular phone handsets and accessories
- Video equipment

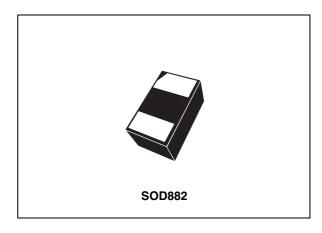
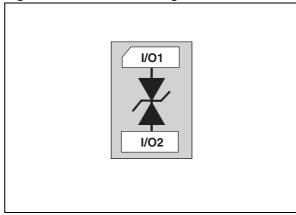



Figure 1. Functional diagram

Description

The ESDALC6V1-1BM2 is a bidirectional single line TVS diode designed to protect the datalines or other I/O ports against ESD transients.

The device is ideal for applications where both reduced line capacitance and board space saving are required.

TM: Transil is a trademark of STMicroelectronics

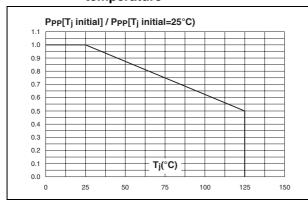
Characteristics ESDALC6V1-1BM2

1 Characteristics

Table 1. Absolute maximum ratings ($T_{amb} = 25$ °C)

Symbol	Parameter	Value	Unit	
$V_{PP}^{(1)}$	Peak pulse voltage (IEC 61000-4-2 contact di	± 30	kV	
P _{PP} ⁽¹⁾	Peak pulse power dissipation (8/20 µs)	140	W	
I _{PP}	Repetitive peak pulse current (8/20 µs)	9	Α	
Tj	Junction temperature	125	°C	
T _{stg}	Storage temperature range	- 55 to + 150	°C	
T _L	Maximum lead temperature for soldering during	260	°C	
T _{OP}	Operating temperature range	- 40 to + 125	°C	

^{1.} For a surge greater than the maximum values, the diode will fail in short-circuit.


Table 2. Electrical characteristics ($T_{amb} = 25$ °C)

Symbol	Parameter					1			
V _{RM}	Stand-of voltage								
V _{BR}	Breakdown voltage								
V _{CL}	Clamping voltage				V _{BR}	I _{RM}	V V _{RM} V _{BR}		
I _{RM}	Leakage current @ V _{RM}					I _R			
I _{PP}	Peak pulse current								
V _F	Forward voltage drop]			
Order code		V _{BR} @ I _R			I _{RM} @	I _{RM} @ V _{RM}		αΤ	C@0 V Bias
		min.	max.		max.		typ.	max.	typ.
		٧	V	mA	nA	V	Ω	10 ⁻⁴ /°C	pF
ESDALC6V1-1BM2		6.1	8.0	1	100	3	0.65	2.5	22

ESDALC6V1-1BM2 Characteristics

Figure 2. Relative variation of peak pulse power versus initial junction temperature

Figure 3. Peak pulse power versus exponential pulse duration

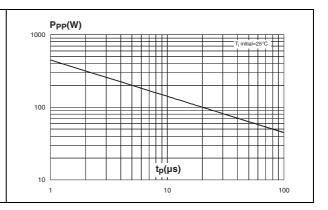
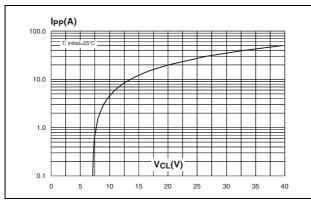



Figure 4. Clamping voltage versus peak pulse current (typical values)

Figure 5. Junction capacitance versus reverse voltage applied (typical values)

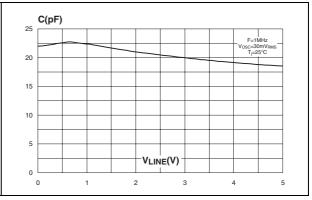
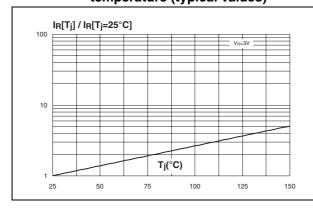
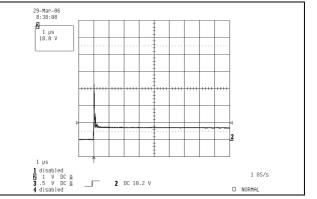
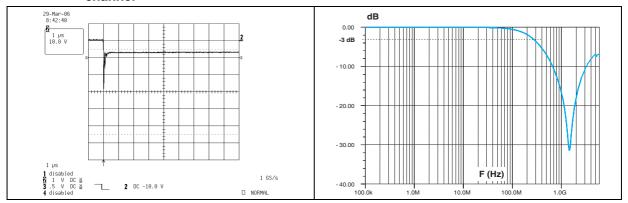



Figure 6. Relative variation of leakage current versus junction temperature (typical values)

Figure 7. ESD response to IEC 61000-4-2 (+15 kV air discharge) on each channel

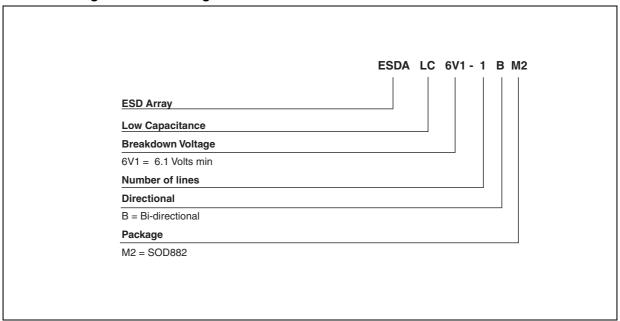

Figure 8. ESD response to IEC 61000-4-2 (-15 kV air discharge) on each channel

Figure 9. S21 attenuation measurement result

2 Ordering information scheme

Figure 10. Ordering information scheme

ESDALC6V1-1BM2 Package information

3 Package information

Epoxy meets UL94, V0

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at www.st.com.

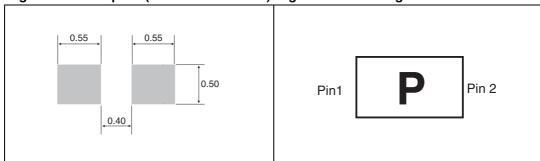
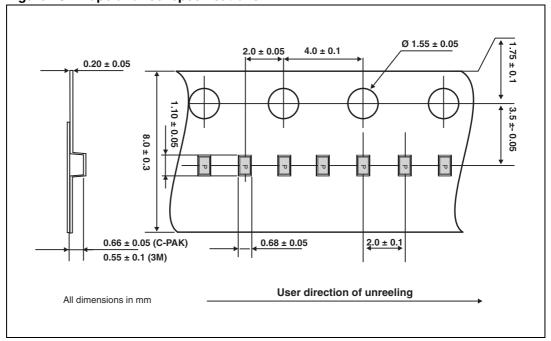

Dimensions TOP VIEW Ref. Millimeters Inches Min. Max. Min. Тур. Max. Typ. Е 0.40 0.47 0.50 0.016 0.019 0.020 Α SIDE VIEW Α1 0.00 0.05 0.000 0.002 0.012 b1 0.20 0.25 0.30 0.008 0.010 b2 0.20 0.25 0.30 0.008 0.010 0.012 **BOTTOM VIEW** D 1.00 0.039 b2 Ε 0.60 0.024 0.65 0.026 е 0.45 0.50 0.55 0.018 0.020 0.022 L1 L2 0.45 0.50 0.55 0.018 0.020 0.022

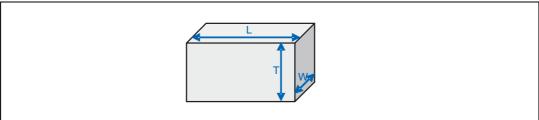
Table 3. SOD882 dimensions

Note:

Product marking may be rotated by 90° for assembly plant differentiation. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

Package information ESDALC6V1-1BM2




Figure 13. Tape and reel specifications

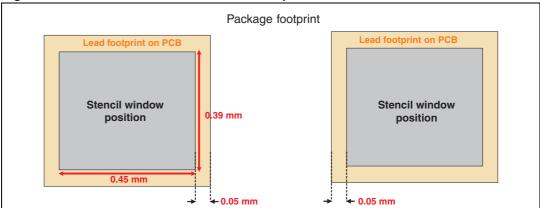
4 Recommendation on PCB assembly

4.1 Stencil opening design

- 1. General recommendation on stencil opening design
 - a) Stencil opening dimensions: L (Length), W (Width), T (Thickness).

Figure 14. Stencil opening dimensions

b) General design rule


Stencil thickness (T) = 75 \sim 125 μm

Aspect Ratio =
$$\frac{W}{T} \ge 1.5$$

Aspect Area =
$$\frac{L \times W}{2T(L+W)} \ge 0.66$$

- 2. Reference design
 - a) Stencil opening thickness: 100 µm
 - b) Stencil opening for leads: Opening to footprint ratio between 60% and 65%.

Figure 15. Recommended stencil windows position

4.2 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed
- 4. Solder paste with fine particles: powder particle size is 20-45 μm.

4.3 **Placement**

- Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- Standard tolerance of + 0.05 mm is recommended. 3.
- 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

4.4 PCB design preference

- To control the solder paste amount, the closed via is recommended instead of open
- 2. The position of tracks and open vias in the solder area should be well balanced. The symmetrical layout is recommended, in case any tilt phenomena caused by asymmetrical solder paste amount due to the solder flow away.

4.5 Reflow profile

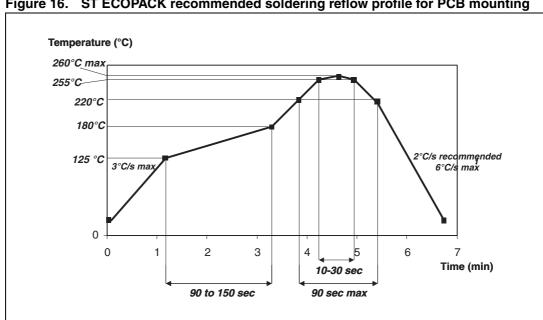


Figure 16. ST ECOPACK recommended soldering reflow profile for PCB mounting

Note: Minimize air convection currents in the reflow oven to avoid component movement.

5 Ordering information

Table 4. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
ESDALC6V1-1BM2	P ⁽¹⁾	SOD882	0.89 mg	3000	Tape and reel

^{1.} The marking can be rotated by 90° to differentiate assembly location

6 Revision history

Table 5. Document revision history

Date	Revision	Changes
11-Jan-2007	1	Initial release.
1-Apr-2007	2	Reformatted to currrent standards. Added Figure 12.: Marking. Updated Figure 13.: Tape and reel specifications. Added Section 4: Recommendation on PCB assembly.

9/10

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.