General Description

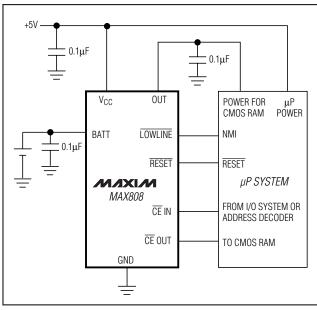
The MAX801/MAX808 microprocessor (μ P) supervisory circuits monitor and control the activities of +5V μ Ps by providing backup-battery switchover, low-line indication, and μ P reset. Additional features include a watch-dog for the MAX801 and CMOS RAM write protection for the MAX808.

The MAX801/MAX808 offer a choice of reset-threshold voltage (denoted by suffix letter): 4.675V (L), 4.575V (N), and 4.425V (M). These devices are available in 8-pin DIP and SO packages.

_Applications

Computers

Controllers


Intelligent Instruments

Critical µP Power Monitoring

Portable/Battery-Powered Equipment

Embedded Systems

Pin Configurations appear at end of data sheet.

Typical Operating Circuit

_Features

- Precision Voltage Monitoring, ±1.5% Reset Accuracy
- 200ms Power-OK/Reset Time Delay
- RESET Output (MAX808) RESET and RESET Outputs (MAX801)
- Watchdog Timer (MAX801)
- On-Board Gating of Chip-Enable Signals (MAX808): Memory Write-Cycle Completion 3ns CE Gate Propagation Delay
- 1µA Standby Current
- Power Switching: 250mA in VCC Mode 20mA in Battery-Backup Mode
- ♦ MaxCap[™]/SuperCap[™] Compatible
- RESET Guaranteed Valid to V_{CC} = 1V
- Low-Line Threshold 52mV Above Reset Threshold

MaxCap is a trademark of The Carborundum Corp. SuperCap is a trademark of Baknor Industries.

PART* **TEMP RANGE PIN-PACKAGE** MAX801 CPA 0°C to +70°C 8 Plastic DIP MAX801_CSA 0°C to +70°C 8 SO MAX801 EPA -40°C to +85°C 8 Plastic DIP -40°C to +85°C MAX801_ESA 8 SO 8 CERDIP** MAX801_MJA -55°C to +125°C MAX808_CPA 0°C to +70°C 8 Plastic DIP 0°C to +70°C 8 SO MAX808 CSA MAX808_EPA -40°C to +85°C 8 Plastic DIP -40°C to +85°C MAX808_ESA 8 SO -55°C to +125°C 8 CERDIP** MAX808 MJA

Ordering Information

* These parts offer a choice of reset threshold voltage. From the table below, select the suffix corresponding to the desired threshold and insert it into the blank to complete the part number. ** Contact factory for availability and processing to MIL-STD-883.

Devices in PDIP, SO and µMAX packages are available in both leaded and lead-free packaging. Specify lead free by adding the + symbol at the end of the part number when ordering. Lead free not available for CERDIP package.

SUFFIX	RESET THRESHOLD (V)				
JULLIN	MIN	ТҮР	MAX		
L	4.60	4.675	4.75		
N	4.50	4.575	4.65		
М	4.35	4.425	4.50		

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Input Voltage (with respect to GND)

V _{CC}	0.3V to +6V
VBATT	0.3V to +6V
All Other Pins	0.3V to (V _{OUT} + 0.3V)
Input Current	
Vcc Peak	
V _{CC} Continuous	500mA
IBATT Peak	250mA
IBATT Continuous	
GND	50mA
All Other Inputs	50mA
Output Current	
OUT Peak	1.0A

OUT Continuous All Other Outputs	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
Plastic DIP (derate 9.09mW/°C above +7	
SO (derate 5.88mW/°C above +70°C)	
CERDIP (derate 8.00mW/°C above +70°C	C)640mW
Operating Temperature Ranges	
MAX801_C_A/MAX808_C_A	0°C to +70°C
MAX801_E_A/MAX808_E_A	40°C to +85°C
MAX801_MJA/MAX808_MJA	55°C to +125°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 4.6V to 5.5V for the MAX80_L, V_{CC} = 4.5V to 5.5V for the MAX80_N, V_{CC} = 4.35V to 5.5V for the MAX80_M; V_{BATT} = 2.8V; T_A = T_{MIN} to T_{MAX}. Typical values are at V_{CC} = 5V and T_A = $+25^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	ТҮР	МАХ	UNITS	
Operating Voltage Range V _{CC} , BATT (Note 1)					0	Х	5.5	V	
			I _{OUT} = 25mA			V _{CC} - 0.02		V	
VOUT in Normal Operating		$V_{CC} = 4.5V$	10UT = 250mA	, MAX80_C/E	Vcc - 0.38	Vcc - 0.25			
Mode			I _{OUT} = 250mA	., MAX80_M	V _{CC} - 0.45				
		$V_{CC} = 3V, V_{BA}$	att = 2.8V, Iou	T = 100mA	Vcc - 0.25	Vcc - 0.12			
V _{CC} to OUT		$V_{CC} = 4.5V,$	MAX80_C/E			1.0	1.5		
On-Resistance		$I_{OUT} = 250 \text{mA}$	MAX80_M				1.8	Ω	
		$V_{CC} = 3V, I_{OL}$	JT = 100mA			1.2	2.5		
Vour in Pottony Poolyup			$V_{BATT} = 4.5V$, I _{OUT} = 20mA		V _{BATT} - 0.16			
V _{OUT} in Battery-Backup Mode		$V_{CC} = 0V$	$V_{BATT} = 2.8V$, I _{OUT} = 10mA	V _{BATT} - 0.25	V _{BATT} - 0.12		V	
mode			$V_{BATT} = 2.0V$, I _{OUT} = 5mA	V _{BATT} - 0.20	V _{BATT} - 0.08			
BATT to OUT			VBATT = 4.5V	, I _{OUT} = 20mA		8			
On-Resistance	$V_{CC} = 0V$	$V_{CC} = 0V$	$V_{BATT} = 2.8V, I_{OUT} = 10mA$			12	25	Ω	
on noolotanoo			$V_{BATT} = 2.0V, I_{OUT} = 5mA$			16	40		
Supply Current in Normal Operating Mode		MAX801				68	110	-μA	
(excludes IOUT)		MAX808				48	90	μΛ	
Supply Current in Battery-			$T_A = +25^{\circ}C$			0.4	1		
Backup Mode (excludes		V _{CC} = 0V, V _{BATT} = 2.8V	$T_A = T_{MIN}$	MAX80_C/E		5	μA		
I _{OUT}) (Note 2)		·DATT = 2.0 ·	to T _{MAX}	MAX80_M			50	1	
BATT Standby Current		V _{BATT} + 0.2V	$T_A = +25^{\circ}C$		-0.1		0.1	– µA	
(Note 3)		\leq V _{CC} T _A = T _{MIN} to T _{MAX}		-1.0		1.0	1.0 µA		
$V_{BATT} = 2.8V$		Voter 2.8V Power-up		VBATT + 0.05		V			
		Power-down			VBATT		v		
Battery-Switchover Hysteresis						50		mV	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 4.6V \text{ to } 5.5V \text{ for the MAX80_L}, V_{CC} = 4.5V \text{ to } 5.5V \text{ for the MAX80_N}, V_{CC} = 4.35V \text{ to } 5.5V \text{ for the MAX80_M}; V_{BATT} = 2.8V; T_A = T_{MIN} \text{ to } T_{MAX}$. Typical values are at V_{CC} = 5V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
RESET AND LOW-LINE	l.			I			1
			MAX80_L	4.600	4.675	4.750	
Reset Threshold	V _{RST}	VCC rising and falling	MAX80_N	4.500	4.575	4.650	V
		and laining	MAX80_M	4.350	4.425	4.500	1
Reset-Threshold Hysteresis					13		mV
LOWLINE to RESET Threshold Voltage	V _{LR}	V _{CC} falling		30	52	70	mV
		MAX80_L			4.73	4.81	
LOWLINE Threshold, V _{CC} Rising	VLL	MAX80_N			4.63	4.71	V
VCCTIGING		MAX80_M			4.48	4.56	
V _{CC} to RESET Delay	t _{RD}	V _{CC} falling at	1mV/µs		17		μs
VCC to LOWLINE Delay	tLL	V _{CC} falling at	1mV/µs		17		μs
RESET Active Timeout Period	t _{RP}	V _{CC} rising		140	200	280	ms
		$I_{SINK} = 50 \mu A,$	V _{CC} = 1.0V, MAX80_C			0.3	
RESET Output Voltage		VBATT = 0V, VCC falling	V _{CC} = 1.2V, MAX80_E/M			0.3	V
1 0		$I_{SINK} = 3.2m$	A, $V_{CC} = 4.25V$		0.1	0.4	
		ISOURCE = 0.1mA		V _{CC} - 1.5	V _{CC} - 0.1		
RESET Output	Isc	Output sink c	urrent, $V_{CC} = 4.25V$	40			- mA
Short-Circuit Current	130	Output source	e current		1.6		ШA
RESET Output Voltage		I _{SINK} = 3.2mA I _{SOURCE} = 5mA, V _{CC} = 4.25V				0.4	V
(MAX801)				V _{CC} - 1.5			•
RESET Output Short-	Isc	Output sink c	urrent		55		mA
Circuit Current (MAX801)	130	Output source current, $V_{CC} = 4.25V$			15		
LOWLINE Output Voltage	Output Voltage $I_{SINK} = 3.2 \text{mA}, V_{CC} = 4.25 \text{V}$					0.4	- V
LOWEINE Output Voltage		ISOURCE = 5mA, VCC = 4.25V		Vcc - 1.5			v
LOWLINE Output	Isc	Output sink c	urrent, $V_{CC} = 4.25V$		40		mA
Short-Circuit Current	150	Output source current			20		
WATCHDOG TIMER (MA)	(801)	-					
Watchdog Timeout Period	twd			1.12	1.6	2.24	sec
Minimum Watchdog Input Pulse Width		$V_{IL} = 0.8V, V_{IH} = 0.75V \times V_{CC}$		100			ns
WDI Threshold Voltage	Vih			0.75 x Vcc			V
(Note 4)	VIL					0.8	v
		RESET deass	serted, WDI = 0V	-50	-10		
	out Current	RESET deass	serted, WDI = V _{CC}		16	50	- μΑ

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 4.6V to 5.5V for the MAX80_L, V_{CC} = 4.5V to 5.5V for the MAX80_N, V_{CC} = 4.35V to 5.5V for the MAX80_M; V_{BATT} = 2.8V; T_A = T_{MIN} to T_{MAX}. Typical values are at V_{CC} = 5V and T_A = $+25^{\circ}$ C, unless otherwise noted.)

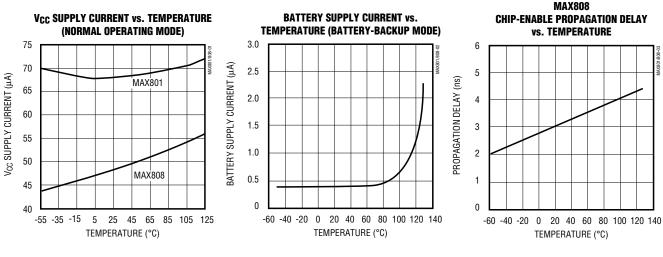
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS		
CHIP-ENABLE GATING (MAX808)								
CE IN Leakage Current		$V_{CC} = 4.25 V$		±0.00002	±1	μΑ		
\overline{CE} IN to \overline{CE} OUT Resistance (Note 5)		Enabled mode, V _{CC} = V _{RST} (max)		75	150	Ω		
CE OUT Short-Circuit Current (RESET Active)		$V_{CC} = 4.25V, \overline{CE} OUT = 0V$		15		mA		
$\overline{CE} \text{ IN to } \overline{CE} \text{ OUT}$ Propagation Delay (Note 6)		$V_{CC} = 5V, C_{LOAD} = 50pF,$ 50 Ω source-impedance driver		3	8	ns		
CE OUT Output Voltage		V _{CC} = 4.25V, I _{OUT} = 2mA	3.5			v		
High (RESET Active)		$V_{CC} = 0V, I_{OUT} = 10\mu A$	V _{BATT} - 0.1	VBATT		v		
RESET to CE OUT Delay (Note 7)		V_{CC} falling, \overline{CE} IN = 0V		18		μs		

Note 1: Either V_{CC} or V_{BATT} can go to 0V if the other is greater than 2V.

Note 2: The supply current drawn by the MAX80_ from the battery (excluding I_{OUT}) typically goes to 15µA when (V_{BATT} - 0.1V) < V_{CC} < V_{BATT}. In most applications, this is a brief period as V_{CC} falls through this region (see *Typical Operating Characteristics*).

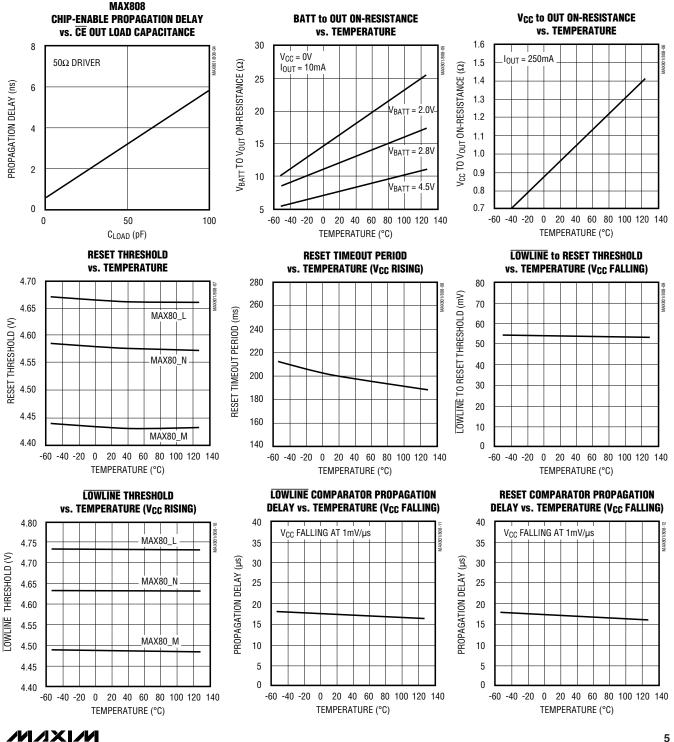
Note 3: "+" = battery-discharging current, "-" = battery-charging current.

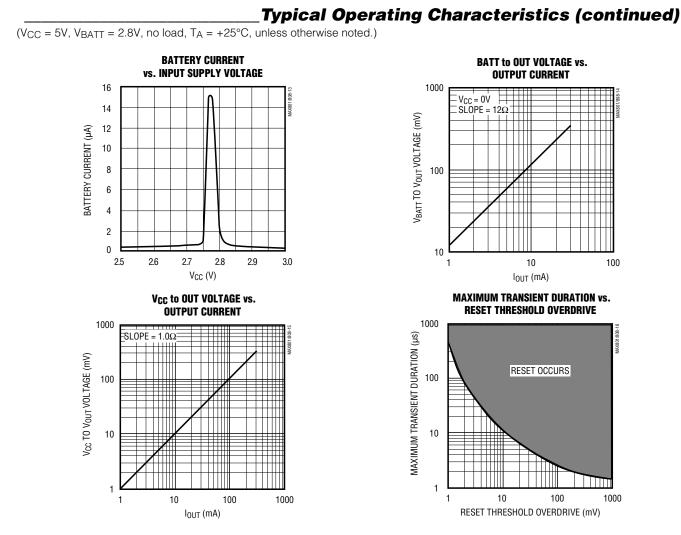
Note 4: WDI is internally connected to a voltage divider between V_{CC} and GND. If unconnected, WDI is typically driven to 1.8V, disabling the watchdog function.


Note 5: The chip-enable resistance is tested with $V_{\overline{CE} | N} = V_{CC} / 2$ and $\overline{I_{CE} | N} = 1$ mA.

Note 6: The chip-enable propagation delay is measured from the 50% point at \overline{CE} IN to the 50% point at \overline{CE} OUT.

Note 7: If CE IN goes high, CE OUT goes high immediately and stays high until reset is deasserted and CE IN is low.


Typical Operating Characteristics


(V_{CC} = 5V, V_{BATT} = 2.8V, no load, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{BATT} = 2.8V, no load, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

P	IN	NAME	FUNCTION
MAX801	MAX808		FUNCTION
1	1	Vcc	Input Supply Voltage, nominally +5V. Bypass with a 0.1µF capacitor to GND.
2	2	LOWLINE	Low-Line Comparator Output. This CMOS-logic output goes low when V _{CC} falls to 52mV above the reset threshold. Use $\overline{\text{LOWLINE}}$ to generate an NMI, initiating an orderly shut-down routine when V _{CC} is falling. $\overline{\text{LOWLINE}}$ swings between V _{CC} and GND.
3	3	RESET	Active-Low Reset Output. $\overline{\text{RESET}}$ is triggered and stays low when V _{CC} is below the reset threshold (or during a watchdog timeout for the MAX801). It remains low 200ms after V _{CC} rises above the reset threshold (or 200ms after the watchdog timeout occurs). RESET has a strong pull-down but a relatively weak pull-up, and can be wire-OR connected to logic gates. Valid for V _{CC} \geq 1V. RESET swings between V _{CC} and GND.
4	4	GND	Ground

Pin Description (continued)

P	PIN		FUNCTION		
MAX801	MAX808	NAME	FUNCTION		
5		RESET	Active-High Reset Output. RESET is the inverse of $\overline{\text{RESET}}$. It is a CMOS output that sources and sinks current. RESET swings between V _{CC} and GND.		
_	5	CE OUT	Chip-Enable Output. Output to the chip-enable gating circuit. \overline{CE} OUT is pulled up to the higher of V _{CC} or V _{BATT} when the chip-enable gate is disabled.		
6		WDI	Watchdog Input. If WDI remains high or low longer than the watchdog timeout period (typically 1.6sec), RESET will be asserted for 200ms. Leave unconnected to disable the watchdog function.		
_	6	CE IN	Chip-Enable Input		
7	7	BATT	Backup-Battery Input. When V _{CC} falls below the reset threshold and V _{BATT} , OUT switches from V _{CC} to BATT. V _{BATT} may exceed V _{CC} . The battery can be removed while the MAX801/MAX808 is powered up, provided BATT is bypassed with a 0.1 μ F capacitor to GND. If no battery is used, connect BATT to ground and V _{CC} to OUT.		
8	8	OUT	Output Supply Voltage to CMOS RAM. When V _{CC} exceeds the reset threshold or V _{BATT} , OUT connects to V _{CC} . When V _{CC} falls below the reset threshold and V _{BATT} , OUT connects to BATT. Bypass OUT with a 0.1 μ F capacitor to GND.		

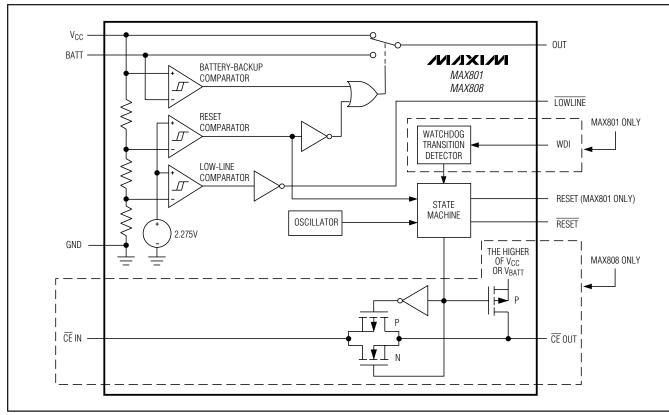
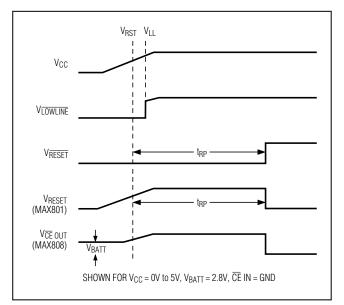



Figure 1. Functional Diagram

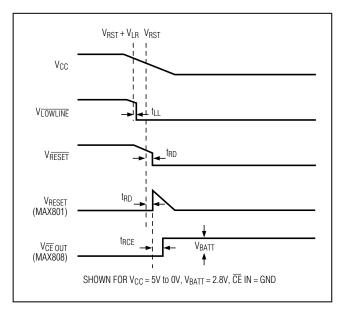


Figure 2a. Timing Diagram, V_{CC} Rising

Figure 2b. Timing Diagram, V_{CC} Falling

Detailed Description

The MAX801/MAX808 microprocessor (µP) supervisory circuits provide power-supply monitoring and backupbattery switchover in µP systems. The MAX801 also provides program-execution watchdog functions (Figure 1). Use of BiCMOS technology results in an improved, 1.5% reset-threshold precision while keeping supply currents typically at 68µA (48µA for the MAX808). The MAX801/MAX808 are intended for battery-powered applications that require high resetthreshold precision, allowing a wide power-supply operating range while preventing the system from operating below its specified voltage range.

RESET and **RESET** Outputs

The MAX801/MAX808's RESET output ensures that the µP powers up in a known state, and prevents codeexecution errors during power-down and brownout conditions. It does this by resetting the µP, terminating program execution when V_{CC} dips below the reset threshold. Each time RESET is asserted, it stays low for at least the 200ms reset timeout period (set by an internal timer) to ensure the µP has adequate time to return to an initial state. The internal timer restarts any time V_{CC} goes below the reset threshold (V_{RST}) before the reset timeout period is completed. The watchdog timer on the MAX801 can also initiate a reset (see the MAX801 Watchdog Timer section).

The **RESET** output is active low, and is implemented with a strong pull-down/relatively weak pull-up structure. It is guaranteed to be a logic low for OV < VCC < VRST, provided VBATT is greater than 2V. Without a backup battery, RESET is guaranteed valid for $V_{CC} \ge 1V$.

The RESET output is the inverse of the RESET output: it both sources and sinks current and cannot be wire-OR connected.

Low-Line Comparator

The low-line comparator monitors V_{CC} with a threshold voltage typically 52mV above the reset threshold, with 13mV of hysteresis. Use LOWLINE to provide a nonmaskable interrupt (NMI) to the μ P when power begins to fall, initiating an orderly software shutdown routine. In most battery-operated portable systems, reserve energy in the battery provides ample time to complete the shutdown routine once the low-line warning is encountered and before reset asserts. If the system must contend with a more rapid V_{CC} fall time (such as when the main battery is disconnected, when a DC-DC converter shuts down, or when a high-side switch is opened during normal operation), use capacitance on the V_{CC} line to provide time to execute the shutdown routine (Figure 3). First calculate the worst-case time required for the system to perform its shutdown routine. Then, with worst-case shutdown time, worst-case load current, and minimum low-line to reset threshold (VLR(min)),

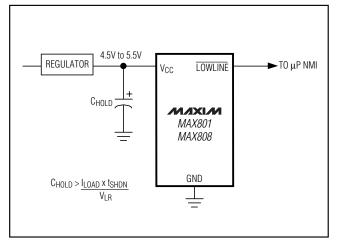


Figure 3. Using LOWLINE to Provide a Power-Fail Warning to the μP

calculate the amount of capacitance required to allow the shutdown routine to complete before reset is asserted:

CHOLD = (ILOAD x tSHDN) / (VLR(min))

where t_{SHDN} is the time required for the system to complete the shutdown routine (including the V_{CC} to low-line propagation delay), I_{LOAD} is the current being drained from the capacitor, and V_{LR} is the low-line to reset threshold.

Output Supply Voltage

The output supply (OUT) transfers power from V_{CC} or BATT to the μ P, RAM, and other external circuitry. At the maximum source current of 250mA, V_{OUT} will typically be 220mV below V_{CC}. Decouple OUT with a 0.1 μ F capacitor to ground.

Battery-Backup Mode

Battery-backup mode preserves the contents of RAM in the event of a brownout or power failure. With a backup battery installed at BATT, the MAX801/MAX808 automatically switches RAM to backup power when V_{CC} falls. Two conditions are required for switchover to battery-backup mode: 1) V_{CC} must be below the reset threshold; 2) V_{CC} must be below V_{BATT}. Table 1 lists the status of inputs and outputs during battery-backup mode.

BATT is designed to conduct up to 20mA to OUT during battery backup. The PMOS switch on-resistance is approximately 12 Ω . Figure 4 shows the two series pass elements (between the BATT input and OUT) that facilitate UL recognition. VBATT can exceed VCC during normal operation without causing a reset.

///XI///

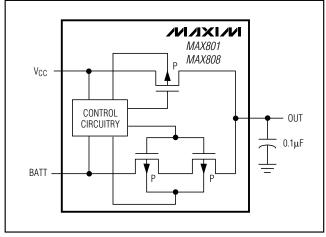


Figure 4. V_{CC} and BATT to OUT Switch

Table 1. Input and Output Status inBattery-Backup Mode

Р	IN	NAME	STATUS
MAX801	MAX808	NAME	314105
1	1	Vcc	Battery switchover comparator monitors V _{CC} for active switchover.
2	2	LOWLINE	Logic low
3	3	RESET	Logic low
4	4	GND	Ground—0V reference for all signals
5		RESET	Logic high; the open-circuit voltage is equal to V _{CC} .
_	5	CE OUT	Logic high. The open-circuit output voltage is equal to VBATT (MAX808).
6		WDI	WDI is ignored and goes high impedance.
_	6	CE IN	High impedance (MAX808)
7	7	BATT	Supply current is $1\mu A$ max for $V_{BATT} \le 2.8V$.
8	8	OUT	OUT is connected to BATT through two internal PMOS switches in series.

MAX801 Watchdog Timer

The watchdog monitors the μ P's activity. If the μ P does not toggle the watchdog input (WDI) within 1.6sec, reset asserts for the reset timeout period. The internal 1.6sec timer is cleared when reset asserts or when a transition (low-to-high or high-to-low) occurs at WDI while reset is not asserted. The timer remains cleared and does not count as long as reset is asserted. It starts counting as soon as reset is released (Figure 5). Supply current is typically reduced by 10µA when WDI is at a valid logic level. To disable the watchdog function, leave WDI unconnected. An internal voltage divider sets WDI to about mid-supply, disabling the watchdog timer/counter.

MAX808 Chip-Enable Gating

The MAX808 provides internal gating of chip-enable (CE) signals to prevent erroneous data from corrupting CMOS RAM in the event of a power failure. During normal operation, the CE gate is enabled and passes all CE transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The MAX808 uses a series transmission gate from the chip-enable input (CE IN) to the chip-enable output (CE OUT) (Figure 1). The 8ns max chip-enable propagation from CE IN to CE OUT enables the MAX808 to be used with most μ Ps.

The MAX808 also features write-cycle-completion circuitry. If V_{CC} falls below the reset threshold while the μ P is writing to RAM, the MAX808 holds the CE gate enabled for 18µs to allow the μ P to complete the write instruction. If the write cycle has not completed by the end of the 18µs period, the CE transmission gate turns off and CE OUT goes high. If the μ P completes the write instruction during the 18µs period, the CE gate turns off (high impedance) and CE OUT goes high as soon as the μ P pulls CE IN high. CE OUT remains high, even if CE IN falls low for any reason (Figure 6).

Chip-Enable Input

 \overline{CE} IN is high impedance (disabled mode) while reset is asserted. During a power-down sequence when V_{CC} passes the reset threshold, the CE transmission gate disables. \overline{CE} IN becomes high impedance 18µs after reset asserts, provided \overline{CE} IN is still low. If the µP completes the write instruction during the 18µs period, the CE gate turns off. \overline{CE} IN becomes high impedance as soon as the µP pulls \overline{CE} IN high. \overline{CE} IN remains high impedance even if the signal at \overline{CE} IN falls low (Figure 6). During a power-up sequence, \overline{CE} IN remains high impedance (regardless of \overline{CE} IN activity) until reset is deasserted following the reset timeout period.

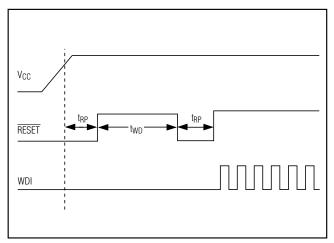


Figure 5. Watchdog Timing

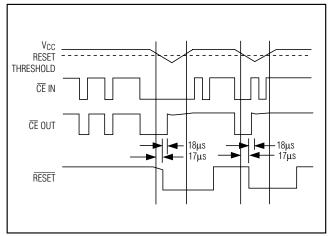


Figure 6. Chip-Enable Timing

In high-impedance mode, the leakage currents into this input are $\pm 1\mu A$ max over temperature. In low-impedance mode, the impedance of \overline{CE} IN appears as a 75 Ω resistor in series with the load at \overline{CE} OUT.

The propagation delay through the CE transmission gate depends on both the source impedance of the drive to \overline{CE} IN and the capacitive loading on \overline{CE} OUT (see the Chip-Enable Propagation Delay vs. \overline{CE} OUT Load Capacitance graph in the *Typical Operating Characteristics*). The CE propagation delay is production tested from the 50% point on \overline{CE} IN to the 50% point on \overline{CE} OUT using a 50 Ω driver and 50pF of load capacitance (Figure 7). For minimum propagation delay, minimize the capacitive load at \overline{CE} OUT and use a low-output-impedance driver.

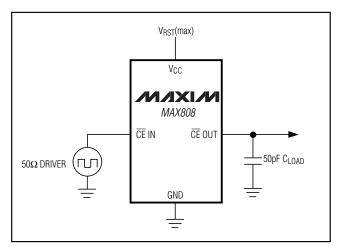


Figure 7. MAX808 CE Gate Test Circuit

Chip-Enable Output

In enabled mode, \overline{CE} OUT's impedance is equivalent to 75 Ω in series with the source driving \overline{CE} IN. In disabled mode, the 75 Ω transmission gate is off and \overline{CE} OUT is actively pulled to the higher of V_{CC} or V_{BATT}. The source turns off when the transmission gate is enabled.

Applications Information

The MAX801/MAX808 are not short-circuit protected. Shorting OUT to ground, other than power-up transients such as charging a decoupling capacitor, may destroy the device. If long leads connect to the IC's inputs, ensure that these lines are free from ringing and other conditions that would forward bias the IC's protection diodes. Bypass OUT, VCC, and BATT with 0.1μ F capacitors to GND.

The MAX801/MAX808 operate in two distinct modes:

- Normal Operating Mode, with all circuitry powered up. Typical supply current from V_{CC} is 68µA (48µA for the MAX808), while only leakage currents flow from the battery.
- 2) Battery-Backup Mode, where V_{CC} is below V_{BATT} and $V_{RST}.$ The supply current from the battery is typically less than 1µA.

Using SuperCaps[™] or MaxCaps[™] with the MAX801/MAX808

BATT has the same operating voltage range as V_{CC}, and the battery-switchover threshold voltage is typically V_{BATT} when V_{CC} is decreasing or V_{BATT} + 0.05V when V_{CC} is increasing. This hysteresis allows use of a SuperCap (e.g., around 0.47F) and a simple charging

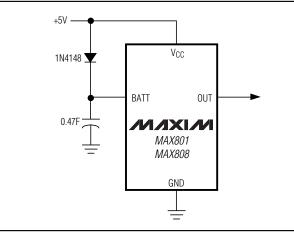


Figure 8. Using the MAX801/MAX808 with a SuperCap

circuit as a backup source (Figure 8). Since VBATT can exceed V_{CC} while V_{CC} is above the reset threshold, no special precautions are needed when using these μ P supervisors with a SuperCap.

Backup-Battery Replacement

The backup battery can be disconnected while V_{CC} is above the reset threshold, provided BATT is bypassed with a 0.1μ F capacitor to ground. No precautions are necessary to avoid spurious reset pulses.

Negative-Going Vcc Transients

While issuing resets to the μ P during power-up, powerdown, and brownout conditions, these supervisors are relatively immune to short-duration, negative-going V_{CC} transients (glitches). It is usually undesirable to reset the μ P when V_{CC} experiences only small glitches.

The Typical Operating Characteristics show a graph of Maximum Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going V_{CC} pulses, starting at 5V and ending below the reset threshold by the magnitude indicated (reset comparator overdrive). The graph shows the maximum pulse width that a negative-going VCC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 40mV below the reset threshold and lasts for 3µs or less will not cause a reset pulse to be issued. A 0.1µF bypass capacitor mounted close to the V_{CC} pin provides additional transient immunity.

Watchdog Software Considerations

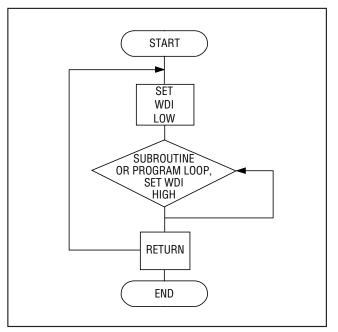

To help the watchdog timer keep a closer watch on software execution, you can set and reset the watchdog input at different points in the program, rather than "pulsing" the watchdog input high-low-high or low-highlow. This technique avoids a "stuck" loop, where the watchdog timer continues to be reset within the loop, keeping the watchdog from timing out.

Figure 9 shows a sample flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, low at the beginning of every subroutine or loop, then high again when the program returns to the beginning. If the program should "hang" in any subroutine, the I/O would be continually set low and the watchdog timer would be allowed to time out, causing a reset or interrupt to be issued.

Maximum Vcc Fall Time

Pin Configurations

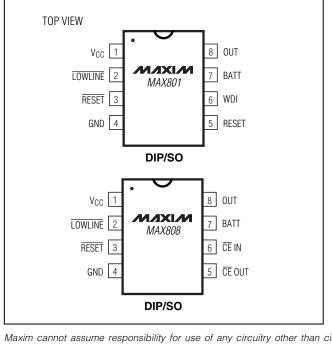

The V_{CC} fall time is limited by the propagation delay of the battery switchover comparator and should not exceed 0.03V/ μ s. A standard rule for filter capacitance on most regulators is around 100 μ F per Ampere of current. When the power supply is shut off or the main battery is disconnected, the associated initial V_{CC} fall rate is just the inverse, or 1A/100 μ F = 0.01V/ μ s.

Figure 9. Watchdog Flow Diagram

Chip Information

TRANSISTOR COUNT: 922

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 2005 Maxim Integrated Products

12

Printed USA **MAXIM** is a registered trademark of Maxim Integrated Products, Inc.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.