Data Sheet

FEATURES

4-channel mux to LNA, PGA, AAF
1 direct-to-ADC channel
Programmable gain amplifier (PGA)
Includes low noise preamplifier (LNA)
SPI-programmable gain = $\mathbf{1 7} \mathbf{~ d B}$ to $\mathbf{3 5} \mathbf{~ d B}$ in $\mathbf{6 ~ d B}$ steps
Antialiasing filter (AAF)
Programmable third-order low-pass elliptic filter (LPF) from 9 MHz to 15 MHz
Analog-to-digital converter (ADC)
12 bits of accuracy of up to 80 MSPS
SNR = 67 dB
SFDR $=\mathbf{6 8 ~ d B c}$
Low power, 345 mW at 12 bits per 80 MSPS
Low noise, $3.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ maximum of input referred voltage noise

Power-down mode

64-lead, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ TQFP package
Specified from $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Qualified for automotive applications

APPLICATIONS

Automotive radar
Adaptive cruise control
Collision avoidance
Blind spot detection
Self parking
Electronic bumper

GENERAL DESCRIPTION

The AD8284 is an integrated analog front end designed for low cost, compact size, flexibility, and ease of use. It contains a 4 -channel differential multiplexer (mux), a 1-channel low noise preamplifier (LNA) with a programmable gain amplifier (PGA) and an antialiasing filter (AAF), as well as one direct-to-ADC channel, all integrated with a single, 12-bit analog-to-digital converter (ADC). The AD8284 also incorporates a saturation detection circuit for high frequency overvoltage conditions that would otherwise be filtered by the AAF.

The analog channel features a gain range of 17 dB to 35 dB in 6 dB increments, and an ADC with a conversion rate of up to 80 MSPS. The combined input referred voltage noise of the entire channel is $3.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at maximum gain. The channel is optimized for dynamic performance and low power in applications where a small package size is critical.

Fabricated in an advanced CMOS process, the AD8284 is available in a $10 \mathrm{~mm} \times 10 \mathrm{~mm}$, RoHS compliant, 64 -lead TQFP. It is specified over the automotive temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
AC Specifications 3
Digital Specifications 5
Switching Specifications 6
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
Typical Performance Characteristics 10
Theory of Operation 12
Radar Receive Path AFE 12
Channel Overview 13
ADC 15
AUX Channel 15
Clock Input Considerations 15
Clock Duty Cycle Considerations 16
REVISION HISTORY
1/13—Rev. 0 to Rev. A
Changes to Figure 16 14
10/12-Revision 0: Initial Version

SPECIFICATIONS

AC SPECIFICATIONS

AVDD18x $=1.8 \mathrm{~V}, \operatorname{AVDD} 33 \mathrm{x}=3.3 \mathrm{~V}, \operatorname{DVDD} 18 \mathrm{x}=1.8 \mathrm{~V}, \operatorname{DVDD} 33 \mathrm{x}=3.3 \mathrm{~V}, 1.0 \mathrm{~V}$ internal ADC reference, $\mathrm{f}_{\mathrm{N}}=2.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{s}}=80 \mathrm{MSPS}$, $\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{LNA}+\mathrm{PGA}$ gain $=35 \mathrm{~dB}, \mathrm{LPF}$ cutoff $=\mathrm{f}_{\text {SAMPLECH }} / 4,12$-bit operation, temperature $=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, all specifications guaranteed by testing, unless otherwise noted.

Table 1.

Parameter ${ }^{1}$	Test Conditions/Comments	Min	Typ	Max	Unit
ANALOG CHANNEL CHARACTERISTICS	LNA, PGA, and AAF channel				
Gain	Programmable		17/23/29/35		dB
Gain Range			18		dB
Gain Error		-1.25		+1.25	dB
Input Voltage Range ${ }^{2}$	Channel gain $=17 \mathrm{~dB}$		0.283		$\checkmark \mathrm{p}$-p
	Channel gain $=23 \mathrm{~dB}$		0.142		$\vee p-p$
	Channel gain $=29 \mathrm{~dB}$		0.071		$\checkmark \mathrm{p}$-p
	Channel gain $=35 \mathrm{~dB}$		0.036		$\vee p-p$
Input Resistance	200Ω input impedance	0.240	0.265	0.290	$k \Omega$
	$200 \mathrm{k} \Omega$ input impedance	190	200	210	$\mathrm{k} \Omega$
Input Capacitance ${ }^{2}$			7		pF
Input Referred Voltage Noise ${ }^{2}$	Maximum gain at 1 MHz			1.85	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	Minimum gain at 1 MHz			6.03	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Noise Figure ${ }^{2}$	Maximum gain, $\mathrm{R}_{s}=50 \Omega$, not terminated		7.1		dB
	Maximum gain, $\mathrm{R}_{s}=\mathrm{R}_{\mathrm{IN}}=50 \Omega$		12.7		dB
Output Offset	Gain $=17 \mathrm{~dB}$	-60		+60	LSB
	Gain $=35 \mathrm{~dB}$	-250		+250	LSB
AAF Low-Pass Filter Cutoff	-3 dB, programmable		9.0 to 15.0		MHz
Tolerance	After filter autotune	-10	± 5	+10	\%
AAF Attenuation in Stop Band ${ }^{2}$	Third-order elliptic filter				
	$2 \times$ cutoff		30		dB
	$3 \times$ cutoff		40		dB
Group Delay Variation ${ }^{2}$	Filter set at 9 MHz		400		ns
1 dB Compression ${ }^{2}$	Relative to output		11.9		dBm
Saturation Flag Response Time	Time between saturation event and saturation flag going high (1 dB overdrive)		30	100	ns
	Time between end of saturation event and saturation flag going low	25	40		ns
Saturation Flag Accuracy	Gain $=29 \mathrm{~dB}$				
Off	For PGA voltages below 2 V p-p		2		$\vee \mathrm{p}$ p
On	For PGA voltages above 2.25 V p-p		2.25		$\vee p-p$
Mux ${ }^{2}$					
On Resistance			50		Ω
Switching Time			200		ns
POWER SUPPLY					
AVDD18x ${ }^{2}$		1.7	1.8	1.9	V
AVDD33x ${ }^{2}$		3.1	3.3	3.5	V
DVDD18x ${ }^{2}$		1.7	1.8	1.9	V
DVDD33x ${ }^{2}$		3.1	3.3	3.5	V
IavDD18	$\mathrm{f}_{5}=60 \mathrm{MSPS}$			54	mA
$\mathrm{I}_{\text {AVDD33 }}$	$\mathrm{f}_{\mathrm{s}}=60 \mathrm{MSPS}$			65	mA
IdvDD18	$\mathrm{f}_{\mathrm{s}}=60 \mathrm{MSPS}$			15	mA
IovDD33	$\mathrm{f}_{\mathrm{s}}=60 \mathrm{MSPS}$			2	mA
Total Power Dissipation	No signal, typical supply voltage \times maximum supply current; excludes output current			345	mW

Parameter 1	Test Conditions/Comments	Min	Typ	Max
Power-Down Dissipation		2.5	4.0	Unit
Power Supply Rejection Ratio (PSRR)				

[^0]
DIGITAL SPECIFICATIONS

AVDD18x $=1.8 \mathrm{~V}$, AVDD33x $=3.3 \mathrm{~V}, \operatorname{DVDD} 18 \mathrm{x}=1.8 \mathrm{~V}, \operatorname{DVDD} 33 \mathrm{x}=3.3 \mathrm{~V}, 1.00 \mathrm{~V}$ internal ADC reference, $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{s}}=80 \mathrm{MSPS}$, $\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{LNA}+\mathrm{PGA}$ gain $=35 \mathrm{~dB}, \mathrm{LPF}$ cutoff $=\mathrm{f}_{\text {SAMPLECH }} / 4,12$-bit operation, temperature $=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, all specifications guaranteed by testing, unless otherwise noted.

Table 2.

Parameter ${ }^{1}$	Temperature	Min	Typ	Max	Unit
CLOCK INPUTS (CLK+, CLK- $)^{2}$ Logic Compliance Differential Input Voltage ${ }^{3}$ Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance	Full Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	250 CMOS/LVDS/LVPECL			$\begin{aligned} & m \mathrm{~m} p-\mathrm{p} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \hline \end{aligned}$
LOGIC INPUTS (PDWN, SCLK, AUX, MUX[0], MUX[1], ZSEL)² Logic 1 Voltage Logic 0 Voltage Input Resistance Input Capacitance	Full Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	1.2	$\begin{aligned} & 30 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
LOGIC INPUT ($\overline{\mathrm{CS}})^{2}$ Logic 1 Voltage Logic 0 Voltage Input Resistance Input Capacitance	Full Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	1.2	$\begin{aligned} & 70 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
LOGIC INPUT (SDI) ${ }^{2}$ Logic 1 Voltage Logic 0 Voltage Input Resistance Input Capacitance	Full Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	$\begin{aligned} & 1.2 \\ & 0 \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { DVDD33x }+0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
```LOGIC OUTPUT (SDO) Logic 1 Voltage ( \(\left.\mathrm{l}_{\mathrm{oн}}=800 \mu \mathrm{~A}\right)\) Logic 0 Voltage (loL \(=50 \mu \mathrm{~A}\) )```	Full   Full	3.0		0.3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{gathered} \text { LOGIC OUTPUTS (D11 to D0, SFLAG) } \\ \text { Logic } 1 \text { Voltage }\left(\text { lон }^{2}=2 \mathrm{~mA}\right) \\ \text { Logic } 0 \text { Voltage }\left(\mathrm{loL}^{2}=2 \mathrm{~mA}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Full } \\ & \text { Full } \end{aligned}$	3.0		0.3	

[^1]
## SWITCHING SPECIFICATIONS

AVDD18x $=1.8 \mathrm{~V}, \operatorname{AVDD} 33 \mathrm{x}=3.3 \mathrm{~V}, \operatorname{DVDD} 18 \mathrm{x}=1.8 \mathrm{~V}, \operatorname{DVDD} 33 \mathrm{x}=3.3 \mathrm{~V}, 1.00 \mathrm{~V}$ internal ADC reference, $\mathrm{f}_{\mathrm{N}}=2.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{s}}=80 \mathrm{MSPS}$, $\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{LNA}+\mathrm{PGA}$ gain $=35 \mathrm{~dB}, \mathrm{LPF}$ cutoff $=\mathrm{f}_{\text {SAMPLECH }} / 4,12$-bit operation, temperature $=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. All specifications guaranteed by design only.

Table 3.

Parameter ${ }^{1}$	Symbol	Temperature	Min	Typ	Max	Unit
CLOCK   Clock Rate   Clock Pulse Width High at 80 MSPS Clock Pulse Width Low at 80 MSPS Clock Pulse Width High at 40 MSPS Clock Pulse Width Low at 40 MSPS	$t_{\text {EH }}$   tel   teh   tel	Full   Full   Full   Full   Full	10	$\begin{aligned} & 6.25 \\ & 6.25 \\ & 12.5 \\ & 12.5 \end{aligned}$	80	MSPS   ns   ns   ns   ns
OUTPUT PARAMETERS   Propagation Delay at 80 MSPS Rise Time   Fall Time   Data Setup Time at 80 MSPS Data Hold Time at 80 MSPS Data Setup Time at 40 MSPS Data Hold Time at 40 MSPS Pipeline Latency	$t_{\text {PD }}$   $t_{R}$   $\mathrm{t}_{\mathrm{F}}$   tDs   $t_{\text {DH }}$   tbs   $\mathrm{t}_{\mathrm{DH}}$	Full   Full		$\begin{aligned} & 6 \\ & 1.9 \\ & 1.2 \\ & 6.2 \\ & 6.0 \\ & 18 \\ & 6 \\ & 7 \end{aligned}$		ns   Clock cycles

${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and testing methodology.

## Timing and Switching Diagram



Figure 2. Timing Definitions for Switching Specifications

## ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Electrical	
AVDD18, AVDD18 ADC to AGND	-0.3 V to +2.0 V
AVDD33, AVDD33REF to AGND	-0.3 V to +3.9 V
DVDD18, DVDD18CLK to AGND	-0.3 V to +2.0 V
DVDD33CLK, DVDD33DRV, and	-0.3 V to +3.9 V
$\quad$ DVDD33SPI to AGND	
Analog Inputs	-0.3 V to +3.9 V
$\quad$ INx+, INx- to AGND	
Auxiliary Inputs	-0.3 V to +2.0 V
$\quad$ INADC+, INADC- to AGND	
$\quad$ Digital Outputs (D11 to D0, SDO) and	-0.3 V to +3.9 V
$\quad$ SDI to AGND	-0.3 V to +3.9 V
CLK+, CLK- to AGND	-0.3 V to +3.9 V
PDWN, SCLK, CS, AUX, ZSEL to AGND	-0.3 V to +2.0 V
RBIAS, VREF to AGND	
Environmental	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Operating Temperature Range (Ambient)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range (Ambient)	$150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION



## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES

1. TIE THE EXPOSED PAD ON THE BOTTOM SIDE TO THE ANALOG GROUND PLANE.

Figure 3. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NC	No Connection. Tie NC to any potential.
2	SFLAG	Saturation Flag.
3	PDWN	Full Power-Down. A logic high on PDWN overrides the SPI and powers down the part; a logic low allows   selection through the SPI.
4	DVDD18	1.8 V Digital Supply.
5	SCLK	Serial Clock.
6	CS	Chip Select.
7	SDI	Serial Data Input.
8	SDO	Serial Data Output.
9	AUX	Auxiliary Channel. A logic high on AUX switches the AUX channel to ADC (INADC+/INADC-).
10	MUX[0]	Digital Control for Mux Channel Selection.
11	MUX[1]	Digital Control for Mux Channel Selection.
12	ZSEL	Input Impedance Select. A logic high on ZSEL overrides the SPI and sets the input impedance to 200 kת; a
13	TEST1	logic low allows selection through the SPI.
14	Test. Do not use the TEST1 pin; tie TEST1 to ground.	
15	DVDT2	Test. Do not use the TEST2 pin; tie TEST2 to ground.
16	NC	3.3 V Digital Supply, SPI Port.
17	NC	No Connection. Tie NC to any potential.
18	AVDD18	No Connection. Tie NC to any potential.
19	AVDD33	1.8V Analog Supply.
20	INA+	Positive Mux Analog Input for Channel A.
21	INA-	Negative Mux Analog Input for Channel A.
22	INB+	Positive Mux Analog Input for Channel B.
23	INB-	Negative Mux Analog Input for Channel B.


Pin No.	Mnemonic	Description
24	INC+	Positive Mux Analog Input for Channel C.
25	INC-	Negative Mux Analog Input for Channel C.
26	IND+	Positive Mux Analog Input for Channel D.
27	IND-	Negative Mux Analog Input for Channel D.
28	AVDD33	3.3 V Analog Supply.
29	INADC+	Positive Analog Input for Alternate Channel (ADC Only).
30	INADC-	Negative Analog Input for Alternate Channel (ADC Only).
31	AVDD18	1.8 V Analog Supply.
32	NC	No Connection. Tie NC to any potential.
33	NC	No Connection. Tie NC to any potential.
34	AGND	Ground.
35	AVDD18ADC	1.8V Analog Supply.
36	TEST3	Test. Do not use the TEST3 pin; tie TEST3 to ground.
37	ANOUT	Analog Output. ANOUT is for debug purposes only. Leave ANOUT floating.
38	APOUT	Analog Output. APOUT is for debug purposes only. Leave APOUT floating.
39	RBIAS	External Resistor. The RBIAS pin sets the internal ADC core bias current.
40	VREF	Voltage Reference Input/Output.
41	BAND	Band Gap Voltage. BAND is for debug purposes only. Leave BAND floating.
42	AVDD33REF	3.3 V Analog Supply.
43	DVDD33CLK	3.3V Digital Supply.
44	CLK-	Clock Input Complement.
45	CLK+	Clock Input True.
46	DVDD18CLK	1.8V Digital Supply.
47	TEST4	Test. Do not use the TEST4 pin; tie TEST4 to ground.
48	NC	No Connection. Tie NC to any potential.
49	NC	No Connection. Tie NC to any potential.
50	DVDD33DRV	3.3V Digital Supply.
51	D11	ADC Data Output (MSB).
52	D10	ADC Data Output.
53	D9	ADC Data Output.
54	D8	ADC Data Output.
55	D7	ADC Data Output.
56	D6	ADC Data Output.
57	D5	ADC Data Output.
58	D4	ADC Data Output.
59	D3	ADC Data Output.
60	D2	ADC Data Output.
61	D1	ADC Data Output.
62	D0	ADC Data Output (LSB).
63	DVDD33DRV	3.3 V Digital Supply.
64	NC	No Connection. Tie NC to any potential.
	EP	Exposed Pad. Tie the exposed pad on the bottom side to the analog ground plane.

## TYPICAL PERFORMANCE CHARACTERISTICS

$\operatorname{AVDD18x}=1.8 \mathrm{~V}, \operatorname{AVDD} 33 \mathrm{x}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=80 \mathrm{MSPS}, \mathrm{R}_{\mathrm{IN}}=200 \mathrm{k} \Omega, \mathrm{V}_{\text {Ref }}=1.0 \mathrm{~V}$.


Figure 4. Channel Gain vs. Frequency


Figure 5. Gain Histogram (Gain $=17 \mathrm{~dB}$ )


Figure 6. Gain Histogram (Gain $=29 \mathrm{~dB})$


Figure 7. Short-Circuit Input Referred Noise vs. Frequency


Figure 8. Filter Frequency Response


Figure 9. Short-Circuit Output Referred Noise vs. Frequency


Figure 10. Ris vs. Frequency


Figure 11. Noise Figure vs. Frequency


Figure 12. Channel Offset Distribution (Gain $=17 \mathrm{~dB}$ )


Figure 13. Channel Offset Distribution (Gain $=35 \mathrm{~dB}$ )

## THEORY OF OPERATION

## RADAR RECEIVE PATH AFE

The primary application for the AD8284 is high speed ramp, frequency modulated, continuous wave (HSR-FMCW) radar requiring baseband signal bandwidths of up to 15 MHz . Figure 14 shows a simplified block diagram of an HSR-FMCW radar system.
The signal chain requires multiple channels, each of which is routed into a low noise amplifier (LNA), a programmable gain amplifier (PGA), an antialiasing filter (AAF), and an analog-todigital converter (ADC). The AD8284 provides all of these key components in a single $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ TQFP package.

The performance of each component is designed to meet the demands of an HSR-FMCW radar system. Some examples of
these performance metrics include the LNA noise, PGA gain range, AAF cutoff characteristics, and ADC sample rate and resolution.
The AD8284 includes a multiplexer (mux) in front of the analog signal chain as a cost-saving alternative to having an AFE for each channel. The mux can be switched between active inputs using the mux pins or through the SPI port.

The AD8284 also includes a saturation detection circuit that indicates when the LNA or PGA signals are no longer in the linear region. This feature helps detect fault conditions that might otherwise be filtered out by the AAF.



Figure 15. Simplified Block Diagram

## CHANNEL OVERVIEW

The AD8284 contains a four-input mux, an LNA, a PGA, and an AAF in the signal path, as shown in Figure 15. The signal chain input impedance can be either $200 \Omega$ or $200 \mathrm{k} \Omega$. The PGA has selectable gains that result in channel gains ranging from 17 dB to 35 dB . The AAF has a three-pole elliptical response with a selectable cutoff frequency from 9 MHz to 15 MHz . The signal path is fully differential throughout to maximize signal swing and reduce even-order distortion. The LNA is designed to be driven from either a differential or single-ended signal source.

## Multiplexer

The AD8284 has a multiplexer (mux) at the input to switch as many as four differential channels into the signal chain. The active mux channel is controlled by the SPI port or by using the external pins, MUX[0] and MUX[1]. The relationship between the input code and the selected mux channel is listed in Table 6.

Table 6. Digital Input Values to Select the Active ADC Channel

AUX	MUX[1]	MUX[0]	Active Channel
1	X	X	AUX
0	0	0	A
0	0	1	B
0	1	0	C
0	1	1	D

The external pins are the default method for selecting the active mux channel but the SPI Register 0x0C can also control the mux. Bit 3 of Register 0x0C specifies whether the SPI or the external pins control the mux.

## Low Noise Amplifier

Good noise performance relies on a proprietary ultralow noise LNA at the beginning of the signal chain; the LNA minimizes the noise contributions from the PGA and AAF that are next in the signal chain. The input impedance can be either $200 \Omega$ or $200 \mathrm{k} \Omega$, the value of which is selected through the SPI port or by the ZSEL pin.
The LNA supports differential output voltages as high as 5.0 V p-p with positive and negative excursions of $\pm 1.25 \mathrm{~V}$ from a commonmode voltage of 1.5 V . Because the output saturation level is fixed, the channel gain sets the maximum input signal before saturation.

Low value feedback resistors and the current driving capability of the output stage allow the LNA to achieve a low input referred noise voltage of $3.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at a channel gain of 35 dB . The use of a fully differential topology and negative feedback minimizes second-order distortion. Differential signaling enables smaller swings at each output, further reducing third-order distortion.

## Recommendation

To achieve the best possible noise performance, it is important to match the impedances seen by the positive and negative inputs. Matching the impedances ensures that the signal path rejects any common-mode noise.

## Antialiasing Filter

The AAF uses a combination of poles and zeros to create a third-order elliptic filter. An elliptic filter is used to achieve a sharp roll-off after the cutoff frequency. This architecture achieves a -30 dB per octave roll-off in the first octave after the cutoff frequency.
The filter uses on-chip tuning to trim the internal resistors and capacitors to set the desired cutoff frequency. The tuning method reduces variations in the cutoff frequency due to standard IC process tolerances of resistors and capacitors.
The default tuning settings for a -3 dB low-pass filter cutoff is $1 / 3 \times 1.125 \times$ the ADC sample clock frequency. This setting can be changed to $1 / 4$ the ADC sample clock frequency. The cutoff can also be scaled from 0.75 to 1.25 (in 0.0625 increments) times these frequencies through the SPI.
Tuning is normally off and is initiated by the user via the SPI port. After the filter is tuned to a specific frequency, it remains at that frequency until another tuning sequence is initiated. The tuning process can take up to 2048 clock cycles.
The filter defaults to its highest frequency setting before it is tuned. To maintain the expected ratio of clock frequency to cutoff frequency, tune the filter after initial power-up, after
reprogramming the filter cutoff scaling via the SPI, or after changing the ADC sample rate. Occasional retuning during an idle time is recommended to compensate for temperature drift.
A cutoff frequency range of 9 MHz to 15 MHz is possible, for example

- ADC clock: 40 MHz
- Default tuned cutoff frequency $=(40 \mathrm{MHz} \div 3) \times 1.125=$ 15 MHz

The autotune cycle takes several clock cycles to complete. During this time, the mux channels, A to D , are not operational; however, the AUX input can be used during the autotuning cycle.

## Saturation Flag

The saturation flag function detects overvoltage conditions that may push the LNA or PGA out of their linear regions. The flag is set when the PGA output voltage exceeds 2.0 V p-p or the LNA output voltage exceeds 4.0 V p-p. This function is particularly useful for detecting saturation events that may be filtered out by the AAF and are, therefore, undetectable by monitoring the ADC output.
When the saturation flag trips, it remains on for a minimum of 25 ns after the saturation event has ended.


Figure 16. Simplified Block Diagram of the Analog Channel

## ADC

The AD8284 uses a pipelined ADC architecture. The quantized output from each stage is combined into a 12 -bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample while the remaining stages operate on preceding samples. Sampling occurs on the rising edge of the clock. The output staging block aligns the data and passes the data to the output buffers.

## AUX CHANNEL

The AD8284 allows direct access to the ADC when the mux settings are used to select the AUX channel. When this channel is selected, the inputs of the ADC can be accessed using the INADC+ and INADC- pins. To ensure enough headroom for full-scale, differential, 2.0 V p-p input signals, bias the INADC $\pm$ pins with a 0.9 V common-mode voltage.

## CLOCK INPUT CONSIDERATIONS

For optimum performance, clock the AD8284 sample clock inputs (CLK+ and CLK-) with a differential signal. This signal is typically ac-coupled into the CLK+ and CLK- pins via a transformer or by using capacitors; these pins are biased internally and require no additional bias.

Figure 17 shows the preferred method for clocking the AD8284. A low jitter clock source, such as the Valpey Fisher oscillator, VFAC3-BHL ( 50 MHz ), is converted from single-ended to differential using an RF transformer. The back-to-back Schottky diodes across the secondary transformer limit clock excursions into the AD8284 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD8284 and preserves the fast rise and fall times of the signal, which are critical to low jitter performance.


Figure 17. Transformer-Coupled Differential Clock
If a low jitter clock is available, another option is to ac-couple a differential PECL or LVDS signal to the sample clock input pins as shown in Figure 18 and Figure 19. The AD951x/AD952x family of clock drivers offers excellent jitter performance.

*50 R RESISTOR IS OPTIONAL.
Figure 18. Differential PECL Sample Clock

*50 R RESISTOR IS OPTIONAL.
Figure 19. Differential LVDS Sample Clock
In some applications, it is acceptable to drive the sample clock inputs with a single-ended CMOS signal. In such applications, drive CLK+ directly from a CMOS gate, and bypass the CLKpin to ground with a $0.1 \mu \mathrm{~F}$ capacitor in parallel with a $39 \mathrm{k} \Omega$ resistor (see Figure 20). Although the CLK+ input circuit supply is via Pin 46, DVDD18CLK, this input is designed to withstand input voltages of up to 3.3 V , making the selection of the logic voltage of the driver very flexible. The AD951x/AD952x family of parts can be used to provide 3.3 V inputs (see Figure 21). In this case, the $39 \mathrm{k} \Omega$ resistor is not needed.


Figure 20. Single-Ended 1.8 VCMOS Sample Clock


Figure 21. Single-Ended 3.3 V CMOS Sample Clock

## CLOCK DUTY CYCLE CONSIDERATIONS

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to the clock duty cycle. Commonly, a $5 \%$ tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD8284 contains a duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal $50 \%$ duty cycle. This allows a wide range of clock input duty cycles without affecting the performance of the AD8284.
When the DCS is on, noise and distortion performance are nearly flat for a wide range of duty cycles. However, some applications may require the DCS function to be off. If so, note that the dynamic range performance can be affected when operating in this mode. See Table 9 for more details on using this feature.

The duty cycle stabilizer uses a delay locked loop (DLL) to create the nonsampling edge. As a result, any changes to the sampling frequency require approximately eight clock cycles to allow the DLL to acquire and lock to the new rate.

## CLOCK JITTER CONSIDERATIONS

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency $\left(f_{A}\right)$ due only to aperture jitter $\left(\mathrm{t}_{\mathrm{j}}\right)$ can be calculated by

$$
\text { SNR Degradation }=20 \times \log 10\left[1 / 2 \times \pi \times f_{A} \times t_{J}\right]
$$

In this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter. IF undersampling applications are particularly sensitive to jitter.
In cases where aperture jitter may affect the dynamic range of the AD8284, treat the clock input as an analog signal. Separate power supplies for clock drivers from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal controlled oscillators make the best clock sources, such as the Valpey Fisher VFAC3 series. If the clock is generated from another type of source by using the sequential steps of gating, dividing, or other methods, it should be retimed by the original clock during the last step in that sequence.
See the AN-501 Application Note and the AN-756 Application Note for more information about how jitter performance relates to ADCs.

## SDI AND SDO PINS

The SDI and SDO pins are required to operate the SPI. The SDI pin has an internal $30 \mathrm{k} \Omega$ pull-down resistor that pulls this pin low and is 1.8 V and 3.3 V tolerant. The SDO output pin is 3.3 V logic.

## SCLK PIN

The SCLK pin is required to operate the SPI. It has an internal $30 \mathrm{k} \Omega$ pull-down resistor that pulls this pin low and is both 1.8 V and 3.3 V tolerant.

## $\overline{\text { CS }}$ PIN

The $\overline{\mathrm{CS}}$ pin is required to operate the SPI. It has an internal $70 \mathrm{k} \Omega$ pull-up resistor that pulls this pin high and is both 1.8 V and 3.3 V tolerant.

## RBIAS PIN

To set the internal core bias current of the ADC, place a resistor nominally equal to $10.0 \mathrm{k} \Omega$ to ground at the RBIAS pin. Using a resistor other than the recommended $10.0 \mathrm{k} \Omega$ resistor for RBIAS degrades the performance of the device. Therefore, it is imperative that at least a $1.0 \%$ tolerance on this resistor be used to achieve consistent performance.

## VOLTAGE REFERENCE

A stable and accurate 0.5 V voltage reference is built into the AD8284. This is gained up internally by a factor of 2, setting $\mathrm{V}_{\text {ReF }}$ to 1.0 V , which results in a full-scale differential input span of $2.0 \mathrm{~V} \mathrm{p}-\mathrm{p}$ for the ADC. $\mathrm{V}_{\text {ref }}$ is set internally by default, but the VREF pin can be driven externally with a 1.0 V reference to achieve more accuracy. However, the AD8284 is not specified for ADC full-scale ranges below 2.0 V p-p.
When applying decoupling capacitors to the VREF pin, use ceramic, low ESR capacitors. Place these capacitors close to the reference pin and on the same layer of the PCB as the AD8284. The VREF pin should have both a $0.1 \mu \mathrm{~F}$ capacitor and a $1 \mu \mathrm{~F}$ capacitor connected in parallel to the analog ground. These capacitor values are recommended for the ADC to properly settle and acquire the next valid sample.

## POWER AND GROUND RECOMMENDATIONS

When connecting power to the AD8284, it is recommended that two separate 1.8 V supplies and two separate 3.3 V supplies be used: one supply each for analog 1.8 V (AVDD18x), digital 1.8 V (DVDD18x), analog 3.3 V (AVDD33x), and digital 3.3 V (DVDD33x). If only one supply is available for both analog and digital, for example, AVDD18x and DVDD18x, route the supply to AVDD18x first and then tap the supply off and isolate it with a ferrite bead or a filter choke preceded by decoupling capacitors for the DVDD18x. The same method is used for the analog and digital 3.3 V supplies. Use several decoupling capacitors on all supplies to cover both high and low frequencies. Locate these capacitors close to the point of entry at the printed circuit board (PCB) level and close to the AD8284 using minimal trace lengths.

The 12 power supply pins are separated into four power supply domains, AVDD18, AVDD33, DVDD18, and DVDD33. Each pin within a domain must be powered simultaneously, but each domain can be turned on independently of the other domains.
A single PCB ground plane should be sufficient when using the AD8284. With proper decoupling and smart partitioning of the analog, digital, and clock sections of the PCB, optimum performance can be easily achieved.

## EXPOSED PAD THERMAL HEAT SLUG RECOMMENDATIONS

It is required that the exposed pad on the underside of the device be connected to a quiet analog ground to achieve the best electrical and thermal performance of the AD8284. Mate an exposed continuous copper plane on the PCB to the AD8284 exposed pad, Pin 0 . The copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB.

To maximize the coverage and adhesion between the device and the PCB, it is recommended that the continuous copper pad be partitioned by overlaying a silkscreen or solder mask to divide the copper pad into uniform sections. This partitioning helps to ensure several tie points between the PCB and the device during the reflow process. Using one continuous plane with no partitions guarantees only one tie point between the AD8284 and the PCB. For more information about packaging and for additional PCB layout examples, see the AN-772 Application Note.

## SERIAL PORT INTERFACE (SPI)

The AD8284 serial port interface allows the user to configure the signal chain for specific functions or operations through a structured register space provided inside the chip. The SPI offers the user added flexibility and customization depending on the application. Addresses are accessed via the serial port and can be written to or read from via the port. Memory is organized into bytes that can be further divided into fields, as documented in the Memory Map section. Detailed operational information can be found in the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.
Four pins define the serial port interface, or SPI: the SCLK, SDI, SDO, and $\overline{\mathrm{CS}}$ pins. The serial clock pin (SCLK) synchronizes the read and write data presented to the device. The serial data input and output pins, SDI and SDO, allow data to be sent to and read from the internal memory map registers of the device. The chip select pin $(\overline{\mathrm{CS}})$ is an active low control that enables or disables the read and write cycles (see Table 7).

Table 7. Serial Port Interface Pins

Pin	Function
SCLK	Serial clock. The serial shift clock input. SCLK is used to   synchronize serial interface reads and writes.
SDI	Serial data input.
$\overline{\text { CDO }}$	Serial data output.   Chip select (active low). This control gates the read and   write cycles.

The falling edge of $\overline{\mathrm{CS}}$, in conjunction with the rising edge of SCLK, determines the start of the framing sequence. During an instruction phase, a 16-bit instruction is transmitted, followed by one or more data bytes, which is determined by Bit Field W0 and Bit Field W1. See Figure 22 and Table 8 for an example of the serial timing and its definitions.
In normal operation, $\overline{\mathrm{CS}}$ signals to the device that SPI commands are about to be received and processed. When $\overline{\mathrm{CS}}$ is brought low, the device processes SCLK and SDI to process instructions. Normally, $\overline{\mathrm{CS}}$ remains low until the communication cycle is complete. However, if the AD8284 is connected to a slow device, $\overline{\mathrm{CS}}$ can be brought high between bytes, allowing older microcontrollers enough time to transfer data into the shift registers. $\overline{\mathrm{CS}}$ can be stalled when transferring one, two, or three bytes of data.

When W0 and W1 are set to 11 , the device enters streaming mode and continues to process data, either reading or writing, until $\overline{\mathrm{CS}}$ is taken high to end the communication cycle. This allows complete memory transfers without the need to provide additional instructions. Regardless of the mode, if $\overline{\mathrm{CS}}$ is taken high in the middle of any byte transfer, the SPI state machine is reset and the device waits for a new instruction.
In addition to the operation modes, the SPI port can be configured to operate in different manners. For applications that do not require a control port, the $\overline{\mathrm{CS}}$ line can be tied and held high. This places the remainder of the SPI pins in their secondary mode as defined in the AN-877 Application Note, Interfacing to High Speed ADCs via SPI. $\overline{\mathrm{CS}}$ can also be tied low to enable 3-wire mode. When $\overline{\mathrm{CS}}$ is tied low, SCLK, SDO, and SDI are the only pins required for communication. Although the device is synchronized during power-up, caution must be exercised when using this mode to ensure that the serial port remains synchronized with the $\overline{\mathrm{CS}}$ line. When operating in 3wire mode, it is recommended that a a 1-, 2-, or 3-byte transfer be used exclusively. Without an active $\overline{\mathrm{CS}}$ line, streaming mode can be entered but not exited.
Data can be sent in MSB-first or LSB-first mode. MSB-first mode is the default at power-up and can be changed by adjusting the configuration register. For more information about this and other features, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

## HARDWARE INTERFACE

The pins described in Table 7 constitute the physical interface between the user's programming device and the serial port of the AD8284. The SCLK, SDI, and $\overline{\mathrm{CS}}$ pins function as inputs when using the SPI interface. The SDO pin is an output during readback.
This interface is flexible enough to be controlled by either serialprogrammable read-only memory (PROM) or PIC microcontrollers. This provides the user with alternative means, other than a full SPI controller, for programming the device (see the AN-812 Application Note).


Table 8. Serial Timing Definitions

Parameter	Minimum Timing (ns)	Description
tDS $^{t_{D H}}$	5	Setup time between the data and the rising edge of SCLK.
$\mathrm{t}_{\mathrm{CLK}}$	2	Hold time between the data and the rising edge of SCLK.
$\mathrm{ts}_{\mathrm{S}}$	40	Period of the clock.
$\mathrm{t}_{\mathrm{H}}$	5	Setup time between $\overline{\mathrm{CS}}$ and SCLK.
$\mathrm{t}_{\mathrm{HI}}$	2	Hold time between $\overline{C S}$ and SCLK.
$\mathrm{t}_{\mathrm{LO}}$	16	Minimum period that SCLK should be in a logic high state.   $t_{\text {DIS_SDO }}$
	16	Minimum period that SCLK should be in a logic low state.   Minimum time it takes the SDO pin to switch between an output and a high impedance   node, relative to the rising edge of SCLK.

## MEMORY MAP

## READING THE MEMORY MAP TABLE

Each row in the memory map table has eight address locations. The memory map is roughly divided into three sections: the chip configuration registers map (Address 0x00 and Address 0x01), the device index and transfer registers map (Address $0 x 04$ to Address 0xFF), and the ADC channel functions registers map (Address 0x08 to Address 0x2C).

The leftmost column of the memory map indicates the register address number, and the default value is shown in the second rightmost column.

The Bit 7 (MSB) column is the start of the default hexadecimal value that is given. For example, Address 0x09, the GLOBAL_ CLOCK register, has a default value of $0 \times 01$, meaning that Bit $7=0$, Bit $6=0$, Bit $5=0$, Bit $4=0$, Bit $3=0$, Bit $2=0$, Bit $1=0$, and Bit $0=1$, or 00000001 in binary. This setting is the default for the duty cycle stabilizer in the on condition. By writing a 0 to Bit 0 of this address followed by writing $0 \times 01$ to the SW transfer bit in Register 0xFF, the duty cycle stabilizer is turned off. It is important to follow each writing sequence with a write to the SW transfer bit to update the SPI registers.

## Caution

All registers except for Register 0x00 and Register 0xFF are buffered with a master slave latch and require writing to the transfer bit. For more information about this and other functions, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

## LOGIC LEVELS

An explanation of various registers follows: "bit is set" is synonymous with "bit is set to Logic 1" or "writing Logic 1 for the bit." Similarly, "bit is cleared" is synonymous with "bit is set to Logic 0 " or "writing Logic 0 for the bit.

## RESERVED LOCATIONS

Do not write to undefined memory except when writing the default values suggested in this data sheet. Addresses that have values marked as 0 should be considered reserved and have a 0 written into their registers during power-up.

## DEFAULT VALUES

After a reset, critical registers are automatically loaded with default values. These values are indicated in Table 9, where an X refers to an undefined feature.

AD8284

Table 9. Memory Map Registers ${ }^{1}$

Addr.   (Hex)	Register Name	Bit 7   (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \text { Bit 0 } \\ & \text { (LSB) } \end{aligned}$	Default Value	Default Notes/ Comments
Chip Configuration Registers											
0x00	CHIP_PORT_CONFIG	0	$\begin{aligned} & \text { LSB first } \\ & 1=\text { on } \\ & 0=\text { off } \\ & \text { (default) } \end{aligned}$	Soft reset $\begin{array}{\|l\|} \hline 1=\text { on } \\ 0=\text { off } \\ \text { (default) } \end{array}$	1	1	Soft reset $\begin{aligned} & 1=\text { on } \\ & 0=\text { off } \end{aligned}$ (default)	$\begin{array}{\|l\|} \hline \text { LSB first } \\ 1=\text { on } \\ 0=\text { off } \\ \text { (default) } \end{array}$	0	0x18	Mirror the nibbles to correctly set LSB-first or MSB-first mode, regardless of shift mode.
0x01	CHIP_ID	Chip ID Bits[7:0] (AD8284 = 0xAA, default)								Read only	The default is a unique chip ID, specific to the AD8284. This is a read-only register.
Device Index and Transfer Registers											
0xFF	DEVICE_UPDATE	X	X	X	X	X	X	X	SW   transfer $\begin{aligned} & 1=\text { on } \\ & 0=\text { off } \end{aligned}$   (default)	0x00	Synchronously transfers data from the master shift register to the slave.
Channel Functions Registers											
0x08	GLOBAL_MODES	Channel A buffer power 0 = power off 1 = power on (default)	Channel B buffer power $0=$ power off 1 = power on (default)	Channel C buffer power 0 = power off 1 = power on (default)	Channel D buffer power 0 = power off 1 = power on (default)	Channel powerdown $0=$   power   on   (default)   $1=$   power   off	X	Interna down 00 = (de $01=\mathrm{fu}$	power-   mode   hip run   ault)   power-   wn   reset	0xF0	Determines the power-down mode (global).
$0 \times 09$	GLOBAL_CLOCK	X	X	X	X	X	X	X	Duty cycle stabilizer 1 = on (default) $0=$ off	0x01	Turns the internal duty cycle stabilizer on and off (global).
0x0C	FLEX_MUX_CONTROL	X	Power down unused channels $0=$ PD powerdown (default) 1 = power on	X	$\begin{aligned} & \hline 0=\text { signal } \\ & \text { channel } \\ & \text { (A, B, C, D) } \\ & \text { on } \\ & \text { (default) } \\ & 1=\text { AUX } \\ & \text { channel } \\ & \text { on } \end{aligned}$	$0=\text { use }$   external pins (default) 1 = use internal registers	$0=\text { all }$   channels are off $1=$ selected channel is on (default)	$\begin{aligned} & \hline 00=\mathrm{Cl} \\ & \text { (de } \\ & 01=\mathrm{Cl} \\ & 10=\mathrm{Cl} \\ & 11=\mathrm{Cl} \end{aligned}$	annel A ault) annel B annel C annel D	0x04	Sets which mux input channel is in use and whether to power down unused channels.
0x0D	FLEX_TEST_IO	$\begin{gathered} \text { User te } \\ 00=\text { off } \\ 01=\text { or } \\ \text { alte } \\ 10=\text { on, } \\ 11=\text { on, alt } \end{gathered}$	t mode (default) , single nate ngle once rnate once	Reset PN   long gen $\begin{aligned} & 1=\text { on } \\ & 0=\text { off } \end{aligned}$ (default)	Reset PN short gen $\begin{aligned} & 1=\text { on } \\ & 0=\text { off } \end{aligned}$   (default)	Outp   01 0   01   1100 determin	$\begin{aligned} & \begin{array}{l} \text { ut test mod } \\ 0000=\text { off } \\ 0001=\text { mid } \\ 0010=+ \\ 0011=- \\ 00=\text { checke } \\ 101=\text { PN se } \\ 110=\text { PN sed } \\ 1=\text { one-/ze } \\ 1000=\text { us } \\ 001=1-\mathrm{bit} \end{array} \\ & 1010=1 \\ & 1011=\text { on } \\ & =\text { mixed bit } \\ & d \text { by the OU } \end{aligned}$	—see Tab (default) cale short S short S short board out quence long uence sho o-word to er input -bit toggl $\times$ sync bit high equency ( TPUT_MOD	10   ut   gle   ormat register)	0x00	When this register is set, the test data is placed on the output pins in place of normal data. (Local, except for PN sequence.)


Addr.   (Hex)	Register Name	Bit 7   (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{aligned} & \text { Bit } 0 \\ & \text { (LSB) } \end{aligned}$	Default Value	Default Notes/ Comments
0x0E	TEST_REGISTER	Enable analog outputs (APOUT, ANOUT) $0 \times 01$ = analog output enabled								0x00	Routes the differential output of the AAF to APOUT and ANOUT.
0x0F	FLEX_CHANNEL_INPUT	$\begin{gathered} \text { Filter cutoff frequency control } \\ 00000=1.25 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00001=1.1875 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00010=1.125 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00011=1.0625 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00100=1.0 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00101=0.9375 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00110=0.875 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 00111=0.8125 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 01000=0.75 \times 1 / 4 \times f_{\text {SAMPLECH }} \\ 01001 \text { to } 01111=\text { reserved } \\ \\ 10000=1.25 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 10001=1.1875 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 10010=1.125 \times 1 / 3 \times f_{\text {SAMLECH }}(\text { default }) \\ 10011=1.0625 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 10100=1.0 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 10101=0.9375 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 10110=0.875 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 10111=0.8125 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 11000=0.75 \times 1 / 3 \times f_{\text {SAMPLECH }} \\ 11001 \text { to } 11111=r e s e r v e d \end{gathered}$					X	X	X	0x90	Low-pass filter cutoff (global).   $\mathrm{f}_{\text {SAMPLECH }}=$ ADC sample rate.   Note that the absolute range is limited to 9 MHz to 15 MHz .
0x10	FLEX_OFFSET	X	X	6-bit LNA offset adjustment 000000 for LNA offset low 100000 for LNA offset mid (default) 111111 for LNA offset high						$0 \times 20$	LNA force offset correction.
$0 \times 11$	FLEX_GAIN_1	X	X	X	X	X	$000=17 \mathrm{~dB}$$001=17 \mathrm{~dB}$$010=17 \mathrm{~dB}$$011=23 \mathrm{~dB}$$100=29 \mathrm{~dB}$ (default)$101=35 \mathrm{~dB}$			$0 \times 04$	Total LNA + PGA gain adjustment (local).
$0 \times 12$	FLEX_BIAS_CURRENT	X	X	X	X	X	X	$\begin{gathered} \text { LNA bias } \\ 00=\text { high (default) } \\ 01=\text { mid to high } \\ 10=\text { mid to low } \\ 11 \text { = low } \end{gathered}$		$0 \times 00$	LNA bias current adjustment (global).
0x14	FLEX_OUTPUT_MODE	X	X	X	X	X	$1=$ output invert (local)	$\begin{gathered} 0=\text { offset binary } \\ 1=\text { twos comple- } \\ \text { ment (default) } \end{gathered}$		$0 \times 01$	Configures the outputs and the format of the data.
$0 \times 15$	FLEX_OUTPUT_ADJUST	$0=\text { enable }$   Data   Bits[11:0]   $1=$   disable   Data   Bits[11:0]	X	X	X	$\begin{gathered} \text { Output drive current } \\ 0000=\text { low } \\ \ldots \\ 1111=\text { high (default) } \end{gathered}$				0x0F	Selects output drive strength to limit the noise added to the channels by output switching.
0x18	FLEX_VREF	X	$0=$   internal reference (default) 1 = external reference	X	X	X	X	Internal reference adjust$\begin{aligned} & 00=0.625 \mathrm{~V} \\ & 01=0.750 \mathrm{~V} \\ & 10=0.875 \mathrm{~V} \\ & 11=1.000 \mathrm{~V} \\ & \text { (default) } \end{aligned}$		$0 \times 03$	Select internal reference (recommended default) or external reference (global); adjust internal reference.
0x19	FLEX_USER_PATT1_LSB	B7	B6	B5	B4	B3	B2	B1	B0	$0 \times 00$	User defined Pattern 1, LSB.
0x1A	FLEX_USER_PATT1_ MSB	B15	B14	B13	B12	B11	B10	B9	B8	$0 \times 00$	User defined Pattern 1, MSB.

AD8284

Addr.   (Hex)	Register Name	Bit 7   (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	$\begin{array}{\|l\|} \hline \text { Bit 0 } \\ \text { (LSB) } \end{array}$	Default Value	Default Notes/ Comments
0x1B	FLEX_USER_PATT2_LSB	B7	B6	B5	B4	B3	B2	B1	B0	0x00	User defined Pattern 2, LSB.
0x1C	$\begin{aligned} & \text { FLEX_USER_PATT2_ } \\ & \text { MSB } \end{aligned}$	B15	B14	B13	B12	B11	B10	B9	B8	0x00	User defined Pattern 2, MSB.
0x2B	FLEX_FILTER	X	Enable automatic low-pass tuning $1=$ on (self clearing)	X	X	X	X	X	X	0x00	Enables lowpass filter tuning
0x2C	CH_IN_IMP	Satur $000=$ 011 $111=$ Other	detector lim   $0 \mathrm{~V} p-\mathrm{p}$ at P 0 V p-p at PG (default) 5 V p-p at P ues reserved 00, 101, 110	it adjust A output output   A output (001, 010,	Saturation detect hysteresis 0 = low hysteresis ( 25 mV nominal at PGA output) (default) 1 = high hysteresis (nominally 60 mV at PGA output)	X	X	X	Input impedance $\begin{aligned} & 0=200 \Omega \\ & 1= \\ & 200 \mathrm{k} \Omega \\ & \text { (default) } \end{aligned}$	0x61	Saturation detector adjustment and input impedance adjustment (global).

${ }^{1} \mathrm{X}=$ undefined feature.
Table 10. Flexible Output Test Modes ${ }^{1}$

Output Test Mode   Bit Sequence	Pattern Name	Digital Output Word 1	Digital Output Word 2	Subject to Data   Format Select
0000	Off (default)	N/A	N/A	N/A
0001	Midscale short	100000000000	Same	Yes
0010	+Full-scale short	111111111111	Same	Yes
0011	-Full-scale short	000000000000	Same	Yes
0100	Checkerboard output	101010101010	010101010101	No
0101	PN sequence long	N/A	N/A	Yes
0110	PN sequence short	N/A	N/A	Yes
0111	One-/zero-word toggle	111111111111	No00 00000000	No
1000	User input	Register 0x19 and Register 0x1A	Register 0x1B and Register 0x1C	No
1001	1-bit/O-bit toggle	101010101010	N/A	No
1010	1× sync	000000111111	N/A	No
1011	One bit high	100000000000	N/A	No
1100	Mixed bit frequency	101000110011	N/A	No

[^2]
## APPLICATION CIRCUITS



NOTES

1. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE PART
2. TIE THE EXPOSED PAD ON THE BOTTOM SIDE TO THE ANALOG GROUND PLANE.

Figure 23. Differential Inputs


NOTES

1. RESISTOR R (INX- INPUTS) SHOULD MATCH THE OUTPUT IMPEDANCE OF THE INPUT DRIVER.
2. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE PART.
3. TIE THE EXPOSED PAD ON THE BOTTOM SIDE TO THE ANALOG GROUND PLANE.

Figure 24. Single-Ended Inputs

## PACKAGING AND ORDERING INFORMATION

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MS-026-ACD-HD
Figure 25. 64-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-64-4)
Dimensions shown in millimeters

## ORDERING GUIDE

Model 1,2,3	Temperature Range	Package Description	Package Option
AD8284WBSVZ	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$64-$ Lead TQFP_EP, Waffle Pack	SV-64-4
AD8284WBSVZ-RL	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$64-$ Lead TQFP_EP, 13"Tape and Reel	SV-64-4

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.
${ }^{3}$ Compliant to JEDEC Standard MS-026-ACD-HD.

## AUTOMOTIVE PRODUCTS

The AD8284WBSVZ models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.
$\square$
Data Sheet
NOTES

## NOTES



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.


Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.


[^0]:    ${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and testing methodology.
    ${ }^{2}$ Guaranteed by design only.

[^1]:    ${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and testing methodology.
    ${ }^{2}$ Guaranteed by design only.
    ${ }^{3}$ Specified for LVDS and LVPECL only.

[^2]:    ${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.

