Power MOSFET | PRODUCT SUMMARY | | | | | |----------------------------|--------------------------|------|--|--| | V _{DS} (V) | - 50 | | | | | R _{DS(on)} (Ω) | V _{GS} = - 10 V | 0.28 | | | | Q _g (Max.) (nC) | 26 | | | | | Q _{gs} (nC) | 6.2 | | | | | Q _{gd} (nC) | 8.6 | | | | | Configuration | Single | | | | #### **FEATURES** - P-Channel Versatility - Compact Plastic Package - · Fast Switching - Low Drive Current - · Ease of Paralleling - Excellent Temperature Stability - Compliant to RoHS Directive 2002/95/EC ### **DESCRIPTION** The Power MOSFET technology is the key to Vishay's advanced line of Power MOSFET transistors. The efficient geometry and unique processing of the Power MOSFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness. The P-channel Power MOSFET's are designed for application which require the convenience of reverse polarity operation. They retain all of the features of the more common N-channel Power MOSFET's such as voltage control, very fast switching, ease of paralleling, and excellent temperature stability. P-channel Power MOSFETs are intended for use in power stages where complementary symmetry with N-channel devices offers circuit simplification. They are also very useful in drive stages because of the circuit versatility offered by the reverse polarity connection. Applications include motor control, audio amplifiers, switched mode converters, control circuits and pulse amplifiers. | ORDERING INFORMATION | | |----------------------|-------------| | Package | TO-220AB | | Load (Dk) fun | IRF9Z20PbF | | Lead (Pb)-free | SiHF9Z20-E3 | | SnPb | IRF9Z20 | | SIIFD | SiHF9Z20 | | ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted) | | | | | | | |--|---------------------------|--|-----------------|-------|------|--| | PARAMETER | | | SYMBOL | LIMIT | UNIT | | | Drain-Source Voltage | | | V _{DS} | - 50 | V | | | Gate-Source Voltage | | | V_{GS} | ± 20 | V | | | Continuous Drain Current | \/ at 10.\/ | T _C = 25 °C | l _D | - 9.7 | А | | | | V _{GS} at - 10 V | $T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 100 ^{\circ}\text{C}$ | | - 6.1 | | | | Pulsed Drain Current ^a | | | I _{DM} | - 39 | 1 | | | Linear Derating Factor | | | | 0.32 | W/°C | | | Inductive Current, Clamped | L = 100 µH | | I _{LM} | - 39 | Α | | | Unclamped Inductive Current (Avalanche Current) | | | | - 2.2 | Α | | | Maximum Power Dissipation | T _C = 25 °C | | P_{D} | 40 | W | | | Operating Junction and Storage Temperature Range | | T _J , T _{stg} | - 55 to + 150 | - °C | | | | Soldering Recommendations (Peak Temperature) | for 10 s | | _ | 300° |] [| | #### Notes - a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). - b. V_{DD} = 25 V, starting T_J = 25 °C, L =100 μ H, R_q = 25 Ω - c. 0.063" (1.6 mm) from case. ^{*} Pb containing terminations are not RoHS compliant, exemptions may apply | THERMAL RESISTANCE RATINGS | | | | | | |-------------------------------------|-------------------|------|------|------|--| | PARAMETER | SYMBOL | TYP. | MAX. | UNIT | | | Maximum Junction-to-Ambient | R _{thJA} | - | 80 | | | | Case-to-Sink, Flat, Greased Surface | R _{thCS} | 1.0 | - | °C/W | | | Maximum Junction-to-Case (Drain) | R _{thJC} | - | 3.1 | | | | PARAMETER | SYMBOL | TES | MIN. | TYP. | MAX. | UNIT | | |---|---------------------|---|---|------|------|--------------------|-------| | Static | | | | | | | | | Drain-Source Breakdown Voltage | V _{DS} | V _{GS} = 0 V, I _D = - 250 μA | | - 50 | - | - | V | | Gate-Source Threshold Voltage | V _{GS(th)} | V _{DS} = | V _{DS} = V _{GS} , I _D = - 250 μA | | - | - 4.0 | V | | Gate-Source Leakage | I _{GSS} | | V _{GS} = ± 20 V | - | - | ± 500 | nA | | Zero Gate Voltage Drain Current | 1 | V_{DS} = max. rating, V_{GS} = 0 V | | - | - | - 250 | μΑ | | Zero Gate Voltage Drain Gurrent | I _{DSS} | V _{DS} = max. rati | V _{DS} = max. rating x 0,8, V _{GS} = 0 V, T _J =125°C | | - | - 1000 | | | Drain-Source On-State Resistance | R _{DS(on)} | V _{GS} = - 10 V | I _D = - 5.6 A ^b | - | 0.20 | 0.28 | Ω | | Forward Transconductance | 9 _{fs} | V _{DS} = 2 | V _{DS} = 2 x V _{GS} , I _{DS} = - 5.6 A ^b | | 3.5 | - | S | | Dynamic | | | | | | | | | Input Capacitance | C _{iss} | | V _{GS} = 0 V,
V _{DS} = - 25 V, | | 480 | - | pF | | Output Capacitance | C _{oss} | | | | 320 | - | | | Reverse Transfer Capacitance | C _{rss} | f = 1 | .0 MHz, see fig. 9 | - | 58 | - | | | Total Gate Charge | Qg | | I _D = - 9.7 A, V _{DS} = - 0.8 max. rating. see fig. 17 | - | 17 | 26 | nC | | Gate-Source Charge | Q _{gs} | V _{GS} = - 10 V | | - | 4.1 | 6.2 | | | Gate-Drain Charge | Q _{gd} | | | - | 5.7 | 8.6 | | | Turn-On Delay Time | t _{d(on)} | $V_{DD} = -25 \text{ V}, I_D = -9.7 \text{ A},$ $R_g = 18 \Omega, R_D = 2.4 \Omega, \text{ see fig. } 16$ | | - | 8.2 | 12 | ns ns | | Rise Time | t _r | | | - | 57 | 86 | | | Turn-Off Delay Time | t _{d(off)} | | (MOSFET switching times are essentially independent of operating | | 12 | 18 | | | Fall Time | t _f | temperature) | | - | 25 | 38 | | | Internal Drain Inductance | L _D | Between lead,
6 mm (0.25") from
package and center
of die contact | | - | 4.5 | - | - nH | | Internal Source Inductance | L _S | | | - | 7.5 | - | | | Drain-Source Body Diode Characteristics | 3 | | | | | | | | Continuous Source-Drain Diode Current | I _S | , | MOSFET symbol showing the | | - | - 9.7 | ^ | | Pulsed Diode Forward Current ^a | I _{SM} | integral reverse p - n junction diode | | - | - | - 39 | A | | Body Diode Voltage | V _{SD} | T _J = 25 °C | $T_J = 25 ^{\circ}\text{C}, I_S = -9.7 \text{A}, V_{GS} = 0 \text{V}^b$ | | - | - 6.3 | V | | Body Diode Reverse Recovery Time | t _{rr} | $T_J = 25 \text{ °C}$, $I_F = -9.7 \text{ A}$, $dI/dt = 100 \text{ A}/\mu\text{s}^b$ | | 56 | 110 | 280 | ns | | Body Diode Reverse Recovery Charge | Q _{rr} | | | 0.17 | 0.34 | 0.85 | μC | | Forward Turn-On Time | t _{on} | Intrinsic turn-on time is negligible (turn-on is dominated by L _S and | | | | d L _D) | | #### Notes - a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). - b. Pulse width \leq 300 µs; duty cycle \leq 2 %. ### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Fig. 1 - Typical Output Characteristics Fig. 3 - Typical Saturation Characteristics Fig. 2 - Typical Transfer Characteristics Fig. 4 - Maximum Safe Operating Area Fig. 5 - Typical Transconductance vs. Drain Current Fig. 7 - Breakdown Voltage vs. Temperature Fig. 6 - Typical Source-Drain Diode Forward Voltage Fig. 8 - Normalized On-Resistance vs. Temperature Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 11 - Typical On-Resistance vs. Drain Current Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 12 - Maximum Drain Current vs. Case Temperature Fig. 13a - Unclamped Inductive Test Circuit Fig. 13b - Unclamped Inductive Load Test Waveforms Fig. 14 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration Fig. 15 - Switching Time Test Circuit Fig. 16 - Gate Charge Test Circuit Fig. 17 - Typical Time to Accumulated 1 % Gate Failure Fig. 18 - Typical High Temperature Reverse Bias (HTRB) Failure Rate Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?90121. ### **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. ## **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.