

Power line chokes

Current-compensated ring core double chokes 250 V AC, 0.3 ... 6 A, 0.2 ... 47 mH

Series/Type: B82721A/J/K

Date: July 2012

Current-compensated ring core double chokes

Rated voltage 250 V AC Rated current 0.3 ... 6 A Rated inductance 0.2 ... 47 mH

Construction

- Current-compensated ring core double choke
- Ferrite core wih epoxy coating (UL 94 V-0)
- Polycarbonate case (UL 94 V-0)
- Polyurethane potting (UL 94 V-0)
- Sector winding

Features

- High resonance frequency due to special winding technique
- Approx. 1% stray inductance for symmetrical interference suppression
- Suitable for wave soldering
- Design complies with EN 60938-2 (VDE 0565-2) and UL 1283
- UL¹) and /or ENEC (VDE) approvals
 ②
- RoHS-compatible

Applications

- Suppression of common-mode interferences
- Switch-mode power applications
- Electronic ballasts in lamps
- Power inverters

Terminals

- Base material CuNi18Zn20
- Layer composition Ni, Sn
- Hot-dipped
- \blacksquare Pins 0.7×0.7 (mm)
- Lead spacing 10×5 (mm) or 10×15 (mm)

Marking

Manufacturer, approval signs and/or VDE standard number, ordering code, graphic symbol, rated current, rated voltage, rated inductance, date of manufacture (YYWWD.internal ID code)

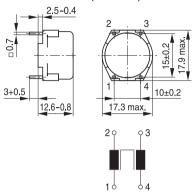
Delivery mode

Blister tray in cardboard box

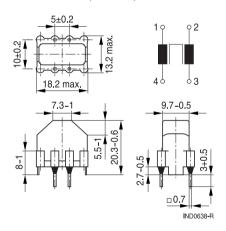
B82721A

B82721J

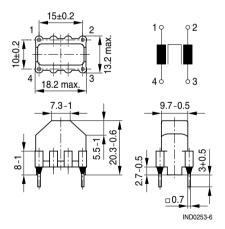
B82721K


¹⁾ UL approval with 300 V AC

Current-compensated ring core double chokes


Dimensional drawings and pin configurations

Horizontal version (B82721A)


Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm

Vertical version (B82721J)

Tolerances to ISO 2768-C unless otherwise noted. Dimensions in mm.

Vertical version (B82721K)

Current-compensated ring core double chokes

Technical data and measuring conditions

Rated voltage V _R	250 V AC (50/60 Hz)
Test voltage V _{test}	1500 V AC, 2 s (line/line)
Rated temperature T _R	+40 °C / +50 °C / +60 °C / +70 °C
Rated current I _R	Referred to 50 Hz and rated temperature
Rated inductance L _R	Measured with Agilent 4284A at 0.1 mA, +20 °C Measuring frequency: $L_R \le 1$ mH = 100 kHz $L_R > 1$ mH = 10 kHz Inductance is specified per winding.
Inductance tolerance	±30% at +20 °C
Inductance decrease ΔL/L ₀	< 10% at DC magnetic bias with I _R , +20 °C
Stray inductance L _{stray,typ}	Measured with Agilent 4284A at 5 mA, +20 °C, typical values $ \begin{array}{ll} \mbox{Measuring frequency: } L_R \leq 1 \mbox{ mH} = 100 \mbox{ kHz} \\ \mbox{$L_R > 1$ mH} = 10 \mbox{ kHz} \\ \end{array} $
DC resistance R _{typ}	Measured at +20 °C, typical values, specified per winding
Solderability (lead-free)	Sn96.5Ag3.0Cu0.5: +(245 \pm 5) °C, (3 \pm 0.3) s Wetting of soldering area \geq 95% (to IEC 60068-2-20, test Ta)
Resistance to soldering heat (wave soldering)	+(260 ±5) °C, (10 ±1) s (to IEC 60068-2-20, test Tb)
Climatic category	40/125/56 (to IEC 60068-1)
Storage conditions (packaged)	–25 °C +40 °C, ≤ 75% RH
Weight	Approx. 5 g
Approvals	EN 60938-2, UL 1283

Current-compensated ring core double chokes

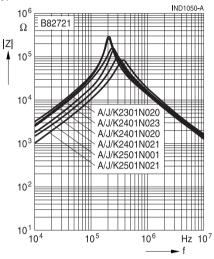
Characteristics and ordering codes

Horizontal version B82721A

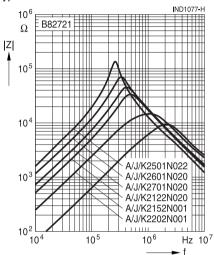
I_R	L _R	L _R L _{stray,typ}	R_{typ}	T_{R}	Ordering code	Approvals	
Α	mH	μН	$m\Omega$	°C	Horizontal version	<u> </u>	71 2
0.3	47	500	2200	+50	B82721A2301N020	×	_
0.4	39	450	2000	+40	B82721A2401N020	×	×
0.4	27	300	1700	+40	B82721A2401N021	×	×
0.4	39	450	2000	+70	B82721A2401N023	-	_
0.5	27	290	1100	+60	B82721A2501N022	×	×
0.5	18	250	1400	+40	B82721A2501N001	×	×
0.5	15	160	800	+40	B82721A2501N021	×	×
0.6	15	170	700	+40	B82721A2601N020	×	×
0.7	10	110	550	+60	B82721A2701N020	×	×
1.2	6.8	80	280	+40	B82721A2122N020	×	×
1.5	3.3	37	180	+40	B82721A2152N001	×	×
2.0	1.0	13	80	+40	B82721A2202N001	×	×
2.5	0.6	8	60	+40	B82721A2252N020	×	×
2.6	0.4	6	55	+40	B82721A2262N001	×	×
3.6	0.4	6	35	+40	B82721A2362N001	×	×
4.0	0.7	7	30	+40	B82721A2402N020	×	×
6.0	0.2	2.5	15	+40	B82721A2602N020	×	×

Current-compensated ring core double chokes

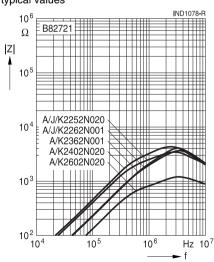
Vertical versions B82721J, B82721K


I_R	L _R	L _{stray,typ}	R_{typ}	T_{R}	Ordering code			vals
Α	mH	μН	$m\Omega$	°C	Vertical version (J)	Vertical version (K)	<u> </u>	7/
0.3	47	500	2200	+50	B82721J2301N020	B82721K2301N020	×	×
0.4	39	450	2000	+40	B82721J2401N020	B82721K2401N020	×	×
0.4	27	300	1700	+40	B82721J2401N021	B82721K2401N021	×	×
0.4	39	450	2000	+70	B82721J2401N023	B82721K2401N023	-	-
0.5	27	290	1100	+60	B82721J2501N022	B82721K2501N022	×	×
0.5	18	250	1400	+40	B82721J2501N001	B82721K2501N001	×	×
0.5	15	160	800	+40	B82721J2501N021	B82721K2501N021	×	×
0.6	15	170	700	+40	B82721J2601N020	B82721K2601N020	×	×
0.7	10	110	550	+60	B82721J2701N020	B82721K2701N020	×	×
1.2	6.8	80	280	+40	B82721J2122N020	B82721K2122N020	×	×
1.5	3.3	37	180	+40	B82721J2152N001	B82721K2152N001	×	×
2.0	1.0	13	80	+40	B82721J2202N001	B82721K2202N001	×	×
2.5	0.6	8	60	+40	B82721J2252N020	B82721K2252N020	×	×
2.6	0.4	6	55	+40	B82721J2262N001	B82721K2262N001	×	×
3.6	0.4	6	35	+40	_	B82721K2362N001	×	×
4.0	0.7	7	30	+40	_	B82721K2402N020	×	×
6.0	0.2	2.5	15	+40	_	B82721K2602N020	×	×

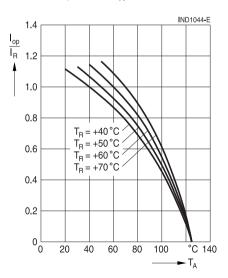
x = approval granted


Impedance |Z| versus frequency f

measured with windings in parallel at +20 °C, typical values


Impedance |Z| versus frequency f

measured with windings in parallel at +20 °C, typical values



Impedance |Z| versus frequency f

measured with windings in parallel at +20 °C, typical values

Current derating I_{op}/I_R versus temperature T_A

Cautions and warnings

Current-compensated ring core double chokes

- Please note the recommendations in our Inductors data book (latest edition) and in the data sheets
 - Particular attention should be paid to the derating curves given there. Derating must be applied
 in case the ambient temperature in the application exceeds the rated temperature of the
 component.
 - Ensure the operation temperature (which is the sum of the ambient temperature and the temperature rise caused by losses / self-heating) of the component in the application does not exceed the maximum value specified in the climatic category.
 - The soldering conditions should also be observed. Temperatures quoted in relation to wave soldering refer to the pin, not the housing.
- If the components are to be washed varnished it is necessary to check whether the washing varnish agent that is used has a negative effect on the wire insulation, any plastics that are used, or on glued joints. In particular, it is possible for washing varnish agent residues to have a negative effect in the long-term on wire insulation.
 - Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime.
- The following points must be observed if the components are potted in customer applications:
 - Many potting materials shrink as they harden. They therefore exert a pressure on the plastic housing or core. This pressure can have a deleterious effect on electrical properties, and in extreme cases can damage the core or plastic housing mechanically.
 - It is necessary to check whether the potting material used attacks or destroys the wire insulation, plastics or glue.
 - The effect of the potting material can change the high-frequency behaviour of the components.
- Ferrites are sensitive to direct impact. This can cause the core material to flake, or lead to breakage of the core.
- Even for customer-specific products, conclusive validation of the component in the circuit can only be carried out by the customer.

Important notes

Current-compensated ring core double chokes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.