

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5

Low Power µP Supervisor Circuits

General Description

The ASM705 / 706 / 707 / 708 and AS813L are cost effective CMOS supervisor circuits that monitors power-supply and battery voltage level, and $\mu P/\mu C$ operation.

The family offers several functional options. Each device generates a reset signal during power-up, power-down and during brownout conditions. A reset is generated when the supply drops below 4.65V (ASM705/707/813L) or 4.40V (ASM706/708). For 3V power supply applications, refer to the ASM705P/R/S/T data sheet. In addition, the ASM705/706/813L feature a 1.6 second watchdog timer. The ASM707/708 have both active-HIGH and active-LOW reset outputs but no watchdog function. The ASM813L has the same pin-out and functions as the ASM705 but has an active-HIGH reset output. A versatile power-fail circuit has a 1.25V threshold, useful in low battery detection and for monitoring non-5V supplies. All devices have a manual reset (\overline{MR}) input. The watchdog timer output will trigger a reset if connected to \overline{MR} .

All devices are available in 8-pin DIP, SO and MicroSO packages.

Features

- Precision power supply monitor
 •4.65V threshold (ASM705/707/813L)
 •4.40V threshold (ASM706/708)
- Debounced manual reset input
- Voltage monitor
 1.25V threshold
 Battery monitor / Auxiliary supply monitor
- Watchdog timer (ASM705/706/813L)
- 200ms reset pulse width
- Active HIGH reset output (ASM707/708/813L)
- MicroSO package

Applications

- Computers and embedded controllers
- Portable/Battery-operated systems
- Intelligent instruments
- Wireless communication systems
- PDAs and hend-held equipment
- Automative Systems
- Safety Systems

Typical Operating Circuit

Alliance Semiconductor 2575 Augustine Drive . Santa Clara, CA 95054 . Tel: 408.855.4900 . Fax: 408.855.4999 . www.alsc.com

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5

Block Diagrams

Pin Configuration

MicroSO

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5

Pin Description

		Pin	Number				
ASM	705/706	ASM	707/708	AS	M813L	Name	Function
DIP/ SO	MicroSO	DIP/ SO	MicroSO	DIP/ SO	MicroSO		
1	3	1	3	1	3	MR	Manual reset input. The active LOW input triggers a reset pulse. A 250 μ A pull-up current allows the pin to be driven by TTL/CMOS logic or shorted to ground with a switch.
2	4	2	4	2	4	V _{CC}	+5V power supply input.
3	5	3	5	3	5	GND	Ground reference for all signals.
4	6	4	6	4	6	PFI	Power-fail input voltage monitor. With PFI less than 1.25V, $\overline{\rm PFO}$ goes LOW. Connect PFI to Ground or $\rm V_{CC}$ when not in use.
5	7	5	7	5	7	PFO	Power-fail output. The output is active LOW and sinks current when PFI is less than 1.25V.
6	8	-	-	6	8	WDI	Watchdog input. WDI controls the internal watchdog timer. A HIGH or LOW signal for 1.6sec at WDI allows the internal timer to run-out, setting WDO LOW. The watchdog function is disabled by floating WDI or by connecting WDI to a high impedance three-state buffer. The internal watchdog timer clears when: RESET is asserted; WDI is three-stated ; or WDI sees a rising or falling edge.
-	-	6	8	-	-	NC	Not Connected
7	1	7	1	-	-	RESET	Active LOW reset output. Pulses LOW for 200ms when triggered, and stays LOW whenever V_{CC} is below the reset threshold. RESET remains LOW for 200ms after V_{CC} rises above the reset threshold or MR goes from LOW to HIGH. A watchdog timeout will not trigger RESET unless WDO is connected to MR.
8	2	-	-	8	2	WDO	Watchdog output. WDO goes LOW when the 1.6 second internal watchdog timer times-out and does not go HIGH until the watchdog is cleared. In addition, when V_{CC} falls below the reset threshold, WDO goes LOW. Unlike RESET, WDO does not have a minimum pulse width and as soon as V_{CC} exceeds the reset threshold, WDO goes HIGH with no delay.
-	-	8	2	7	1	RESET	Active HIGH reset output. The inverse of RESET. The ASM813L only has a RESET output.

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5

Detailed Description

A proper reset input enables a microprocessor / microcontroller to start in a known state. ASM70X and ASM813L assert reset to prevent code execution errors during power-up, power-down and brown-out conditions.

RESET/RESET Timing

The RESET/RESET signals are designed to start a $\mu P/\mu C$ in a known state or return the system to a known state.

The ASM707/708 have two reset outputs, one active-HIGH RESET and one active-LOW $\overline{\text{RESET}}$ output. The ASM813L has only an active-HIGH output. RESET is simply the complement of $\overline{\text{RESET}}$.

 $\overline{\text{RESET}}$ is guaranteed to be LOW with V_{CC} above 1.2V. During a power-up sequence, $\overline{\text{RESET}}$ remains low until the supply rises above the threshold level, either 4.65V or 4.40V. $\overline{\text{RESET}}$ goes high approximately 200ms after crossing the threshold.

During power-down, $\overrightarrow{\text{RESET}}$ goes LOW as V_{CC} falls below the threshold level and is guaranteed to be under 0.4V with V_{CC} above 1.2V.

In a brownout situation where V_{CC} falls below the threshold level, $\overline{\text{RESET}}$ pulses low. If a brown-out occurs during an already initiated reset, the pulse will continue for a minimum of 140ms.

Power Failure Detection With Auxiliary Comparator

All devices have an auxiliary comparator with 1.25V trip point and uncommitted output (\overline{PFO}) and noninverting input (PFI). This comparator can be used as a supply voltage monitor with an external resistor voltage divider. The attenuated voltage at PFI should be set just below the 1.25 threshold. As the supply level falls, PFI is reduced causing the \overline{PFO} output to transit LOW. Normally \overline{PFO} interrupts the processor so the system can be shut down in a controlled manner.

Figure 1: WDI Three-state operation

Manual Reset (MR)

The active-LOW manual reset input is pulled high by a 250µA pull-up current and can be driven low by CMOS/TTL logic or a mechanical switch to ground. An external debounce circuit is unnecessary since the 140ms minimum reset time will debounce mechanical pushbutton switches.

By connecting the watchdog output (\overline{WDO}) and \overline{MR} , a watchdog timeout forces \overline{RESET} to be generated. The ASM813L should be used when an active-HIGH RESET is required.

Watchdog Timer

The watchdog timer available on the ASM705/706/813L monitors $\mu P/\mu C$ activity. An output line on the processor is used to toggle the WDI line. If this line is not toggled within 1.6 seconds, the internal timer puts the watchdog output, WDO, into a LOW state. WDO will remain LOW until a toggle is detected at WDI.

If WDI is floated or connected to a three-stated circuit, the watchdog function is disabled, meaning, it is cleared and not counting. The watchdog timer is also disabled if RESET is asserted. When RESET becomes inactive and the WDI input sees a high or low transition as short as 50ns, the watchdog timer will begin a 1.6 second countdown. Additional

rev 1.5

transitions at WDI will reset the watchdog timer and initiate a new countdown sequence.

 $\overline{\text{WDO}}$ will also become LOW and remain so, whenever the supply voltage, V_{CC}, falls below the device threshold level. $\overline{\text{WDO}}$ goes HIGH as soon as V_{CC} transitions above the threshold. There is no minimum pulse width for $\overline{\text{WDO}}$ as there is for the RESET outputs. If WDI is floated, $\overline{\text{WDO}}$ essentially acts as a low-power output indicator.

Figure 2: Watchdog Timing

Application Information

Ensuring That RESET is Valid Down to V_{CC} = 0V

When V_{CC} falls below 1.1V, the ASM705-708 RESET output no longer pulls down; it becomes indeterminate. To avoid the possibility that stray charges build up and force RESET to the wrong state, a pull-down resistor should be connected to the RESET pin, thus draining such charges to ground and holding RESET low. The resistor value is not critical. A 100k Ω resistor will pull RESET to ground without loading it.

Bi-directional Reset Pin Interfacing

The ASM705/6/7/8 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7k Ω resistor in series with the RESET output and the $\mu P/\mu C$ bi-directional RESET pin.

Figure 3: Bi-directional Reset Pin Interfacing

Monitoring Voltages Other Than V_{CC}

The ASM705-708 can monitor voltages other than V_{CC} using the Power Fail circuitry. If a resistive divider is connected from the voltage to be monitored to the Power Fail input (PFI), the \overline{PFO} will go LOW if the voltage at PFI goes below 1.25V reference. Should hysteresis be desired, connect a resistor (equal to approximately 10 times the sum of the two resistors in the divider) between the PFI and \overline{PFO} pins. A capacitor between PFI and GND will reduce circuit sensitivity to input high-frequency noise. If it is desired to assert a RESET for voltages other than V_{CC} then the \overline{PFO} output is to be connected to the \overline{MR} .

rev 1.5

Monitoring a Negative Voltage

The Power-Fail circuitry can also monitor a negative supply rail. When the negative rail is OK, \overline{PFO} will be LOW, and when the negative rail is failing (not negative enough), \overline{PFO} goes HIGH (the opposite of when positive voltages are monitored). To trigger a reset, these outputs need to be inverted: adding the resistors and transistor as shown achieves this. The RESET output will then have the same sense as for positive voltages: good = HIGH, bad = LOW. It should be noted that this circuit's accuracy depends on the V_{CC} line, the PFI threshold tolerance, and the resistors.

Figure 5: Monitoring a negative voltage

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Pin Terminal Voltage with Respect to Ground			
V _{CC}	-0.3	6.0	V
All other inputs ¹	-0.3	V _{CC} + 0.3	V
Input Current at V _{CC} and GND		20	mA
Output Current: All outputs		20	mA
Rate of Rise at V_{CC}		100	V/µs
Plastic DIP Power Dissipation (Derate 9mW/°C above 70°C)		700	mV
SO Power Dissipation (Derate 5.9mW/°C above 70°C)		470	mW'
MicroSO Power Dissipation (Derate 4.1mW/°C above 70°C)		330	mW
Operating Temperature Range			
ASM705E/706E/707E/708E/813LE	-40	+85	°C
ASM705C/706C/707C/708C/813LC	0	70	°C
Storage Temperature Range	-65	160	°C
Lead Temperature (Soldering 10sec)		300	°C
ESD rating HBM MM		2 200	KV V

Note:

1. The input voltage limits of PFI and MR can be exceeded if the input current is less than 10mA.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, specifications are over the operating temperature range and V_{CC} supply voltages are 2.7V to 5.5V (ASM706P, ASM708R), 3.0 V to 5.5V (ASM706/708S), 3.15V to 5.5V (ASM706/708T) and 4.1V to 5.5.V (ASM706/708J)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		ASM705/6/7/8C	1.2		5.5	
Operating Voltage Range	V _{CC}	ASM813L	1.1		5.5	V
		ASM705/6/7/8E, ASM813E	1.2		5.5	
		ASM705/706C/813LC		75	140	
Supply Current		ASM705E/706E/813LE		75	140	
	Icc	ASM707C/708C		50	140	μA
		ASM707E/708E		50	140	
	V	ASM705/707/813L, Note 1	4.50	4.65	4.75	V
RESET Threshold V _{RT}		ASM706/708 Note 1	4.25	4.40	4.50	V
RESET Threshold Hysteresis		Note 1		40		mV
RESET Pulse Width	t _{RS}	Note 1	140	200	280	ms
MR Pulse Width	t _{MR}		0.15			μs
MR to RESET Out Delay	t _{MD}	Note 1			0.25	μs
	V _{IH}		2.0			N 7
MR Input Threshold	V _{IL}				0.8	V
MR Pullup current		$\overline{MR} = 0V$	100	250	600	μΑ
		I _{SOURCE} = 800µA	V _{CC} - 1.5			
RESET Output Voltage		I _{SINK} = 3.2mA			0.4	V
		ASM705/6/7/8, V _{CC} = 1.2V, I _{SINK} = 100µA			0.3	
		ASM707/8/813L, I _{SOURCE} = 800µA	V _{CC} -1.5			
		ASM707/8, I _{SINK} = 1.2mA			0.4	X 7
RESET Output Voltage		ASM813L, I _{SINK} =3.2mA			0.4	V
		ASM813L, V_{CC} = 1.2V, I_{SOURCE} = 4µA	0.9			

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Watchdog Timeout Period	t _{WD}	ASM705/6/813L	1.00	1.60	2.25	s
WDI Pulse Width	t _{WP}	$V_{IL} = 0.4 V, V_{IH} = 0.8 V_{CC},$	50			ns
WDI Input Threshold	V _{IH}	ASM705/706/813L, V _{CC} = 5V	3.5			V
WDI Input Theshold	V _{IL}	AGW/00/00/013E, VEC = 3V			0.8	v
WDI Input Current		ASM705/6/813L, WDI = V _{CC}		50	150	μA
WDI Input Current		ASM705/6/813L, WDI = 0V	-150	-50		μл
WDO Output Voltage	V _{OH}	ASM705/6/813L, I _{SOURCE} = 800µA	V _{CC} - 1.5			V
WDO Output voltage	V _{OL}	ASM705/6/813L, I _{SINK} = 1.2mA			0.4	v
PFI Input Threshold		$V_{CC} = 5V$	1.2	1.25	1.3	V
PFI Input Current			-25	0.01	25	nA
PFO Output Voltage	V _{OH}	I _{SOURCE} = 800μA	V _{CC} - 1.5			V
FFO Output Voltage	V _{OL}	I _{SINK} = 3.2mA			0.4	v

Notes 1: RESET (ASM705/6/7/8), RESET(ASM707/8, ASM813L)

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5 Package Dimensions

	Inc	hes	Millim	eteres
	Min	Max	Min	Max
А	0.032	0.044	0.81	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.038	0.76	0.97
b	0.012	BSC	0.30 BSC	
С	0.004	0.008	0.10	0.20
D	0.114	0.122	2.90	3.10
е	0.0250	6 BSC	0.65	BSC
Е	0.184	0.200	4.67	5.08
E1	0.114	0.122	2.90	3.10
L	0.016	0.026	0.41	0.66
S	0.0200	6 BSC	0.52	BSC
а	0°	6°	0°	6°

Package Dimensions (contd)

Symbol	Dimensions					
	Inches		Millin	neters		
	Min	Мах	Min	Max		
А		0.210		5.33		
A1	0.015		0.38			
A2	0.115	0.195	2.92	4.95		
b	0.014	0.022	0.36	0.56		
b2	0.045	0.070	1.14	1.78		
С	0.008	0.014	0.20	0.36		
D	0.355	0.400	9.02	10.16		
E	0.300	0.325	7.62	8.26		
E1	0.240	0.280	6.10	7.11		
е	0.10 BSC		2.54	BSC		
eB		0.430		10.92		
L	0.115	0.150	2.92	3.81		

Low Power µP Supervisor Circuits

11 of 16

Package Dimensions (contd)

SO (8-Pin)

Symbol	Dimensions					
	Inches		Millim	neters		
	Min	Max	Min	Max		
A1	0.004	0.010	0.10	0.25		
А	0.053	0.069	1.35	1.75		
A2	0.049	0.059	1.25	1.50		
В	0.012	0.020	0.31	0.51		
С	0.007	0.010	0.18	0.25		
D	0.193	BSC	4.90	BSC		
E	0.154	BSC	3.91	BSC		
е	0.050 BSC		1.27	BSC		
Н	0.236 BSC		6.00 BSC			
L	0.016	0.050	0.41	1.27		
θ	0°	8°	0°	8°		

Ordering Codes

Part Number	Reset Threshold	Temperature	Pins-Package	Package Marking
TIN - LEAD DEVICES				
ASM705 Active LOW Res	et, Watchdog Output	And Manual RESET		
ASM705CPA	4.65	0°C to +70 °C	8-Plastic DIP	ASM705CPA
ASM705CSA	4.65	0°C to +70 °C	8-SO	ASM705CSA
ASM705CUA	4.65	0°C to +70 °C	8-MicroSO	ASM705CUA
ASM705EPA	4.65	-40°C to +85°C	8-Plastic DIP	ASM705EPA
ASM705ESA	4.65	-40°C to +85°C	8-SO	ASM705ESA
ASM705EUA	4.65	-40°C to +85°C	8-MicroSO	ASM705EUA
ASM706 Active LOW Res	et, Watchdog Output	And Manual RESET		
ASM706CPA	4.40	0°C to +70 °C	8-Plastic DIP	ASM706CPA
ASM706CSA	4.40	0°C to +70 °C	8-SO	ASM706CSA
ASM706CUA	4.40	0°C to +70 °C	8-MicroSO	ASM706CUA
ASM706EPA	4.40	-40°C to +85°C	8-Plastic DIP	ASM706EPA
ASM706ESA	4.40	-40°C to +85°C	8-SO	ASM706ESA
ASM707 Active LOW & H	IGH Reset with Manu	al RESET		
ASM707CPA	4.65	0°C to +70 °C	8-Plastic DIP	ASM707CPA
ASM707CSA	4.65	0°C to +70 °C	8-SO	ASM707CSA
ASM707CUA	4.65	0°C to +70 °C	8-MicroSO	ASM707CUA
ASM707EPA	4.65	-40°C to +85°C	8-Plastic DIP	ASM707EPA
ASM707ESA	4.65	-40°C to +85°C	8-SO	ASM707ESA
ASM708Active LOW & HI	GH Reset with Manua	al RESET		
ASM708CPA	4.40	0°C to +70 °C	8-Plastic DIP	ASM708CPA
ASM708CSA	4.40	0°C to +70 °C	8-SO	ASM708CSA
ASM708CUA	4.40	0°C to +70 °C	8-MicroSO	ASM708CUA
ASM708EPA	4.40	-40°C to +85°C	8-Plastic DIP	ASM708EPA
ASM708ESA	4.40	-40°C to +85°C	8-SO	ASM708ESA
ASM813L Active HIGH Re	eset, Watchdog Outp	ut And Manual RESE	Г	
ASM813LCPA	4.65	0°C to +70 °C	8-Plastic DIP	ASM813LCPA
ASM813LCSA	4.65	0°C to +70 °C	8-SO	ASM813LCSA
ASM813LCUA	4.65	0°C to +70 °C	8-MicroSO	ASM813LCUA
ASM813LEPA	4.65	-40°C to +85°C	8-Plastic DIP	ASM813LEPA
ASM813LESA	4.65	-40°C to +85°C	8-SO	ASM813LESA

Ordering Codes

Part Number	Reset Threshold	Temperature Range	Pins-Package	Package Marking			
LEAD FREE DEVICES							
ASM705 Active LOW Reset	, Watchdog Output An	d Manual RESET					
ASM705CPAF	4.65	0°C to +70 °C	8-Plastic DIP	ASM705CPAF			
ASM705CSAF	4.65	0°C to +70 °C	8-SO	ASM705CSAF			
ASM705CUAF	4.65	0°C to +70 °C	8-MicroSO	ASM705CUAF			
ASM705EPAF	4.65	-40°C to +85°C	8-Plastic DIP	ASM705EPAF			
ASM705ESAF	4.65	-40°C to +85°C	8-SO	ASM705ESAF			
ASM705EUAF	4.65	-40°C to +85°C	8-MicroSO	ASM705EUAF			
ASM706 Active LOW Reset	, Watchdog Output An	d Manual RESET					
ASM706CPAF	4.40	0°C to +70 °C	8-Plastic DIP	ASM706CPAF			
ASM706CSAF	4.40	0°C to +70 °C	8-SO	ASM706CSAF			
ASM706CUAF	4.40	0°C to +70 °C	8-MicroSO	ASM706CUAF			
ASM706EPAF	4.40	-40°C to +85°C	8-Plastic DIP	ASM706EPAF			
ASM706ESAF	4.40	-40°C to +85°C	8-SO	ASM706ESAF			
ASM707 Active LOW & HIG	H Reset with Manual F	RESET					
ASM707CPAF	4.65	0°C to +70 °C	8-Plastic DIP	ASM707CPAF			
ASM707CSAF	4.65	0°C to +70 °C	8-SO	ASM707CSAF			
ASM707CUAF	4.65	0°C to +70 °C	8-MicroSO	ASM707CUAF			
ASM707EPAF	4.65	-40°C to +85°C	8-Plastic DIP	ASM707EPAF			
ASM707ESAF	4.65	-40°C to +85°C	8-SO	ASM707ESAF			
ASM708Active LOW & HIG	H Reset with Manual R	ESET					
ASM708CPAF	4.40	0°C to +70 °C	8-Plastic DIP	ASM708CPAF			
ASM708CSAF	4.40	0°C to +70 °C	8-SO	ASM708CSAF			
ASM708CUAF	4.40	0°C to +70 °C	8-MicroSO	ASM708CUAF			
ASM708EPAF	4.40	-40°C to +85°C	8-Plastic DIP	ASM708EPAF			
ASM708ESAF	4.40	-40°C to +85°C	8-SO	ASM708ESAF			
ASM813L Active HIGH Res	ASM813L Active HIGH Reset, Watchdog Output And Manual RESET						
ASM813LCPAF	4.65	0°C to +70 °C	8-Plastic DIP	ASM813LCPAF			
ASM813LCSAF	4.65	0°C to +70 °C	8-SO	ASM813LCSAF			
ASM813LCUAF	4.65	0°C to +70 °C	8-MicroSO	ASM813LCUAF			
ASM813LEPAF	4.65	-40°C to +85°C	8-Plastic DIP	ASM813LEPAF			
ASM813LESAF	4.65	-40°C to +85°C	8-SO	ASM813LESAF			

Note:

For parts to be packed in Tape and Reel, add "-T" at the end of the part number.

ASM705 / 706 / 707 / 708 ASM813L

rev 1.5

Feature Summary

	ASM705	ASM706	ASM707	ASM708	ASM813L
Power fail detector	•	•	•	•	•
Brownout detection	•	•	•	•	•
Manual RESET input	•	•	•	•	•
Power-up/down RESET	•	•	•	•	•
Watchdog Timer	•	•			•
Active HIGH RESET output			•	•	•
Active LOW RESET output	•	•	•	•	
RESET Threshold (V)	4.65	4.40	4.65	4.40	4.65

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900 Fax: 408 - 855 - 4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number:ASM705 / 706 / 707 / 708 ASM813L

Document Version: 1.5

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale. The purchase of products from Alliance). All sales of convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.