

PRIMARY SIDE POWER SWITCHER FOR OFF-LINE SMPS

(Top View)

SO-7

7

6

5 C

GND

С

Description

The AP3988 is a performance enhanced power switcher for power supplies with better conversion efficiency, better voltage & current accuracy, and improved protection functions. Typical applications include charger, adapter for ADSL, home appliance power supply, LED lighting power supply and PC auxiliary power supplies. The controller regulates the output voltage and current in the primary side by piece-wise Pulse Frequency Modulation (p-PFM) in discontinuous conduction mode (DCM). The system operating frequency reduces linearly from heavy load to light load in each interval of the p-PFM, and enters constant current mode when the load current equals to the maximum system output current.

The AP3988 provides operating frequency dithering function to improve EMC performance of power supply. It also has built-in fixed cable voltage drop compensation (5% of nominal system output voltage) and adjustable line voltage compensation.

The AP3988 solution has fewer component number, smaller size, and lower total cost.

The AP3988 is packaged in SO-7.

Features

- Primary Side Control for Eliminating Opto-coupler and Secondary CV/CC Control Circuitry
- Built-in NPN Transistor with 700V_{CBO}
- Low Start-up Current: 0.2μA (Typ.)
- Internal Output Cable Voltage Drop Compensation
- Hiccup Function to Improve Short Circuit Protection
- Better Over Voltage Protection
- Better Over Temperature Protection
- Low Total Cost Solution
- Output Power Range (Note 1): for 5.5W Adapter
- Totally Lead-free & Fully RoHS Compliant (Note 2 & 3)
- Halogen and Antimony Free. "Green" Device (Note 4)

Notes:

1. Typical continuous power in a non-ventilated enclosed adapter measured at +50°C ambient.

- 2. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain < 900ppm bromine < 900ppm chlorine (<1500ppm total Br + Cl) and
- 4. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Applications

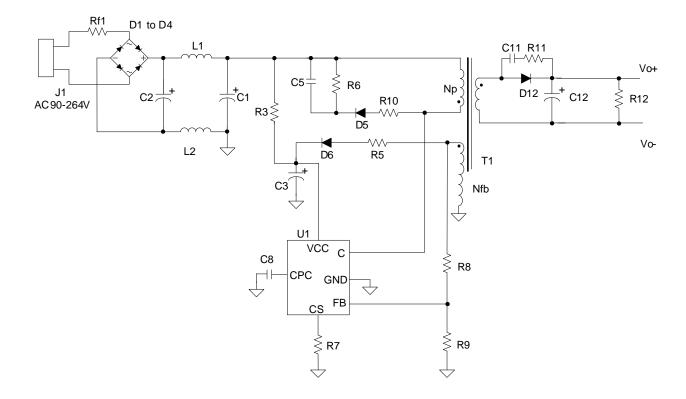
Pin Assignments

CPC

FB

VCC

CS

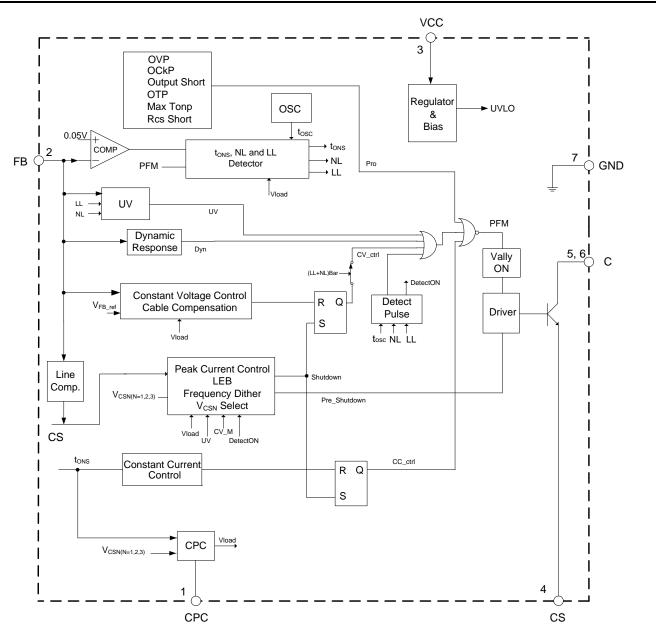

4

- Adapters
- Set Top Boxes
- Appliances

Typical Applications Circuit

For AP3988 (5V/1A)

ltem	Function	QTY	ltem	Function	QTY
C1,C2	4.7µF/400V, electrolytic	2	Rf1	$10\Omega/1W$, fuse resistor	1
C3	4.7µF/50V, electrolytic	1	R3	3.3MΩ/0.25W	1
C5	1nF/250V, ceramic	1	R5	3.9 Ω, 0805	1
C8	0.01µF, 0805	1	R6	150kΩ, 1206	1
C11	1nF, 0805	1	R7	2.7Ω, 1206	1
C12	680µF/10V	1	R8	75kΩ, 0805	1
D1 to D6	1N4007, rectifier diode	6	R9	43kΩ, 0805	1
D12	APD340,Schottky diode	1	R10	200Ω, 0805	1
L1	1mH, inductor	1	R11	27Ω, 0805	1
L2	Bead, 0805	1	R12	1.5kΩ, 0805	1
U1	AP3988, SO-7	1	T1	EE13 core, PC40, transformer	1



Pin Descriptions

Pin Number	Pin Name	Function			
1	CPC	This pin connects a capacitor to GND for output cable compensation			
2	FB	voltage feedback from auxiliary winding			
3	VCC	is pin receives rectified voltage from the auxiliary winding of the transformer			
4	CS	irrent sense for primary side of transformer			
5, 6	С	This pin is connected with an internal power BJT's collector			
7	GND	This pin is the signal reference ground			

Functional Block Diagram

Absolute Maximum Ratings (Note 5)

Symbol	Parameter	Rating	Unit
V _{CC}	Supply Voltage	-0.3 to 30	V
V _{CS} , V _{CPC}	Voltage on CS, CPC Pin	-0.3 to 7	V
V _{FB}	FB Input Voltage	-0.3 to 8	V
V _{CBO}	Collector-emitter Voltage	700	V
ICDC	Collector DC Current	1.5	А
TJ	Operating Junction Temperature	+150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
T _{LEAD} Lead Temperature (Soldering, 10 sec)		+300	°C
_	ESD (Machine Model)	200	V
_	ESD (Human Body Model)	2000	V
PD	Total Power Dissipation	0.7	W

Note 5: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

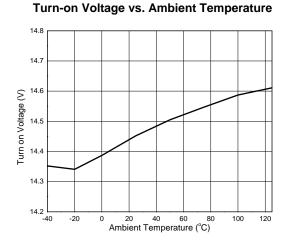
Recommended Operating Conditions

Symbol	nbol Parameter		Мах	Unit
V _{CC}	Supply Voltage	-	25	V
T _{OP}	Operating Temperature Range	-40	+85	°C
f _{S(MAX)}	Maximum Operating Frequency	_	60	kHz

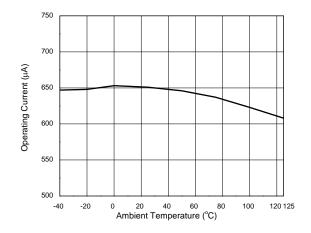
Thermal Impedance (Note 6)

Symbol	Parameter	Value	Unit
θ _{JA}	Junction to Ambient	140	°C/W
θյς	Junction to Case	70	°C/W

Note 6: When mounted a standard single-sided FR4 board with 300mm² Cu (at least 35µm thick) connected to CS pin and all collectors.


Electrical Characteristics (@V_{CC}=15V, T_J=+25°C, unless otherwise specified.)

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
STARTUP ANI	DUVLO SECTION					
V _{TH_ST}	Turn-on Voltage	-	13	15	17	V
VOPR(MIN)	Turn-off Voltage	-	5.2	5.8	6.4	V
STANDBY CU	RRENT SECTION					
I _{ST}	Turn-on Current	V _{CC} =V _{TH_ST} -1V before startup	0	0.2	0.6	μA
I _{CC_OPR}	Operating Current	Static current @ no load	550	650	750	μΛ
OPERATING F	REQUENCY SECTION (5% LOAD TO FULI	LOAD)				
f _{S(MAX)}	Operating Frequency in Full Load Condition	_	-	_	60	kHz
∆f/f	Frequency Dithering	5% to 100% of full load range	4.5	5	5.5	%
OPERATING F	REQUENCY SECTION (NO LOAD TO 5% C	OF I _{OUT(MAX)})			-	
f _{S(MIN)}	Output Voltage Detection Frequency	_	1.8	2	2.2	kHz
CURRENT SE						
V _{CS_H}	Peak Current Sense Voltage in Heavy Load	40% to 100% of full load	874	910	946	mV
V _{CS_M}	Peak Current Sense Voltage in Middle Load	17% to 40% of full load	581	605	630	mV
V _{CS_L}	Peak Current Sense Voltage in Light Load	5% to 17% of full load	390	405	425	mV
$\Delta V_{CS}/V_{CS}$	V_{CS} Modulation for Frequency Dithering	-	-	2.5	-	%
t _{MOD}	V _{CS} Modulation Period	-	225	250	275	μs
R _{LINE}	Built-in Line Compensation Resistor	-	260	330	400	Ω
t _{LEB}	Leading Edge Blanking	@ V_{CS_H} and V_{CS_M}	600	750	900	ns
CONSTANT V	OLTAGE SECTION					
V_{FB}	Equivalent Feedback Voltage @ 90% Load	Closed loop test of $V_{\mbox{OUT}}$	4.13	4.20	4.27	V
I _{FB}	FB Pin Input Current	V _{FB} =4V	3.36	4.20	5.04	μΑ
VCABLE	Cable Compensation Drop	_	-	0.35	-	V
CONSTANT C	URRENT SECTION					
t _{ONS} /t _{SW}	Secondary Winding Conduction Duty	V _{FB} =3V	_	4/7	-	-
POWER TRAN	ISISTOR SECTION					
V _{CE(SAT)}	Collector-emitter Saturation Voltage	I _C =0.5A	-	_	0.3	V
h _{FE}	DC Current Gain	-	14	17	_	I
I _{CEO}	Leakage Current	-	-	-	60	μA
PROTECTION	FUNCTION SECTION					
VFB(OVP)	Over Voltage Protection	_	-	7.5	-	V
V _{FB(SCP)}	Short Circuit Protection	V _{FB} @ Hiccup	2.6	3.3	3.7	V
T _{OTP}	Shutdown Temperature	-	+125	+160	-	°C
T _{HYS}	Temperature Hysteresis	_	_	+40	_	°C



Performance Characteristics

Operating Current vs. Ambient Temperature

Operation Description

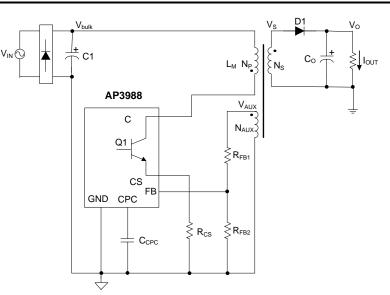



Figure 1. Simplified Flyback Converter Controlled by AP3988

Turn-off Voltage vs. Ambient Temperature

6 of 12 www.diodes.com

Operation Description (Cont.)

Constant Primary Peak Current

The primary $i_p(t)$ current is sensed by a current sense resistor R_{CS} as shown in Figure 1.

The current rises up linearly at a rate of:

$$\frac{di_{\rm p}(t)}{dt} = \frac{V_{\rm bulk}(t)}{L_{\rm M}} \dots \dots \dots (1)$$

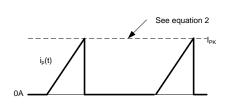


Figure 2. Primary Current Waveform

As illustrated in Figure 2, when the current ip(t) rises up to IPK, the switch Q1 turns off. The constant peak current is given by:

The energy stored in the magnetizing inductance L_M each cycle is therefore:

$$E_{\rm g} = \frac{1}{2} \cdot L_M \cdot I_{PK}^2$$
(3)

So the power transferring from input to output is given by:

$$P = \frac{1}{2} \cdot L_M \cdot I_{PK}^2 \cdot f_{SW} \dots \dots \dots (4)$$

Where f_{SW} is the switching frequency. When the peak current I_{PK} is constant, the output power depends on the switching frequency f_{SW}.

Constant Voltage Operation

The AP3988 captures the auxiliary winding feedback voltage at FB pin and operates in constant-voltage (CV) mode to regulate the output voltage. Assuming the secondary winding is master, the auxiliary winding is slave during the D1 on-time. The auxiliary voltage is given by:

$$V_{AUX} = \frac{N_{AUX}}{N_s} \cdot \left(V_{\rm O} + V_d\right) \dots \dots \dots \dots \dots (5)$$

Where V_d is the diode forward drop voltage, N_{AUX} is the turns of auxiliary winding, and N_S is the turns of secondary winding.

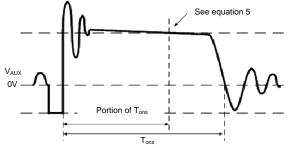


Figure 3. Auxiliary Voltage Waveform

The output voltage is different from the secondary voltage in a diode forward drop voltage V_d which depends on the current. If the secondary voltage is always detected at a constant secondary current, the difference between the output voltage and the secondary voltage will be a fixed V_d. The voltage detection point is portion of T_{ons} after D1 is turned on. The CV loop control function of AP3988 then generates a D1 off-time to regulate the output voltage.

Operation Description (Cont.)

The AP3988 is designed to work in constant current (CC) mode. Figure 4 shows the secondary current waveforms.

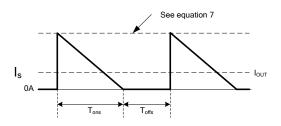


Figure 4. Secondary Current Waveform

In CC operation, the CC loop control function of AP3988 will keep a fixed proportion between D1 on-time Tons and D1 off-time Toffs by discharging or charging the built-in capacitance connected. This fixed proportion is

$$\frac{T_{ons}}{T_{offs}} = \frac{4}{3} \dots \dots \dots (6)$$

The relation between the output constant-current and secondary peak current I_{PKS} is given by:

$$I_{OUT} = \frac{1}{2} \cdot I_{PKS} \cdot \frac{T_{ons}}{T_{ons} + T_{offs}} \dots \dots \dots \dots (7)$$

At the instant of D1 turn-on, the primary current transfers to the secondary at an amplitude of:

$$I_{PKS} = \frac{N_P}{N_S} \cdot I_{PK} \dots \dots \dots (8)$$

Thus the output constant current is given by:

$$I_{OUT} = \frac{2}{7} \cdot \frac{N_P}{N_S} \cdot I_{PK} \dots \dots \dots (9)$$

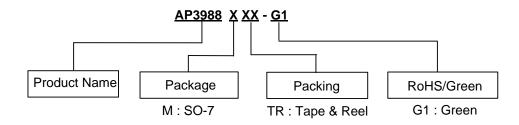
Leading Edge Blanking (LEB)

When the power switch is turned on, a turn-on spike on the output pulse rising edge will occur on the sense-resistor. To avoid false termination of the switching pulse, a typical 750ns leading edge blanking is built in. During this blanking period, the current sense comparator is disabled and the gate driver cannot be switched off.

The built-in LEB in AP3988 has shorter delay time from current sense terminal to output pulse than those IC solutions adopting external RC filter as LEB.

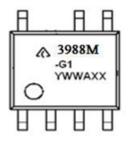
Built-in Cable Compensation

The AP3988 has built-in fixed voltage of 0.35V typical to compensate the drop of output cable when the load is changed from zero to full load. A typical 10nF external capacitor connected to the CPC pin is used to smooth voltage signal for cable compensation.


Over Temperature Protection

The AP3988 has internal thermal sensing circuit to shut down the PFM driver output when the die temperature reaches +160°C typical. When the die temperature drops about +40°C, the IC will recover automatically to normal operation.

Ordering Information

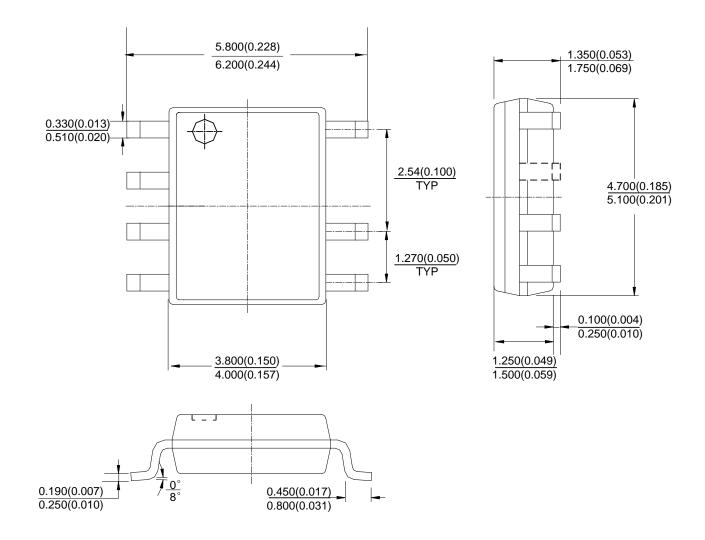


Diodes IC's Pb-free products with "G1" suffix in the part number, are RoHS compliant and green.

Package	Temperature Range	Part Number	Marking ID	Packing
SO-7	-40°C to +85°C	AP3988MTR-G1	3988M-G1	4000/Tape & Reel

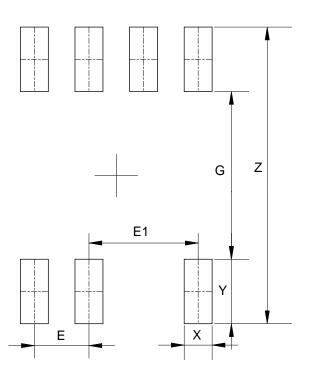
Marking Information

(Top View)


First and Second Lines: Logo and Marking ID Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch No.

Package Outline Dimensions (All dimensions in mm(inch).)

(1) Package Type: SO-7


Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: SO-7

Dimensions	Z	G	X	Y	E	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050	2.540/0.100

AP3988

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.