

Vishay Semiconductors

Infrared Transceiver Module (SIR, 115.2 kbit/s) for IrDA[®] applications

Description

The TFDU4300 is a low profile (2.5 mm) infrared transceiver module with independent logic reference voltage (V_{logic}) for low voltage IO interfacing. It is compliant to the latest IrDA physical layer standard for fast infrared data communication, supporting IrDA speeds up to 115.2 kbit/s (SIR) and carrier based remote control. The transceiver module consists of a PIN photodiode, an infrared emitter (IRED), and a low-power control IC to provide a total front-end solution in a single package. This device covers an

extended IrDA low power range of close to 1 m. With an external current control resistor the current can be adjusted for shorter ranges.

This Vishay SIR transceiver is built in a new smaller package using the experiences of the lead frame BabyFace technology.

The Rxd output pulse width is independent of the optical input pulse width and stays always at a fixed pulse width thus making the device optimum for standard Endecs. TFDU4300 has a tri-state output and is floating in shut-down mode with a weak pull-up.

Features

- Compliant to the latest IrDA physical layer specification (9.6 kbit/s to 115.2 kbit/s) and TV Remote Control, bi-directional operation included.
- Operates from 2.4 V to 5.5 V within specification over full temperature range from - 30 °C to + 85 °C
- Logic voltage 1.5 V to 5.5 V is independent of IRED driver and analog supply voltage
- Split power supply, transmitter and receiver can be operated from two power supplies with relaxed requirements saving costs, US Patent No. 6,157,476
- Extended IrDA Low Power Range to about 70 cm
- Typical Remote Control Range 12 m
- Low Power Consumption (< 0.12 mA Supply Current)
- Power Shutdown Mode (< 5 μA Shutdown Current in Full Temperature Range, up to 85 °C)
- Surface Mount Package, low profile (2.5 mm)
 (L 8.5 mm × H 2.5 mm × W 2.9 mm)
- High Efficiency Emitter

- Low Profile (Universal) Package Capable of Surface Mount Soldering to Side and Top View Orientation
- Directly Interfaces with Various Super I/O and Controller Devices as e.g. TOIM4232
- Tri-state-Receiver Output, floating in shut down with a weak pull-up
- Compliant with IrDA Background Light
 Specification
- EMI Immunity in GSM Bands > 300 V/m verified

Applications

- Ideal for Battery Operated Applications
- Telecommunication Products (Cellular Phones, Pagers)
- Digital Still and Video Cameras
- Printers, Fax Machines, Photocopiers, Screen
- Projectors
- Medical and Industrial Data Collection
- Diagnostic Systems
- Notebook Computers, Desktop PCs, Palmtop Computers (Win CE, Palm PC), PDAs
- Internet TV Boxes, Video Conferencing Systems
- External Infrared Adapters (Dongles)
- Data Loggers
- GPS
- Kiosks, POS, Point and Pay Devices including IrFM - Applications

Vishay Semiconductors

Parts Table

Part	Description	Qty / Reel
TFDU4300-TR1	Oriented in carrier tape for side view surface mounting	750 pcs
TFDU4300-TR3	Oriented in carrier tape for side view surface mounting	2500 pcs
TFDU4300-TT1	Oriented in carrier tape for top view surface mounting	750 pcs
TFDU4300-TT3	Oriented in carrier tape for top view surface mounting	2500 pcs

Functional Block Diagram

Pin Description

Pin Number	Function	Description	I/O	Active
1	V _{CC2} IRED Anode	Connect IRED anode directly to the power supply (V _{CC2}). IRED current can be decreased by adding a resistor in series between the power supply and IRED anode. A separate unregulated power supply can be used at this pin.		
2	IRED Cathode	IRED Cathode, internally connected to the driver transistor		
3	Txd	This Schmitt-Trigger input is used to transmit serial data when SD is low. An on-chip protection circuit disables the LED driver if the Txd pin is asserted for longer than 300 μ s. The input threshold voltage adapts to and follows the logic voltage swing defined by the applied V _{logic} voltage.	I	HIGH
4	Rxd	Received Data Output, push-pull CMOS driver output capable of driving standard CMOS or TTL loads. During transmission the Rxd output is inactive. No external pull-up or pull-down resistor is required. Floating with a weak pull-up of 500 k Ω (typ.) in shutdown mode. The voltage swing is defined by the applied V _{logic} voltage	0	LOW
5	SD	Shutdown. The input threshold voltage adapts to and follows the logic voltage swing defined by the applied V _{logic} voltage.	I	HIGH
6	V _{CC1}	Supply Voltage		
7	V _{logic}	$ \begin{array}{l} V_{logic} \mbox{ defines the logic voltage level of the I/O ports to adap the logic voltage swing to the IR controller. The Rxd output range is from 0 V to V_{logic}, for optimum noise suppression the inputs- logic decision level is 0.5 x V_{logic} \end{array} $	Ι	
8	GND	Ground		

VISHAY

Pinout TFDU4300 weight 75 mg

Definitions:

In the Vishay transceiver data sheets the following nomenclature is used for defining the IrDA operating modes:

SIR: 2.4 kbit/s to 115.2 kbit/s, equivalent to the basic serial infrared standard with the physical layer version IrPhy 1.0

MIR: 576 kbit/s to 1152 kbit/s

FIR: 4 Mbit/s

VFIR: 16 Mbit/s

MIR and FIR were implemented with IrPhy 1.1, followed by IrPhy 1.2, adding the SIR Low Power Standard. IrPhy 1.3 extended the Low Power Option to MIR and FIR and VFIR was added with IrPhy 1.4.A new version of the standard in any case obsoletes the former version.

With introducing the updated versions the old versions are obsolete. Therefore the only valid IrDA standard is the actual version IrPhy 1.4 (in Oct. 2002).

Absolute Maximum Ratings

Reference point Ground (pin 8) unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supply voltage range, transceiver	- 0.3 V < V _{CC2} < 6 V - 0.5 V < V _{logic} < 6 V	V _{CC1}	- 0.5		+ 6.0	V
Supply voltage range, transmitter	- 0.5 V < V _{CC1} < 6 V - 0.5 V < V _{logic} < 6 V	V _{CC2}	- 0.5		+ 6.0	V
Supply voltage range, V_{logic}	- 0.5 V < V _{CC1} < 6 V - 0.3 V < V _{CC2} < 6 V	V _{logic}	- 0.5		+ 6.0	V
Rxd output voltage	- 0.5 V < V _{CC1} < 6 V - 0.3 V < V _{logic} < 6 V	V _{Rxd}	- 0.5		V _{logic} + 0.5	V
Voltage at all inputs	Note: $V_{in} \ge V_{CC1}$ is allowed	V _{IN}	- 0.5		+ 6.0	V
Input current	for all pins, except IRED anode pin				10	mA
Output sinking current					25	mA
Power dissipation	see derating curve	PD			250	mW
Junction temperature		ТJ			125	°C
Ambient temperature range (operating)		T _{amb}	- 30		+ 85	°C
Storage temperature range		T _{stg}	- 40		+ 100	°C
Soldering temperature	see recommended solder profile				240	°C
Average output current, pin 1		I _{IRED(DC)}			125	mA
Repetitive pulsed output current, pin 1 to pin 2	t < 90 μs, t _{on} < 20 %	I _{IRED(RP)}			600	mA

Vishay Semiconductors

Eye safety information

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Virtual source size	Method: (1-1/e) encircled energy	d	1.3	1.8		mm
Maximum intensity for class 1	IEC60825-1 or EN60825-1, edition Jan. 2001, operating below the absolute maximum ratings	Ι _e			*) (500) ^{**)}	mW/sr

^{*)} Due to the internal limitation measures the device is a "class 1" device under all conditions.

 $^{\star\star)}$ IrDA specifies the max. intensity with 500 mW/sr.

Vishay Semiconductors

Electrical Characteristics

Transceiver

Tested @ T_{amb} = 25 °C, V_{CC1} = V_{CC2} = 2.7 V to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supply voltage	Remark: For 2.4 V < V_{CC1} < 2.6 V @ T_{amb} < - 25 °C a minor reduction of the receiver sensitivity may occur	V _{CC1}	2.4		5.5	V
Idle supply current @ V _{CC1} (receive mode, no signal)	SD = Low, $E_e = 1 \text{ klx}^*$, $T_{amb} = -25 \text{ °C to} + 85 \text{ °C}$, $V_{CC1} = V_{CC2} = 2.7 \text{ V to} 5.5 \text{ V}$	I _{CC1}		90	130	μA
	$\begin{split} & \text{SD} = \text{Low, E}_{\text{e}} = 1 \text{ klx}^{*)}, \\ & \text{T}_{\text{amb}} = 25 \text{ °C}, \\ & \text{V}_{\text{CC1}} = \text{V}_{\text{CC2}} = 2.7 \text{ V to } 5.5 \text{ V} \end{split}$	I _{CC1}		75		μA
Idle supply current @ V _{logic} (receive mode, no signal)	SD = Low, $E_e = 1 \text{ klx}^*$, V_{log} , pin 7, no signal, no load @ Rxd	I _{log}			1	μA
Average dynamic supply current, transmitting	I _{IRED} = 300 mA, 20 % Duty Cycle	I _{CC}			65	mA
Standby supply current	SD = High, T = 25 °C, $E_e = 0 \text{ klx}$	I _{SD}			0.1	μA
	SD = High, T = 70 °C	I _{SD}			2	μA
	SD = High, T = 85 °C	I _{SD}			3	μA
Standby supply current, V _{logic}	no signal, no load	I _{log}			1	μA
Operating temperature range		T _A	- 30		+ 85	°C
Output voltage low, Rxd	C _{Load} = 15 pF	V _{OL}	- 0.5		0.15 x V _{logic}	V
Output voltage high, Rxd	I _{OH} = - 500 μA	V _{OH}	0.8 x V _{logic}		V _{logic} + 0.5	V
	I_{OH} = - 250 μ A, C_{Load} = 15 pF	V _{OH}	0.9 x V _{logic}		V _{logic} + 0.5	V
Rxd to V _{CC1} impedance		R _{Rxd}	400	500	600	kΩ
Input voltage low (Txd, SD)		V _{IL}	- 0.5		0.5	V
Input voltage high (Txd, SD)	CMOS level ^{**)}	V _{IH}	V _{logic} - 0.5		6	V
Input leakage current (Txd, SD)	V _{IN} = 0.9 x V _{logic}	I _{ICH}	- 2		+ 2	μA
Controlled pull down current	SD, Txd = "0" to "1", V _{IN} < 0.15 V _{logic}	I _{IRTx}			+ 150	μA
	SD, Txd = "0" to "1", V _{IN} > 0.7 V _{logic}	I _{IRTx}	- 1	0	1	μA
Input capacitance (Txd, SD)		CIN			5	pF

*) Standard illuminant A

^{**)} To provide an improved immunity with increasing V_{logic} the typical threshold level is increasing with V_{logic} and set to 0.5 x V_{logic} . It is recommended to use the specified min/max values to avoid increased operating current.

Vishay Semiconductors

Optoelectronic Characteristics

Receiver

Tested @ T_{amb} = 25 °C, V_{CC1} = V_{CC2} = 2.7 V to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Minimum detection threshold irradiance, SIR Mode	9.6 kbit/s to 115.2 kbit/s $\lambda = 850 \text{ nm} - 900 \text{ nm}$ $\alpha = 0^{\circ}, 15^{\circ}$	E _e		40 (4)	80 (8)	mW/m ² (μW/cm ²⁾
Maximum detection threshold irradiance	$\lambda = 850 \text{ nm} - 900 \text{ nm}$	E _e		5 (500)		kW/m ² (mW/cm ²)
Receiver input irradiance for low signal suppression ^{*)} No Rxd signal	λ = 850 nm - 900 nm t _p , t _f < 40 ns, t _{po} = 1.6 μs @ f = 115 kHz, no output signal allowed	E _e	4 (0.4)			mW/m ² (μW/cm ²⁾
Rise time of output signal	10 % to 90 %, C _L = 15 pF	t _{r(Rxd)}	10		100	ns
Fall time of output signal	90 % to 10 %, C _L = 15 pF	t _{f(Rxd)}	10		100	ns
Rxd pulse width of output signal	input pulse length > 1.2 μ s	t _{PW}	1.65	2.0	3.0	μs
Stochastic jitter, leading edge	input irradiance = 100 mW/m ² , \leq 115.2 kbit/s				250	ns
Standby /Shutdown delay, receiver startup time	after shutdown active or power-on				150	μs
Latency		tL		100	150 ^{**)}	μs

*) Equivalent to IrDA Background Light and Electromagnetic Field Test: Fluorescent Lighting Immunity

**) Compliment to IrDA® SIR

6

Vishay Semiconductors

Transmitter

Tested @ T_{amb} = 25 °C, V_{CC1} = V_{CC2} = 2.7 V to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

3 1			-			
Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
IRED operating current limitation	No external resistor for current limitation ^{*)}	Ι _D	250	300	350	mA
Forward voltage of built-in IRED	l _f = 300 mA	V _f	1.4	1.8	1.9	V
Output leakage IRED current	Txd = 0 V, 0 < V _{CC1} < 5.5 V	I _{IRED}	- 1		1	μA
Output radiant intensity	α = 0 °, 15 ° Txd = High, SD = Low	۱ _e	30	65		mW/sr
	$V_{CC1} = 5.0 \text{ V}, \alpha = 0^{\circ}, 15^{\circ}$ Txd = Low or SD = High (Receiver is inactive as long as SD = High)	I _e			0.04	mW/sr
Output radiant intensity, angle of half intensity		α		± 24		0
Peak - emission wavelength**)		λ _p	880		900	nm
Spectral bandwidth		Δλ		45		nm
Optical rise time, fall time		t _{ropt} , t _{fopt}	10		100	ns
Optical output pulse duration	input pulse width 1.63 μs, 115.2 kbit/s	t _{opt}	1.6	1.63	1.8	μs
	input pulse width t_{Txd} < 20 μ s	t _{opt}	t _{Txd}		t _{Txd} + 0.15	μs
	input pulse width $t_{Txd} \geq 20 \ \mu s$	t _{opt}	20		300	μs
Optical overshoot					25	%

*) Using an external current limiting resistor is allowed and recommended to reduce IRED intensity and operating current when current reduction is intended to operate at the IrDA low power conditions. E.g. for V_{CC2} = 3.3 V a current limiting resistor of R_S = 56 Ω will allow a power minimized operation at IrDA low power conditions.

**) Note: Due to this wavelength restriction compared to the IrDA spec of 850 nm to 900 nm the transmitter is able to operate as source for the standard Remote Control applications with codes as e.g. Phillips RC5/RC6[®] or RECS 80.

Vishay Semiconductors

Recommended Circuit Diagram

Operated with a clean low impedance power supply the TFDU4300 needs no additional external components. However, depending on the entire system design and board layout, additional components may be required (see figure 1).

Figure 1. Recommended Application Circuit

Recommended Application Circuit

The capacitor C1 is buffering the supply voltage and eliminates the inductance of the power supply line. This one should be a Tantalum or other fast capacitor to guarantee the fast rise time of the IRED current. The resistor R1 is the current limiting resistor, which may be used to reduce the operating current to levels below the specified controlled values for saving battery power.

Vishay's transceivers integrate a sensitive receiver and a built-in power driver. The combination of both needs a careful circuit board layout. The use of thin, long, resistive and inductive wiring should be avoided. The inputs (Txd, SD) and the output Rxd should be directly connected (DC - coupled) to the I/O circuit.

The capacitor C2 combined with the resistor R2 is the low pass filter for smoothing the supply voltage. R2, C1 and C2 are optional and dependent on the quality of the supply voltages V_{CC1} and injected noise. An unstable power supply with dropping voltage during transmission may reduce the sensitivity (and transmission range) of the transceiver.

The placement of these parts is critical. It is strongly recommended to position C2 as close as possible to the transceiver power supply pins. An Tantalum capacitor should be used for C1 while a ceramic capacitor is used for C2.

In addition, when connecting the described circuit to the power supply, low impedance wiring should be used.

When extended wiring is used the inductance of the power supply can cause dynamically a voltage drop at V_{CC2}. Often some power supplies are not apply to follow the fast current rise time. In that case another 4.7 μ F (type, see table under C1) at V_{CC2} will be help-ful.

Under extreme EMI conditions as placing an RFtransmitter antenna on top of the transceiver, we recommend to protect all inputs by a low-pass filter, as a minimum a 12 pF capacitor, especially at the Rxd port. The transceiver itself withstands EMI at GSM frequencies above 300 V/m. When interference is observed, it is picked up by the wiring to the inputs. It is verified by DPI (direct power injection) measurements that as long as the interfering RF - voltage is below the logic threshold levels of the inputs and equivalent levels at the outputs no interference is expected.

Figure 2 and figure 3 show examples for circuit diagrams to work with low voltage logic and using the transceiver when $V_{CC1} = V_{logic}$, just connecting the responsible pins to each other.

Block Diagram of Transceiver with a Common Power Supply for V_{CC} and V_{logic} (I/O voltage follows V_{CC} voltage swing) V_{CC} = 3.3 V IR Controller TFDU4300 Vdd Vcc2 IREDA(1) IREDC (2) TxD (3) IRTX RxD (4) IRRX SD (5) IRMODE Vcc1 (6) 47Ω Vlogic (7) GND (8) C. C/ СЗ GND

One should keep in mind that basic RF - design rules for circuit design should be taken into account. Especially longer signal lines should not be used without

18455

termination. See e.g. "The Art of Electronics" Paul Horowitz, Winfield Hill, 1989, Cambridge University Press, ISBN: 0521370957.

Table 1.Recommended Application Circuit Components

+

Component	Recommended Value	Vishay Part Number
C1, C3	4.7 μF, 16 V	293D 475X9 016B
C2, C4	0.1 µF, Ceramic	VJ 1206 Y 104 J XXMT
R1	depends on current to be adjusted	
R2	47 Ω, 0.125 W	CRCW-1206-47R0-F-RT1

Figure 3.

I/O and Software

In the description, already different I/Os are mentioned. Different combinations are tested and the function verified with the special drivers available from the I/O suppliers. In special cases refer to the I/O manual, the Vishay application notes, or contact directly Vishay Sales, Marketing or Application. For operating at RS232 ports the ENDEC TOIM4232 is recommended.

Vishay Semiconductors

TFDU4300

Vishay Semiconductors

Truth table

		Inputs	Out	outs	Remark
SD	Txd	Optical input Irradiance mW/m ²	Rxd	Transmitter	Operation
high > 1 ms	x	x	weakly pulled (500 k Ω) to V _{CC1}	0	Shutdown
low	high	x	high inactive	Ι _e	Transmitting
low	high > 50 μs	x	high inactive	0	Protection is active
low	low	< 4	high inactive	0	Ignoring low signals below the IrDA defined threshold for noise immunity
low	low	> Min. Detection Threshold Irradiance < Max. Detection Threshold Irradiance	low (active)	0	Response to an IrDA compliant optical input signal
low	low	> Max. Detection Threshold Irradiance	undefined	0	Overload conditions can cause unexpected outputs

Recommended Solder Profile

Current Derating Diagram

Figure 5. Temperature Derating Diagram

Package Dimensions in mm

18100

technical drawings according to DIN specifications

Vishay Semiconductors

Reel Dimensions

Tape Width	A max.	Ν	W ₁ min.	W ₂ max.	W ₃ min.	W ₃ max.
mm	mm	mm	mm	mm	mm	mm
16	180	60	16.4	22.4	15.9	19.4
16	330	50	16.4	22.4	15.9	19.4

Tape Dimensions in mm

Drawing-No.: 9.700-5280.01-4 Issue: 1; 03.11.03

18306

Vishay Semiconductors

18307

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.