AUTOMOTIVE GRADE

PD - 96397A

International

AUIRFS4010-7P

HEXFET[®] Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Enhanced dV/dT and dI/dT capability
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET[®] Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

	V_{DSS}		100V
	R _{DS(on)}	typ.	3.3m Ω
G		max.	4.0m Ω
s	I _D		190A

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	190	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	130	А
I _{DM}	Pulsed Drain Current ①	740	
$P_{D} @ T_{C} = 25^{\circ}C$	Maximum Power Dissipation	380	W
	Linear Derating Factor	2.5	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	330	mJ
I _{AR}	Avalanche Current ①	See Fig. 14, 15, 22a, 22b	А
E _{AR}	Repetitive Avalanche Energy ①		mJ
dv/dt	Peak Diode Recovery 3	26	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ extsf{ heta}JC}$	Junction-to-Case ® 9		0.40	°C/W
$R_{ extsf{ heta}JA}$	Junction-to-Ambient (PCB Mount) 🗇		40	0/10

HEXFET® is a registered trademark of International Rectifier.

*Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_{.1} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 5mA ^①
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.3	4.0	mΩ	V _{GS} = 10V, I _D = 110A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
gfs	Forward Transconductance	210			S	V _{DS} = 25V, I _D = 110A
R _G	Internal Gate Resistance		2.1		Ω	
IDSS	Drain-to-Source Leakage Current			20		$V_{DS} = 100V, V_{GS} = 0V$
				250	μA	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100		V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q _g	Total Gate Charge	_	150	230		I _D = 110A
Q _{gs}	Gate-to-Source Charge		36			$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		48		nC	V _{GS} = 10V ④
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		102			$I_{D} = 110A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		19			$V_{DD} = 65V$
t _r	Rise Time		56			I _D = 110A
t _{d(off)}	Turn-Off Delay Time		100		ns	$R_{G} = 2.7\Omega$
t _f	Fall Time		48			V _{GS} = 10V ④
C _{iss}	Input Capacitance		9830			$V_{GS} = 0V$
C _{oss}	Output Capacitance		650			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		260		рF	f = 1.0MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)@		730			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related) (5)		740			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			186		MOSFET symbol
	(Body Diode)			100	^	showing the
I _{SM}	Pulsed Source Current			740	A	integral reverse
	(Body Diode) ①			740		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 110A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		60		20	$T_{\rm J} = 25^{\circ}C \qquad \qquad V_{\rm R} = 85V,$
			67		ns	$T_{\rm J} = 125^{\circ}C$ $I_{\rm F} = 110A$
Q _{rr}	Reverse Recovery Charge		150		nC	$T_J = 25^{\circ}C$ di/dt = 100A/µs ④
			180			$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		4.7		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. ⑤ Coss eff. (TR) is a fixed capacitance that gives the same charging time ② Limited by T_{Jmax}, starting T_J = 25°C, L = 0.052mH
- $R_G = 25\Omega$, $I_{AS} = 110A$, $V_{GS} = 10V$. Part not recommended for use above this value .
- 3 I_{SD} \leq 110A, di/dt \leq 1310A/µs, $V_{DD} \leq V_{(BR)DSS}, \, T_J \leq$ 175°C.
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.

- as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{DSS}}.$
- $\textcircled{\mbox{\sc b}}$ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- ⑦ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\ensuremath{\$}$ R_{heta} is measured at T_J approximately 90°C.
- $\ \ \,$ $\ \ \,$ $R_{\theta JC}$ value shown is at time zero.

Qualification Information[†]

		Automotive (per AEC-Q101) ^{††}				
		Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensi	Moisture Sensitivity Level		MSL1			
	Machine Model		Class M4(+/- 800V) ^{†††} (per AEC-Q101-002)			
ESD	ESD Human Body Model		Class H3A(+/- 6000V) ^{†††} (per AEC-Q101-001)			
	Charged Device Model		lass C5(+/- 2000V) ^{†††} (per AEC-Q101-005)			
RoHS Compliant		Yes				

† Qualification standards can be found at International Rectifier's web site: http://www.irf.com/

the Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.

††† Highest passing voltage

International

 V_{GS} , Gate-to-Source Voltage (V)

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com

International

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs.Pulsewidth

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a,22b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.

 BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).

- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).
 - t_{av =} Average time in avalanche.
 - $D = Duty cycle in avalanche = t_{av} \cdot f$

Z_{thJC}(D, t_{av}) = Transient thermal resistance, see Figures 13)

$$\begin{split} \textbf{P}_{D \;(ave)} &= 1/2 \; (\; \textbf{1.3} \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \; \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \; [\textbf{1.3} \cdot \textbf{BV} \cdot \textbf{Z}_{th}] \\ \textbf{E}_{AS \;(AR)} &= \textbf{P}_{D \;(ave)} \cdot \textbf{t}_{av} \end{split}$$

International **TOR** Rectifier

Fig 16. Threshold Voltage vs. Temperature

30 I_F = 74A V_R = 85V 25 T_J = 25°C T_J = 125°C 20 I_{RR} (A) 15 10 5 0

0

200

di_F /dt (A/µs) Fig. 17 - Typical Recovery Current vs. dif/dt

600

1000

800

400

Fig. 20 - Typical Stored Charge vs. dif/dt

* V_{GS} = 5V for Logic Level Devices

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

D²Pak - 7 Pin Package Outline

Dimensions are shown in millimeters (inches)

RECOMMENDED FOOTPRINT

REV	DATE	MODIFICATION
-	18/03/03	RAISED IAW ECN 3426
Rev1	07/04/03	CHANGED IAW ECN 3438
А	23/04/04	ADD LEAD ASSIGNMENT

D²Pak - 7 Pin Part Marking Information

D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. $71\!-\!9667.$
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS. REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Ordering Information

Base part number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRFS4010-7P	D2Pak 7 Pin	Tube	50	AUIRFS4010-7P
		Tape and Reel Left	800	AUIRFS4010-7TRL
		Tape and Reel Right	800	AUIRFS4010-7TRR

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245

Tel: (310) 252-7105

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.