BLS6G2735L-30; BLS6G2735LS-30

S-band LDMOS transistor

Rev. 3 — 24 September 2012

Product data sheet

1. Product profile

1.1 General description

30 W LDMOS power transistor for S-band radar applications in the frequency range from 2.7 GHz to 3.5 GHz.

Table 1. Application information

Typical RF performance at $T_{\rm case}$ = 25 °C; $t_{\rm p}$ = 300 μ s; δ = 10 %; $I_{\rm Dq}$ = 50 mA.

• •	ouoo	, P	•	. 29			
Test signal	f	V _{DS}	P_L	Gp	η_{D}	t _r	t _f
	(GHz)	(V)	(W)	(dB)	(%)	(ns)	(ns)
Typical RF performance	in a class-A	AB produc	ction test	circuit in	band 3.1	GHz to 3.	5 GHz
pulsed RF	3.1 to 3.5	32	30	13	50	20	10
Typical RF performance	in an applic	cation circ	cuit in sm	all band 2	2.7 GHz to	3.3 GHz	
pulsed RF	2.7 to 3.3	32	35	14	50	20	10
Typical RF performance	in an applic	cation circ	cuit in sm	all band 2	2.7 GHz to	3.5 GHz	
pulsed RF	2.7 to 3.5	32	30	12	47	20	10

1.2 Features and benefits

- Integrated ESD protection
- Excellent ruggedness
- High efficiency
- Excellent thermal stability
- Designed for broadband operation (2.7 GHz to 3.5 GHz)
- Internally matched for ease of use
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

1.3 Applications

S-band radar applications in the frequency range 2.7 GHz to 3.5 GHz

2. Pinning information

Table 2. Pinning

Pin	Description		Simplified outline	Graphic symbol
BLS6G2735L	30 (SOT1135A)			
1	drain			,
2	gate		1	1
3	source	<u>[1]</u>		2 H 3 3 sym112
BLS6G2735L	.S-30 (SOT1135B)			
1	drain			4
2	gate		1	, ⊢
3	source	<u>[1]</u>		, <u> </u>

3. Ordering information

Table 3. Ordering information

Type number Package							
Type Hullibel	ι αυκαί						
	Name	Description	Version				
BLS6G2735L-30	-	flanged ceramic package; 2 mounting holes; 2 leads	SOT1135A				
BLS6G2735LS-30	-	earless flanged ceramic package; 2 leads	SOT1135B				

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Min	Max	Unit
V_{DS}	drain-source voltage	-	60	V
V_{GS}	gate-source voltage	-0.5	+13	V
T _{stg}	storage temperature	–65	+150	°C
Tj	junction temperature	-	225	°C

^[1] Connected to flange.

5. Thermal characteristics

Table 5. Thermal characteristics

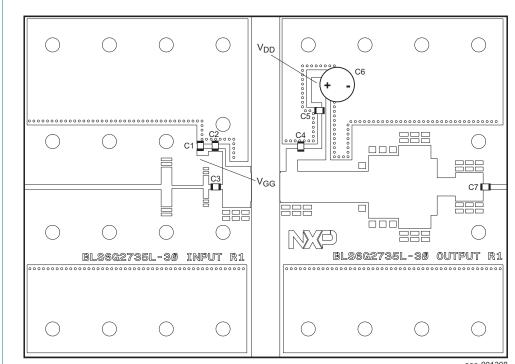
Symbol	Parameter	Conditions	Тур	Unit
$Z_{\text{th(j-c)}}$	transient thermal impedance from junction	$T_h = 85 ^{\circ}C; P_{L(CW)} = 30 W$		
	to case	$t_p = 100 \ \mu s; \ \delta = 10 \ \%$	0.507	K/W
	$t_p = 200 \ \mu s; \ \delta = 10 \ \%$	0.662	K/W	
		$t_p = 300 \ \mu s; \ \delta = 10 \ \%$	0.761	K/W
		$t_p = 100 \ \mu s; \ \delta = 20 \ \%$	0.594	K/W

6. Characteristics

Table 6. DC characteristics

 $T_i = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.5 \text{ mA}$	65	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$V_{DS} = 10 \text{ V}; I_{D} = 40 \text{ mA}$	1.4	2	2.4	V
I _{DSS}	drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 28 \text{ V}$	-	-	1.4	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	-	8.2	-	Α
I_{GSS}	gate leakage current	$V_{GS} = 8.3 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	140	nA
g _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; I_{D} = 1.4 \text{ A}$	-	2.8	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 1.4 \text{ A}$	-	0.37	0.58	Ω


Table 7. RF characteristics

Test signal: pulsed RF; f_1 = 3100 MHz; f_2 = 3300 MHz; f_3 = 3500 MHz; t_p = 300 μ s; δ = 10 %; V_{DS} = 32 V; I_{Dq} = 50 mA; T_{case} = 25 °C; unless otherwise specified, in the class-AB RF production test circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P_{L}	output power		-	30	-	W
Gp	power gain	$P_{L} = 30 \text{ W}$	11	13	-	dB
η_{D}	drain efficiency	$P_{L} = 30 \text{ W}$	43	50	-	%
t _r	rise time	$P_{L} = 30 \text{ W}$	-	20	50	ns
t _f	fall time	$P_{L} = 30 \text{ W}$	-	10	50	ns

7. Application information

7.1 Circuit information for application circuit (2.7 GHz to 3.5 GHz)

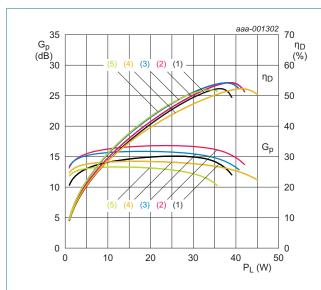
aaa-001308

Printed-Circuit Board (PCB): Rogers 3006; ϵ_{r} = 6.15; thickness = 0.64 mm; thickness copper plating = 35 μm .

See Table 8 for a list of components.

Fig 1. Component layout for RF test circuit

Table 8. List of components


For test circuit see Figure 1.

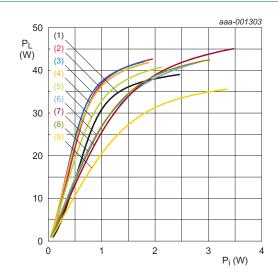
Component	Description	Value	Remarks
C1	multilayer ceramic chip capacitor	$2~\mu\text{F},50~\text{V}$	<u>[1]</u>
C2	multilayer ceramic chip capacitor	100 pF	[2]
C3	multilayer ceramic chip capacitor	0.6 pF	[2]
C4, C7	multilayer ceramic chip capacitor	10 pF	[2]
C5	multilayer ceramic chip capacitor	1 μF, 50 V	<u>[1]</u>
C6	electrolytic capacitor	470 μF, 63 V	

^[1] TDK or capacitor of same quality.

[2] American Technical Ceramics type 800A or capacitor of same quality.

7.2 Measured in application circuit from 2.7 GHz to 3.5 GHz

 $V_{DS} = 32 \text{ V}; I_{Dq} = 50 \text{ mA}; t_p = 300 \text{ }\mu\text{s}; \delta = 10 \text{ }\%$


(1) f = 2700 MHz

(2) f = 2900 MHz

(3) f = 3100 MHz

(4) f = 3300 MHz

(5) f = 3500 MHz

 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 300 μ s; δ = 10 %

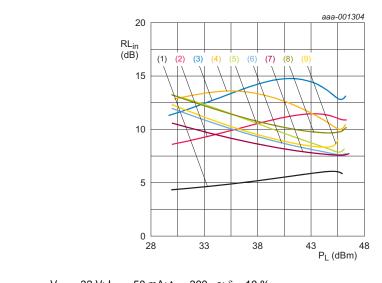
(1) f = 2700 MHz

(2) f = 2800 MHz

(3) f = 2900 MHz

(4) f = 3000 MHz

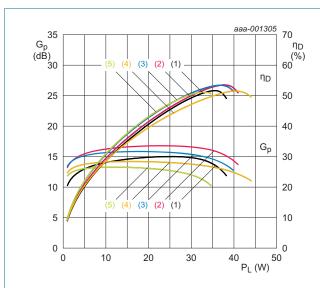
(5) f = 3100 MHz


(6) f = 3200 MHz (7) f = 3300 MHz

(8) f = 3400 MHz

(9) f = 3500 MHz

Fig 2. Power gain and drain efficiency as function of output power; typical values


Fig 3. Output power as a function of input power; typical values

 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 300 $\mu s; \, \delta$ = 10 %

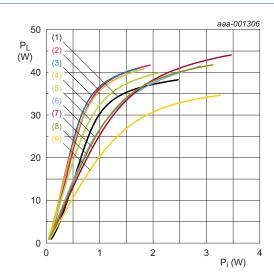
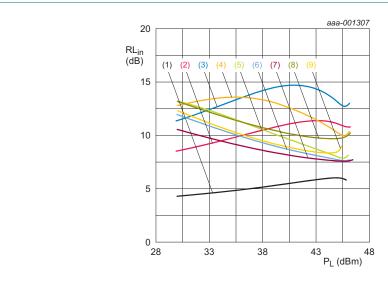

- (1) f = 2700 MHz
- (2) f = 2800 MHz
- (3) f = 2900 MHz
- (4) f = 3000 MHz
- (5) f = 3100 MHz
- (6) f = 3200 MHz
- (7) f = 3300 MHz
- (8) f = 3400 MHz
- (9) f = 3500 MHz

Fig 4. Input return loss as a function of output power; typical values

 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 100 μ s; δ = 20 %

- (1) f = 2700 MHz
- (2) f = 2900 MHz
- (3) f = 3100 MHz
- (4) f = 3300 MHz
- (5) f = 3500 MHz



 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 100 $\mu s; \, \delta$ = 20 %

- (1) f = 2700 MHz
- (2) f = 2800 MHz
- (3) f = 2900 MHz
- (4) f = 3000 MHz
- (5) f = 3100 MHz
- (6) f = 3200 MHz
- (7) f = 3300 MHz(8) f = 3400 MHz
- (9) f = 3500 MHz

Fig 5. Power gain and drain efficiency as function of output power; typical values

Fig 6. Output power as a function of input power; typical values

 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 100 $\mu s; \, \delta$ = 20 %

- (1) f = 2700 MHz
- (2) f = 2800 MHz
- (3) f = 2900 MHz
- (4) f = 3000 MHz
- (5) f = 3100 MHz
- (6) f = 3200 MHz
- (7) f = 3300 MHz
- (8) f = 3400 MHz
- (9) f = 3500 MHz

Fig 7. Input return loss as a function of output power; typical values

8. Test information

8.1 Ruggedness in class-AB operation

The BLS6G2735L-30 and BLS6G2735LS-30 are capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 32 V; I_{Dq} = 50 mA; P_L = 30 W; t_p = 300 μ s; δ = 10 %.

8.2 Impedance information

Table 9. Typical impedance

Source and load impedances obtained in a wideband test circuit.

f	Z _S	Z _L
GHz	Ω	Ω
2.7	3.4 – j16.0	32.7 – j3.8
2.9	4.3 – j13.0	20.3 – j4.2
3.1	5.4 – j11.6	18.3 – j3.9
3.3	5.4 – j12.0	15.0 – j7.2
3.5	3.7 – j11.7	8.4 – j6.6

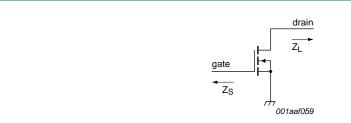
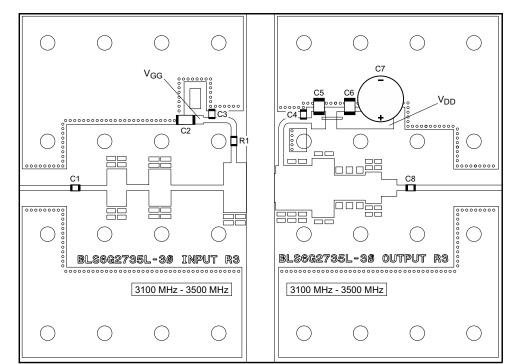



Fig 8. Definition of transistor impedance

8.3 Circuit information for production test circuit (3.1 GHz to 3.5 GHz)

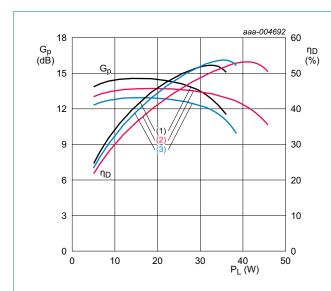
aaa-004510

Printed-Circuit Board (PCB): Rogers Duroid 6006; ϵ_{r} = 6.15; thickness = 0.64 mm; thickness copper plating = 35 μ m.

See Table 10 for a list of components.

Fig 9. Component layout for RF production test circuit

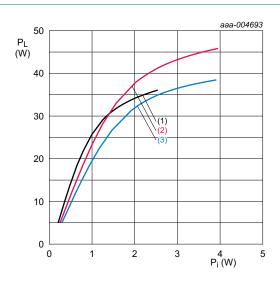
Table 10. List of components


For test circuit see Figure 9.

Component	Description	Value	Remarks
C1, C3, C4, C8	multilayer ceramic chip capacitor	10 pF	<u>[1]</u>
C2	multilayer ceramic chip capacitor	1 μF	[2]
C5	multilayer ceramic chip capacitor	4.7 μF, 50 V	[2]
C6	multilayer ceramic chip capacitor	10 μF, 50 V	[2]
C7	electrolytic capacitor	100 μF, 63 V	
R1	SMD resistor	10 Ω	

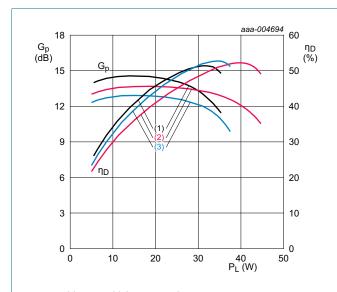
^[1] American Technical Ceramics type 800A or capacitor of same quality.

[2] TDK or capacitor of same quality.


8.4 Measured in RF production test circuit from 3.1 GHz to 3.5 GHz

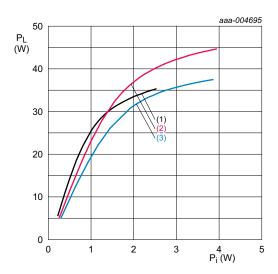
 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 300 $\mu s; \, \delta$ = 10 %

- (1) f = 3100 MHz
- (2) f = 3300 MHz
- (3) f = 3500 MHz


Fig 10. Power gain and drain efficiency as function of output power; typical values

 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 300 μ s; δ = 10 %

- (1) f = 3100 MHz
- (2) f = 3300 MHz
- (3) f = 3500 MHz


Fig 11. Output power as a function of input power; typical values

 V_{DS} = 32 V; I_{Dq} = 50 mA; t_p = 100 $\mu s; \, \delta$ = 20 %

- (1) f = 3100 MHz
- (2) f = 3300 MHz
- (3) f = 3500 MHz

Fig 12. Power gain and drain efficiency as function of output power; typical values

 $V_{DS} = 32 \text{ V}; I_{Dq} = 50 \text{ mA}; t_p = 100 \text{ }\mu\text{s}; \delta = 20 \text{ }\%$

- (1) f = 3100 MHz
- (2) f = 3300 MHz
- (3) f = 3500 MHz

Fig 13. Output power as a function of input power; typical values

BLS6G2735L-30_6G2735LS-30

9. Package outline

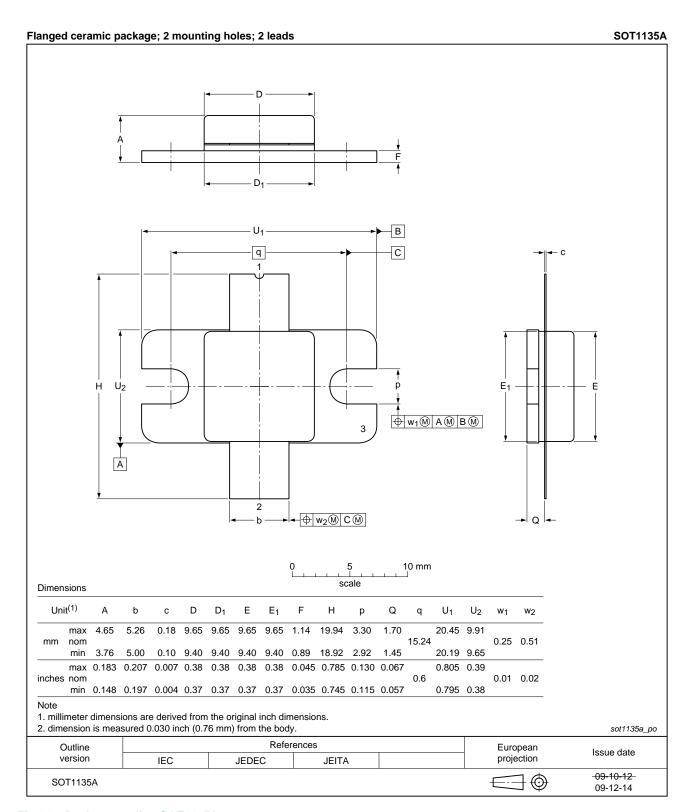


Fig 14. Package outline SOT1135A

BLS6G2735L-30_6G2735LS-30

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

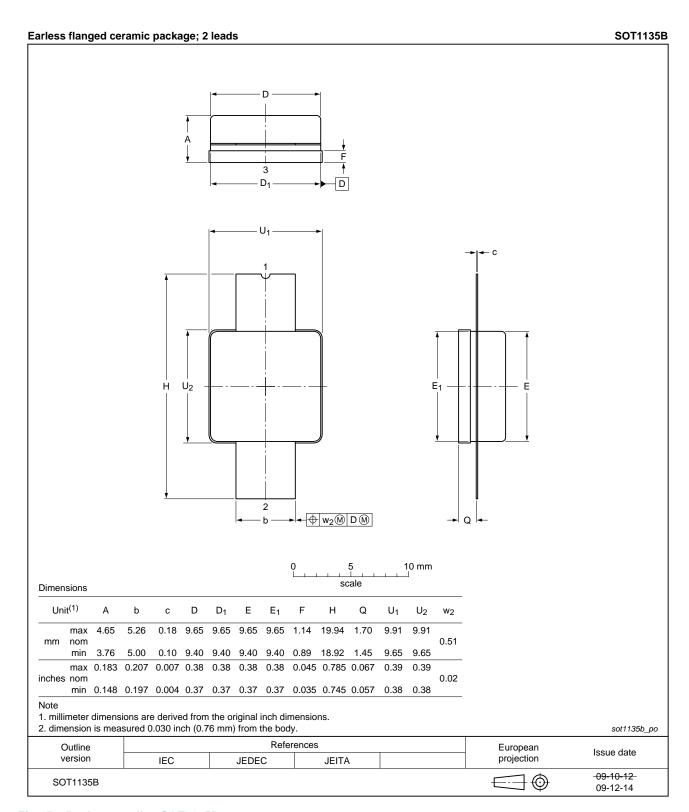


Fig 15. Package outline SOT1135B

BLS6G2735L-30_6G2735LS-30

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

11. Abbreviations

Table 11. Abbreviations

Acronym	Description
LDMOS	Laterally Diffused Metal-Oxide Semiconductor
S-band	Short wave Band
VSWR	Voltage Standing-Wave Ratio

12. Revision history

Table 12. Revision history

Table 121 Review motory				
Document ID	Release date	Data sheet status	Change notice	Supersedes
BLS6G2735L-30_6G2735LS-30 v.3	20120924	Product data sheet	-	BLS6G2735L-30_ 6G2735LS-30 v.2
Modifications:	The status	of this document has be	een changed to Proc	luct data sheet
BLS6G2735L-30_6G2735LS-30 v.2	20120904	Preliminary data shee	t -	BLS6G2735L-30_ 6G2735LS-30 v.1
BLS6G2735L-30_6G2735LS-30 v.1	20111011	Objective data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BLS6G2735L-30_6G2735LS-30

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

15. Contents

1	Product profile
1.1	General description 1
1.2	Features and benefits
1.3	Applications 1
2	Pinning information 2
3	Ordering information
4	Limiting values
5	Thermal characteristics 3
6	Characteristics
7	Application information 4
7.1	Circuit information for application circuit (2.7 GHz to 3.5 GHz) 4
7.2	Measured in application circuit from 2.7 GHz to 3.5 GHz
8	Test information9
8.1	Ruggedness in class-AB operation 9
8.2	Impedance information 9
8.3	Circuit information for production test circuit
	(3.1 GHz to 3.5 GHz)
8.4	Measured in RF production test circuit from
	3.1 GHz to 3.5 GHz
9	Package outline
10	Handling information 14
11	Abbreviations
12	Revision history 14
13	Legal information15
13.1	Data sheet status
13.2	Definitions
13.3	Disclaimers
13.4	Trademarks 16
14	Contact information 16
15	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.