

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

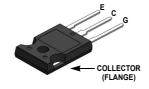
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

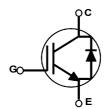
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

April 2016

FGH50T65SQD 650 V, 50 A Field Stop Trench IGBT

Features


- Maximum Junction Temperature : T_J =175°C
- · Positive Temperaure Co-efficient for Easy Parallel Operating
- · High Current Capability
- Low Saturation Voltage: V_{CE(sat)} =1.6 V(Typ.) @ I_C = 50 A
- 100% of the Parts Tested for I_{LM}(1)
- · High Input Impedance
- Fast Switching
- · Tighten Parameter Distribution
- · RoHS Compliant


General Description

Using novel field stop IGBT technology, Fairchild's new series of field stop 4th generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Applications

· Solar Inverter, UPS, Welder, Telecom, ESS, PFC

Absolute Maximum Ratings

Symbol	Description		FGH50T65SQD_F155	Unit	
V _{CES}	Collector to Emitter Voltage		650	V	
V	Gate to Emitter Voltage		± 20	V	
V_{GES}	Transient Gate to Emitter Voltage		± 30	V	
I _C	Collector Current	@ T _C = 25°C	100	Α	
l C	Collector Current	@ T _C = 100°C	50	Α	
I _{LM (1)}	Pulsed Collector Current	@ T _C = 25°C	200	Α	
I _{CM (2)}	Pulsed Collector Current		200	Α	
I _F	Diode Forward Current	@ T _C = 25°C	50	Α	
'F	Diode Forward Current	@ T _C = 100°C	30	Α	
I _{FM}	Pulsed Diode Maximum Forward Currer	t	200	Α	
P _D	Maximum Power Dissipation	@ T _C = 25°C	268	W	
. 0	Maximum Power Dissipation	@ T _C = 100°C	134	W	
T _J	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

- Notes: 1. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 200 A, R_{G} = 3 Ω , Inductive Load
- 2. Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	FGH50T65SQD_F155	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case, Max.	0.56	°C/W
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case, Max.	1.25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Qty per Tube
FGH50T65SQD_F155	FGH50T65SQD	TO-247 G03	Tube	-	-	30

Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0V, I_C = 1 mA	650	-	-	V
ΔBV_{CES} / ΔT_{J}	Temperature Coefficient of Breakdown Voltage	I _C = 1 mA, Reference to 25°C	-	0.6	-	V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μΑ
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I_C = 50 mA, V_{CE} = V_{GE}	2.6	4.5	6.4	V
		I _C = 50 A, V _{GE} = 15 V, T _C = 25°C	-	1.6	2.1	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 50 A, V _{GE} = 15 V, T _C = 175°C	-	1.92	-	V
Dynamic C	haracteristics				l	
C _{ies}	Input Capacitance		-	3275	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$	-	84	-	pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	12	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	22	-	ns
t _r	Rise Time		-	8.7	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 12.5 A,	-	105	-	ns
t _f	Fall Time	$R_G = 4.7 \Omega$, $V_{GE} = 15 V$,	-	2.5	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	180	-	uJ
E _{off}	Turn-Off Switching Loss		-	45	-	uJ
E _{ts}	Total Switching Loss		-	225	-	uJ
t _{d(on)}	Turn-On Delay Time		-	19	-	ns
t _r	Rise Time] [-	13	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 25 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GE} = 15 \text{ V},$	-	93	-	ns
t _f	Fall Time		-	6.4	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	410	-	uJ
E _{off}	Turn-Off Switching Loss		-	88	-	uJ
E _{ts}	Total Switching Loss] [-	498	-	uJ

Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-On Delay Time		-	20	-	ns
t _r	Rise Time		-	9.8	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 12.5 A,	-	116	-	ns
t _f	Fall Time	$R_G = 4.7 \Omega, V_{GE} = 15 V,$	-	3.5	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	402	-	uJ
E _{off}	Turn-Off Switching Loss		-	110	-	uJ
E _{ts}	Total Switching Loss		-	512	-	uJ
t _{d(on)}	Turn-On Delay Time		-	18	-	ns
t _r	Rise Time		-	15	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 25 A,	-	102	-	ns
t _f	Fall Time	$R_G = 4.7 \Omega$, $V_{GE} = 15 V$,	-	8	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	641	-	uJ
E _{off}	Turn-Off Switching Loss		-	203	-	uJ
E _{ts}	Total Switching Loss		-	844	-	uJ
Qg	Total Gate Charge	V 400 V 1 50 A	-	99	-	nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400 V, I _C = 50 A, V _{GE} = 15 V	-	17	-	nC
Q _{gc}	Gate to Collector Charge	- GE :-:	-	23	-	nC

Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Unit
V _{FM}	Diode Forward Voltage	IF = 30 A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	2.2	2.6	V
FINI			$T_{\rm C}$ = 175°C	-	1.9	-	
E _{rec}	Reverse Recovery Energy		$T_{\rm C}$ = 175°C	-	40	-	uJ
t _{rr}	Diode Reverse Recovery Time	200 A/μs	T _C = 25°C	-	31	-	ns
पा			T _C = 175°C	-	207	-	110
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	48	-	nC
≪rr	Diago Novolog Neesovery Charge		T _C = 175°C	-	820	-	

Figure 1. Typical Output Characteristics

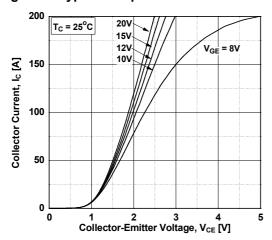


Figure 3. Typical Saturation Voltage Characteristics

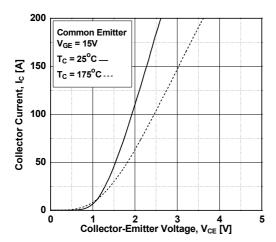
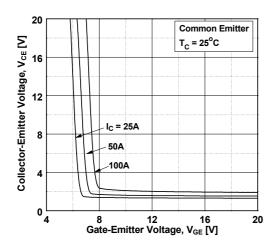



Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Output Characteristics

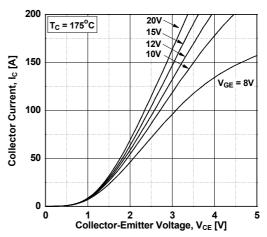


Figure 4. Saturation Voltage vs. Case
Temperature at Variant Current Level

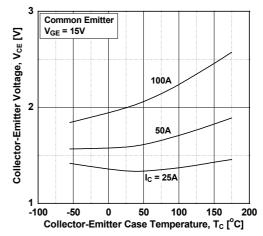


Figure 6. Saturation Voltage vs. V_{GE}

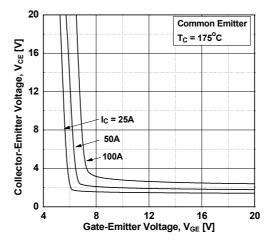


Figure 7. Capacitance Characteristics

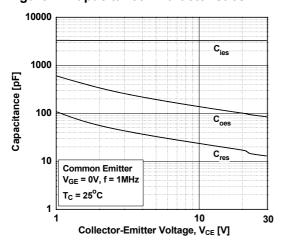


Figure 9. Turn-on Characteristics vs.
Gate Resistance

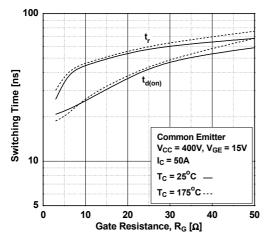


Figure 11. Switching Loss vs.
Gate Resistance

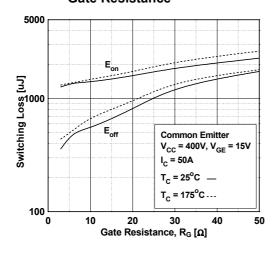


Figure 8. Gate charge Characteristics

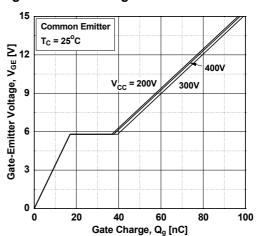


Figure 10. Turn-off Characteristics vs. Gate Resistance

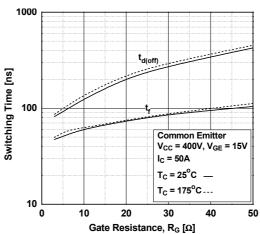


Figure 12. Turn-on Characteristics vs. Collector Current

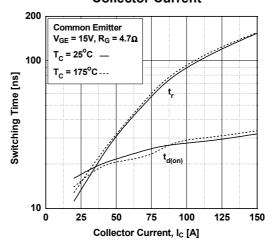
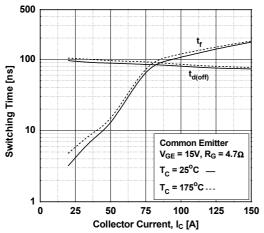



Figure 13. Turn-off Characteristics vs. Collector Current

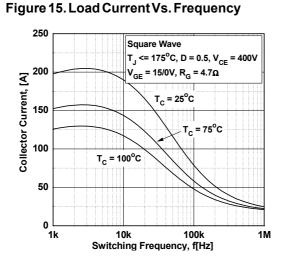


Figure 17. Forward Characteristics

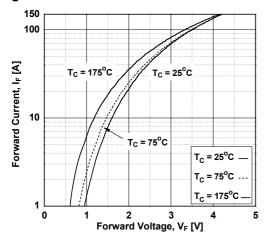


Figure 14. Switching Loss vs. Collector Current

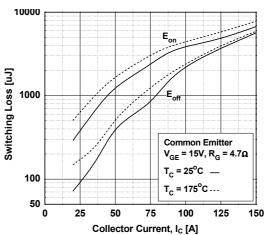


Figure 16. SOA Characteristics

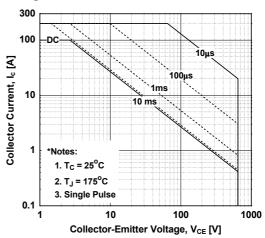


Figure 18. Reverse Recovery Current

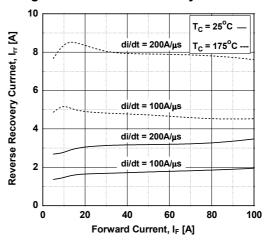


Figure 19. Reverse Recovery Time

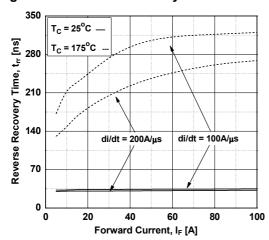


Figure 20. Stored Charge

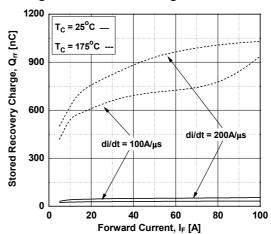


Figure 21.Transient Thermal Impedance of IGBT

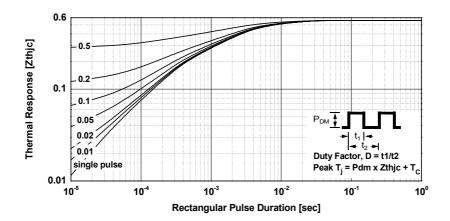
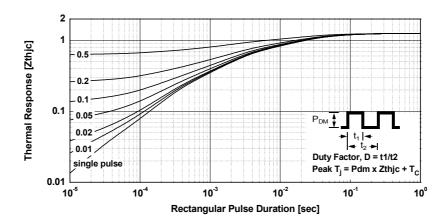
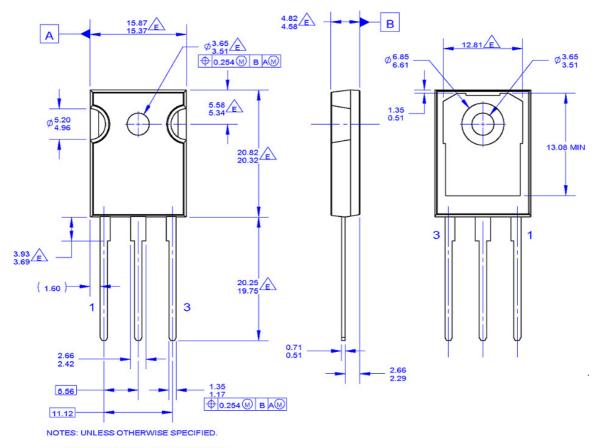




Figure 22. Transient Thermal Impedance of Diode

Mechanical Dimensions

- A. PACKAGE REFERENCE: JEDEC TO-247,
- A. PACKAGE REFERENCE: JEDEC 10-247,
 ISSUE E, VARIATION AB, DATED JUNE, 2004.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5 1994

- DOES NOT COMPLY JEDEC STANDARD VALUE
 F. DRAWING FILENAME: MKT-T0247G03_REV01

Figure 23. TO-247 3L - TO-247, MOLDED, 3 LEADS, JEDEC AB LONG LEADS

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TO247-0A3

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AttitudeEngine™ Awinda[®] AX-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™

Current Transfer Logic™ **DEUXPEED®** Dual Cool™ EcoSPARK® EfficentMax™

ESBC™ Fairchild®

Fairchild Semiconductor® FACT Quiet Series

FastvCore™ FETBench™ FPS™ F-PES™ FRFET®

Global Power ResourceSM

GreenBridge™ Green FPŠ™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™

ISOPLANAR™ Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPI FR™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax₋™

MotionGrid[®] MTi[®] MTx® MVN^{\circledR} mWSaver® OptoHiT™ OPTOLOGIC® OPTOPI ANAR®

Power Supply WebDesigner™

PowerXS™

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise[™] SmartMax™

SMART START™ Solutions for Your Success™

SPM®

STEALTH™ SuperFET® . SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ ? ?®

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST 7-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT, JME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FGH50T65SQD_F155

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.