Is Now Part of # ON Semiconductor® # To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer #### www.onsemi.com ## ON Semiconductor® ## NDS331N N-Channel Logic Level Enhancement Mode Field Effect Transistor #### **General Description** These N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package. #### **Features** - 1.3 A, 20 V. $R_{DS(ON)} = 0.21 \Omega @ V_{GS} = 2.7 V$ $R_{DS(ON)} = 0.16 \Omega @ V_{GS} = 4.5 V.$ - Industry standard outline SOT-23 surface mount package using poprietary SuperSOT[™]-3 design for superior thermal and electrical capabilities. - High density cell design for extremely low R_{DS(ON)}. - Exceptional on-resistance and maximum DC current capability. ## Absolute Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | | NDS331N | Units | | |------------------|---|-----------|------------|-------|--| | V _{DSS} | Drain-Source Voltage | | 20 | V | | | V _{GSS} | Gate-Source Voltage - Continuous | | 8 | V | | | I _D | Maximum Drain Current - Continuous | (Note 1a) | 1.3 | A | | | | - Pulsed | | 10 | | | | P _D | Maximum Power Dissipation | (Note 1a) | 0.5 | W | | | | | (Note 1b) | 0.46 | | | | T_J, T_{STG} | Operating and Storage Temperature Rang | е | -55 to 150 | °C | | | THERMA | L CHARACTERISTICS | | | · | | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 250 | °C/W | | | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | (Note 1) | 75 | °C/W | | | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |---------------------|-----------------------------------|---|-----------------------|-----|------|------|-------| | OFF CHA | RACTERISTICS | <u>.</u> | | | | | • | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$ | | 20 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 16 V, V _{GS} = 0 V | | | | 1 | μΑ | | | | | T _J =125°C | | | 10 | μΑ | | I _{GSSF} | Gate - Body Leakage, Forward | V _{GS} = 8 V, V _{DS} = 0 V | | | | 100 | nA | | I _{GSSR} | Gate - Body Leakage, Reverse | V _{GS} = -8 V, V _{DS} = 0 V | | | | -100 | nA | | ON CHAR | ACTERISTICS (Note 2) | <u>.</u> | | | | | • | | $V_{\text{GS(th)}}$ | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | | 0.5 | 0.7 | 1 | V | | | | | T _J =125°C | 0.3 | 0.53 | 0.8 | 1 | | R _{DS(ON)} | Static Drain-Source On-Resistance | V _{GS} = 2.7 V, I _D = 1.3 A | • | | 0.15 | 0.21 | Ω | | | | | T _J =125°C | | 0.24 | 0.4 | | | | | V _{GS} = 4.5 V, I _D = 1.5 A | • | | 0.11 | 0.16 | | | I _{D(ON)} | On-State Drain Current | V _{GS} = 2.7 V, V _{DS} = 5 V | | 3 | | | Α | | | | $V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$ | | 4 | | | 1 | | g _{FS} | Forward Transconductance | $V_{DS} = 5 \text{ V}, I_{D} = 1.3 \text{ A},$ | | | 3.5 | | S | | DYNAMIC | CHARACTERISTICS | · | | | | | | | C _{iss} | Input Capacitance | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$
f = 1.0 MHz | | | 162 | | pF | | C _{oss} | Output Capacitance | | | | 85 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | | 28 | | pF | | SWITCHI | NG CHARACTERISTICS (Note 2) | | | | | | | | t _{D(on)} | Turn - On Delay Time | $V_{DD} = 5 \text{ V}, I_{D} = 1 \text{ A},$ $V_{GS} = 5 \text{ V}, R_{Gen} = 6 \Omega$ | | | 5 | 20 | ns | | t, | Turn - On Rise Time | | | | 25 | 40 | ns | | t _{D(off)} | Turn - Off Delay Time | | | | 10 | 20 | ns | | t _f | Turn - Off Fall Time | | | | 5 | 20 | ns | | Q_g | Total Gate Charge | $V_{DS} = 5 \text{ V}, I_{D} = 1.3 \text{ A},$ | | | 3.5 | 5 | nC | | $\overline{Q_{gs}}$ | Gate-Source Charge | V _{GS} = 4.5 V | | | 0.3 | | nC | | Q_{gd} | Gate-Drain Charge | | | | 1 | | nC | | Electrical Characteristics (T _A = 25°C unless otherwise noted) | | | | | | | | | |--|---|---|--|-----|------|-------|--|--| | Symbol | Parameter | Conditions | | Тур | Max | Units | | | | DRAIN-SC | DURCE DIODE CHARACTERISTICS AND | MAXIMUM RATINGS | | | | | | | | I _s | Maximum Continuous Drain-Source Diode Forward Current | | | | 0.42 | Α | | | | I _{SM} | Maximum Pulsed Drain-Source Diode Forward Current | | | | 10 | Α | | | | V _{SD} | Drain-Source Diode Forward Voltage | V _{GS} = 0 V, I _S = 0.42 A (Note 2) | | 8.0 | 1.2 | V | | | #### Notes: 1. $R_{g,N}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{g,C}$ is guaranteed by design while $R_{g,C}$ is determined by the user's board design. $$P_D(t) = \frac{T_J - T_A}{R_{\theta J} \, \hat{A}(t)} = \frac{T_J - T_A}{R_{\theta J} \, \hat{c}^{\dagger} R_{\theta C} \hat{A}^{\dagger} t} = I_D^2(t) \times R_{DS(ON)} \hat{\mathbf{g}}_{TJ}$$ Typical $R_{\rm g,s}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment: a. 250°C/W when mounted on a 0.02 in² pad of 2oz copper. b. 270°C/W when mounted on a 0.001 in² pad of 2oz copper. Scale 1: 1 on letter size paper 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. ## **Typical Electrical Characteristics** Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 3. On-Resistance Variation with Temperature. Figure 4. On-Resistance Variation with Drain Current and Temperature. Figure 5. Transfer Characteristics. Figure 6. Gate Threshold Variation with Temperature. ## Typical Electrical Characteristics (continued) Figure 7. Breakdown Voltage Variation with Temperature. Figure 8. Body Diode Forward Voltage Variation with Source Current and Temperature. Figure 9. Capacitance Characteristics. Figure 10. Gate Charge Characteristics. Figure 11. Switching Test Circuit. Figure 12. Switching Waveforms. ## Typical Electrical Characteristics (continued) Figure 13. Transconductance Variation with Drain Current and Temperature. Figure 14. Maximum Safe Operating Area. Figue 15. SuperSOT[™]-3 Maximum Steady-State Power Dissipation. versus Copper Mounting Pad Area. Figure 16. Maximum Steady-State Drain Current versus Copper Mounting Pad. Area Figure 17. Transient Thermal Response Curve. Note: Thermal characterization performed using the conditions described in note 1b. response will change depending on the circuit board design. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ON Semiconductor: NDS331N Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.