TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8050P

1.5A MOTOR DRIVER WITH BRAKE FUNCTION

The TA8050P is a 1.5A motor driver which directly drives a bidirectional DC motor. Inputs DI1 and DI2 are combined to select one of forward, reverse, stop, and brake modes. Since the inputs are TTL-compatible, this IC can be controlled directly from a CPU or other control system. The IC also has various protective functions.

FEATURES

- Bidirectional DC motor driver
- Current capacity : 1.5A
- Four modes : Forward, Reverse, Stop, and Brake
- Protective functions : Thermal Shutdown, Short Circuit Protection, and Overvoltage Shutdown
- Built-in diode for counteracting counter electromotive force
- Plastic HSIP-7 pin

BLOCK DIAGRAM AND PIN LAYOUT

961001FBA2

- 961001EBA TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

Weight : 1.9g (Typ.)

PIN DESCRIPTION

PIN No.	SYMBOL	DESCRIPTION				
1	DI1	Dutput status control pin.				
2	DI2	Connects to a PNP-type voltage comparator.				
3	M (+)	Connects to the DC motor. Both the sink and the source have a current capacity of 1.5A. Diodes for absorbing counter electromotive force are contained on the V_{CC} and GND sides.				
4	GND	Grounded				
5	M (-)	Connects to the DC motor together with pin 3 and has the same function as pin 3. This pin is controlled by the inputs from pins 1 and 2.				
6	(N.C)	Not connected				
7	V _{CC}	Power supply pin. This pin has a function to turn off the output when the applied voltage exceeds 27.5V, thus protecting the IC and the load.				

TRUTH TABLE

Inp	out	Out		
DI1	DI2	M(+)	M (-)	
Н	Н	L	L	(Note)
L	Н	L	Н	
Н	L	Н	L	
L	L	OFF (high i	(Note)	

Note : Brake mode comes into effect when both M(+) and M(-) go low ; stop mode comes into effect when both M(+) and M(-) turn OFF.

DESCRIPTION OF MULTI-PROTECTIVE OPERATION

The TA8050P has functions for protection from overvoltage (V_{SD}), overcurent (I_{SD}), and overheat (T_{SD}). These functions protect the IC (and the motor load in some cases) from deterioration or destruction due to power-related overstress.

The three functions work independently.

Each function is explained below.

- 1. Overvoltage protection (V_{SD})
 - Basic operation

When the voltage supplied to the V_{CC} pin is up to the V_{SD} detection voltage, the output is controlled by the input signals. However, when the V_{CC} voltage exceeds the detection voltage, the output enters high-impedance state regardless of the input signals.

• Detailed explanation

The V_{SD} voltage is detected by comparing the Zener voltage with the voltage obtained by dividing V_{CC} with a resistor. When the center voltage of the resistor is higher than the Zener voltage, a transistor-off instruction is issued to the control logic. When it is lower than the Zener voltage, the logic is controlled by the input signals from pins 1 and 2.

- 2. Overheat protection (T_{SD})
 - Basic operation

When the junction (chip) temperature is up to the T_{SD} detection temperature, the output is controlled by the input signals. When it exceeds the T_{SD} detection temperature, the output enters high-impedance state regardless of the input signals.

• Detailed explanation

The temperature is detected by monitoring V_F of a diode on the chip. When the diode V_F is lower than the internal reference voltage, an output transistor-off instruction is issued to the control logic. When it is higher than the internal reference voltage, the logic is controlled by the input signals from pins 1 and 2.

- 3. Overcurrent protections (ISD)
 - Basic operation

When the output current (pin 3 or 5, I sink or I source) is up to the I_{SD} detection current, the output is controlled by the input signals. When it exceeds the detection current, the output assumes a switching waveform as shown in Fig.1.

Fig.1 Basic Operation

• Detailed explanation

The output current is detected by monitoring the V_{BE} from each output transistor. One detection circuit connects to one of the output transistors and leads to the short-circuit protection circuit. When a current exceeding the I_{SD} detection current flows through one of the four output transistors, the short-circuit protection circuit is activated. This circuit contains a timer. When overcurrent condition continues for $20\mu s$ (typically), the protection circuit places the output in high-impedance mode and, $80\mu s$ (typically) later, returns the IC to ON mode. The switching-waveform output is repeated until overcurrent condition is no longer present.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	Vcc	30	V	
supply voltage	Vcc	60 (1s)	v	
Input Voltage	VIN	-0.3 to V _{CC}	V	
Output Current	IO.AVE	1.5	А	
Operation Temperature	T _{opr}	– 40 to 110	°C	
Storage Temperature	T _{stg}	– 55 to 150	°C	
Power Dissipation	PD	12.5	W	
Lead Temperature-time	T _{sol}	260 (10s)	°C	

ELECTRICAL CHARACTERISTICS ($V_{CC} = 6$ to 16V, $T_c = -40$ to 110°C)

CHARACTERISTIC	SYMBOL	PIN	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	ICC1	Vcc	—	Stop	—	8	15	mA
Current Consumption	ICC2			Forward / Reverse	—	27	50	
	ICC3			Brake	—	16	30	
Input Voltage	VIL	DI1		—	—	—	0.8	v
mput voltage	VIH	/ DI2	—	—	2.0	—	—	
Input Current	ΙL	DI1	_	V _{IN} = 0.4V	_	—	– 100	μΑ
Input Current	Чн	/ DI2		$V_{IN} = V_{CC}$		—	100	
Output Saturation	V _{sat}	M(+)		I _O = 1.5A, Tc = 25°C	—	2.2	2.9	v
Voltage	(total)	/M(-)	—	I _O = 1.5A, Tc = 110°C	—	2.2	2.8	v
Output Leakage Current	ILEAK-U	M(+)		V _O = 0V		—	– 100	
Output Leakage Current	ILEAK·L	/ M (–)	—	V _O = V _{CC}	—	—	100	μΑ
Diode Forward Voltage	V _F .U	M(+)	_	IF = 1.5A	_	2.6	_	v
Didde Forward Voltage	VF.L	/ M (–)	_		—	1.5	_	
Overcurrent Detection	I _{SD}			—	1.8	3	4	Α
Shutdown Temperature	T _{SD}		—	—	—	150	—	°C
Overvoltage Detection	V _{SD}	_	_	—	25	27.5	30	V
Thermal Resistance	R _{<i>θ</i>j-c}	_	_	—	_	4	—	°C/W
Transfer Delay Time	t _{pLH}	_	—	—		1	10	
Transier Deidy Time	t _{pHL}	_			_	1	10	μ s

I/O EQUIVALENT CIRCUIT

EXAMPLE OF APPLICATION CIRCUIT

st Connect this capacitor as close to the IC as possible.

OUTLINE DRAWING HSIP7-P-2.54

Unit : mm

Weight : 1.9g (Typ.)

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.