Is Now Part of # ON Semiconductor® # To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer Data Sheet November 2013 # 8 A, 1200 V, Hyperfast Diode The RHRP8120 is a hyperfast diode with soft recovery characteristics. It has the half recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction. These devices are intended to be used as freewheeling/ clamping diodes and diodes in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors. # **Ordering Information** | PART NUMBER | PACKAGE | BRAND | | |-------------|-------------|----------|--| | RHRP8120 | TO-220AC-2L | RHRP8120 | | NOTE: When ordering, use the entire part number. # Symbol #### **Features** - Hyperfast Recovery t_{rr} = 70 ns (@ I_F= 8 A) - Max Forward Voltage, V_F = 3.2 V (@ T_C = 25°C) - 1200 V Reverse Voltage and High Reliability - · Avalanche Energy Rated - RoHS Compliant # **Applications** - · Switching Power Supplies - Power Switching Circuits - · General Purpose # **Packaging** **JEDEC TO-220AC** | Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified | | | |--|------------|------| | | RHRP8120 | UNIT | | Peak Repetitive Reverse Voltage | 1200 | V | | Working Peak Reverse Voltage | 1200 | V | | DC Blocking VoltageV _R | 1200 | V | | Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 140^{\circ}C$) | 8 | Α | | Repetitive Peak Surge Current | 16 | Α | | Nonrepetitive Peak Surge Current | 100 | Α | | Maximum Power Dissipation | 75 | W | | Avalanche Energy (See Figures 10 and 11) | 20 | mJ | | Operating and Storage Temperature | -65 to 175 | °С | **Electrical Specifications** T_C = 25°C, Unless Otherwise Specified | SYMBOL | TEST CONDITION | MIN | TYP | MAX | UNIT | |-----------------|--|-----|-----|-----|------| | V _F | I _F = 8 A | - | - | 3.2 | V | | | $I_F = 8 \text{ A}, T_C = 150^{\circ}\text{C}$ | - | - | 2.6 | V | | I _R | V _R = 1200 V | - | - | 100 | μΑ | | | $V_R = 1200 \text{ V}, T_C = 150^{\circ}\text{C}$ | - | - | 500 | μΑ | | t _{rr} | I _F = 1 A, dI _F /dt = 200 A/μs | - | - | 55 | ns | | | $I_F = 8 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$ | - | - | 70 | ns | | t _a | I _F = 8 A, dI _F /dt = 200 A/μs | - | 30 | - | ns | | t _b | I _F = 8 A, dI _F /dt = 200 A/μs | - | 20 | - | ns | | Q _{rr} | $I_F = 8 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}$ | - | 165 | - | nC | | СЈ | V _R = 10 V, I _F = 0 A | - | 25 | - | pF | | $R_{ heta JC}$ | | - | - | 2 | °C/W | #### **DEFINITIONS** V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%). I_R = Instantaneous reverse current. T_{rr} = Reverse recovery time (See Figure 9), summation of t_a + t_b . t_a = Time to reach peak reverse current (See Figure 9). t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9). Q_{rr} = Reverse Recovery Charge. C_J = Junction Capacitance. $R_{\theta JC}$ = Thermal resistance junction to case. pw = Pulse Width. D = Duty Cycle. # **Typical Performance Curves** FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE # Typical Performance Curves (Continued) FIGURE 3. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT FIGURE 5. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT FIGURE 4. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT FIGURE 6. CURRENT DERATING CURVE FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE #### Test Circuits and Waveforms FIGURE 8. t_{rr} TEST CIRCUIT $I_{MAX} = 1A$ L = 40mH $R < 0.1\Omega$ $E_{AVL} = 1/2Li^2 \left[V_{R(AVL)} / (V_{R(AVL)} - V_{DD}) \right]$ $Q_1 = IGBT \left(BV_{CES} > DUT V_{R(AVL)} \right)$ L R CURRENT + O $SENSE V_{DD}$ V_{DD} O_1 O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8 O_8 O_8 O_9 FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS #### **NOTES**: - A. PACKAGE REFERENCE: JEDEC TO220,ISSUE K, VARIATION AC,DATED APRIL 2002. - B. ALL DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009. - D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. - E. DRAWING FILE NAME: TO220A02REV5 ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: **ON Semiconductor:** RHRP8120 RHRP8120_F102 RHRP8120-F102 Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.