CAT6217

150mA CMOS LDO Regulator

Beyond Memory

FEATURES

- Guaranteed 150mA output current
- Low dropout voltage of 90mV typical at 150mA
- Stable with 1µF ceramic output capacitor
- External 10nF bypass capacitor for low noise
- Quick-start feature
- No-load ground current of 55µA typical
- Full-load ground current of 80µA typical
- ±1.0% initial accuracy ($V_{OUT} \ge 2.0V$)
- ±2.0% accuracy over temperature ($V_{OUT} \ge 2.0V$)
- "Zero" current shutdown mode
- Current limit and Under voltage lockout
- Thermal protection
- 5-lead TSOT-23 package

APPLICATIONS

- Cellular phones
- Battery-powered devices
- Consumer Electronics

DESCRIPTION

The CAT6217 is a 150mA CMOS low dropout regulator that provides fast response time during load current and line voltage changes.

The quick-start feature allows the use of an external bypass capacitor to reduce the overall output noise without affecting the turn-on time of just 150µs.

With zero shutdown current and low ground current of 55µA typical, the CAT6217 is ideal for batteryoperated devices with supply voltages from 2.3V to 5.5V. An internal under voltage lockout circuit disables the output at supply voltages under 2.1V typical.

The CAT6217 offers 1% initial accuracy and low dropout voltage, 90mV typical at 150mA. Stable operation is provided with a 1μ F ceramic capacitor, reducing required board space and component cost.

Other features include output short-circuit current limit and thermal protection.

The device is available in the low profile (1mm max height) 5-lead TSOT-23 package.

For Ordering Information details, see page 9.

PIN CONFIGURATION

TYPICAL APPLICATION CIRCUIT

PIN DESCRIPTIONS

Pin #	Name	Function	
1 VIN Supply voltage input.		Supply voltage input.	
2 GND Ground reference.		Ground reference.	
3	EN	Enable input (active high); a $2.5M\Omega$ pull-down resistor is provided.	
4	BYP	Optional bypass capacitor connection for noise reduction and PSRR enhancing.	
5	VOUT	LDO Output Voltage.	

BLOCK DIAGRAM

Figure 2. CAT6217 Functional Block Diagram

PIN FUNCTION

VIN is the supply pin for the LDO. A small 1µF ceramic bypass capacitor is required between the V_{IN} pin and ground near the device. When using longer connections to the power supply, C_{IN} value can be increased without limit. The operating input voltage range is from 2.3V to 5.5V.

EN is the enable control logic (active high) for the regulator output. It has a $2.5M\Omega$ pull-down resistor, which assures that if EN pin is left open, the circuit is disabled.

VOUT is the LDO regulator output. A small 1μ F ceramic bypass capacitor is required between the V_{OUT} pin and ground for stability. For better transient response, its value can be increased to 4.7μ F.

The capacitor should be located near the device. ESR domain is $5m\Omega$ to $500m\Omega$. V_{OUT} can deliver a maximum guaranteed current of 150mA. A 250Ω internal shutdown switch discharges the output capacitor in the no-load condition.

GND is the ground reference for the LDO. The pin must be connected to the ground plane on the PCB.

BYP is the reference bypass pin. An optional 0.01μ F capacitor can be connected between BYP pin and GND to reduce the output noise and enhance the PSRR at high frequency.

ABSOLUTE MAXIMUM RATINGS (1)

Parameter	Rating	Unit
V _{IN}	0 to 6.5	V
V _{EN} , V _{OUT}	-0.3 to V _{IN} +0.3	V
Junction Temperature, T _J	+150	°C
Power Dissipation, P _D	Internally Limited (2)	mW
Storage Temperature Range, T _S	-65 to +150	°C
Lead Temperature (soldering, 5 sec.)	260	°C
ESD Rating (Human Body Model)	3	kV

RECOMMENDED OPERATING CONDITIONS⁽³⁾

Parameter	Range	Unit
V _{IN}	2.3 to 5.5	V
V _{EN}	0 to V _{IN}	V
Junction Temperature Range, T _J	-40 to +125	°C
Package Thermal Resistance (SOT23-5), θ_{JA}	235	°C/W

Typical application circuit with external components is shown on page 1.

Notes:

(1) Exceeding maximum rating may damage the device

(2) The maximum allowable power dissipation at any T_A (ambient temperature) is P_{Dmax} = (T_{Jmax} - T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

(3) The device is not guaranteed to work outside its operating rating.

Electrical Operating Characteristics ⁽¹⁾ $V_{IN} = V_{OUT} + 1.0V, V_{EN} = High, I_{OUT} = 100 \mu A, C_{IN} = C_{OUT} = 1 \mu F$, ambient temperature of 25°C (over recommended operating conditions unless specified otherwise). **Bold numbers** apply for the entire junction temperature range.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V	Dutput Voltage Accuracy	Initial accuracy (for) $(> 2.0) / (4)$	-1.0		+1.0	%	
V _{OUT-ACC}	Output voltage Accuracy	Initial accuracy for $V_{OUT} \ge 2.0V^{(4)}$	-2.0		+2.0		
TC _{OUT}	Output Voltage Temp. Coefficient			40		ppm/ºC	
V	Line Degulation		-0.2	±0.1	+0.2	%/V	
V_{R-LINE}	Line Regulation	$V_{IN} = V_{OUT} + 1.0V$ to 5.5V	-0.4		+0.4		
V	Load Regulation	I _{OUT} = 100μA to 150 mA		0.6	1.0	%	
V _{R-LOAD} Load	oad Regulation				1.3		
V	Dropout Voltage ⁽²⁾	1 = 150mA		90	125	mV	
V _{DROP}	Dropout voltage	e ⁽²⁾ I _{OUT} = 150mA			150		
				55	75	μA	
I _{GND}	Ground Current	I _{OUT} = 0μA			90		
		I _{OUT} = 150mA		80			
I _{GND-SD} Shutde	Shutdown Cround Current	V _{EN} < 0.4V			1	μA	
	Shutdown Ground Current				2		
	Power Curply Dejection Datio	$f = 1 kHz, C_{BYP} = 10 nF$		64		dB	
PSRR	ower Supply Rejection Ratio	f = 20kHz, C _{BYP} = 10nF		54			
I _{SC}	Output short circuit current limit	V _{OUT} = 0V		350		mA	
T _{ON}	Turn-On Time	C _{BYP} = 10nF		150		μs	
e _N	Output Noise Voltage (3)	BW = 10Hz to 100kHz		45		μVrms	
R _{OUT-SH}	Shutdown Switch Resistance			250		Ω	
R_{EN}	Enable pull-down resistor			2.5		MΩ	
V_{UVLO}	Under-voltage lock out (UVLO) threshold			2.1		V	
ESR	C _{OUT} equivalent series resistance		5		500	mΩ	
Enable Ir	iput	•				•	
		V _{IN} = 2.3 to 5.5V	1.8				
V _{HI} Lo	Logic High Level	V _{IN} = 2.3 to 5.5V, 0°C to +125°C junction temperature	1.6			V	
V_{LO}	Logic Low Level	V _{IN} = 2.3 to 5.5V			0.4	V	
	Enable Input Current	V _{EN} = 0.4V		0.15	1	- μΑ	
I _{EN}	Enable Input Current	$V_{\rm EN} = V_{\rm IN}$		1.5	4		
Thermal	Protection						
T_{SD}	Thermal Shutdown			160		°C	
T _{HYS}	Thermal Hysteresis			10		°C	

Notes:

Specification for 2.85V output version unless specified otherwise. (1

Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at (2) 1V differential. During test, the input voltage stays always above the minimum 2.3V.

Specification for 1.8V output version. (3)

(4) For V_{OUT} < 2.0V, the initial accuracy is ±2% and across temperature ±3%.

TYPICAL CHARACTERISTICS (shown for 2.85V output version)

 V_{IN} = 3.85V, I_{OUT} = 100µA, C_{IN} = C_{OUT} = 1µF, C_{BYP} = 10nF, T_A = 25°C unless otherwise specified.

Line Regulation

TYPICAL CHARACTERISTICS (shown for 2.85V output option)

 V_{IN} = 3.85V, I_{OUT} = 100µA, C_{IN} = C_{OUT} = 1µF, C_{BYP} = 10nF, T_A = 25°C unless otherwise specified.

Ground Current vs. Input Voltage

Dropout vs. Load Current

PSRR vs. Frequency (10mA Load)

TYPICAL CHARACTERISTICS (shown for 2.85V output option)

 V_{IN} = 3.85V, I_{OUT} = 100µA, C_{IN} = C_{OUT} = 1µF, C_{BYP} = 10nF, T_A = 25°C unless otherwise specified.

PSRR (150mA Load)

TRANSIENT CHARACTERISTICS (shown for 2.85V output option)

 V_{IN} = 3.85V, I_{OUT} = 100µA, C_{IN} = C_{OUT} = 1µF, C_{BYP} = 10nF, T_A = 25°C unless otherwise specified. **Note:** All transient characteristics are generated using the evaluation board CAT621XEVAL1.

Enable Turn-Off (150mA Load)

Load Transient Response (0.1mA to 150mA)

PACKAGE OUTLINE DRAWING

TSOT-23 5-Lead (TD) (1)(2)

TOP VIEW

SYMBOL	MIN	NOM	MAX
Α			1.00
A1	0.01	0.05	0.10
A2	0.80	0.87	0.90
b	0.30		0.45
С	0.12	0.15	0.20
D	2.90 BSC		
E		2.80 BSC	
E1		1.60 BSC	
е	0.95 TYP		
L	0.30	0.40	0.50
L1	0.60 REF		
L2	0.25 BSC		
θ	0°		8°

For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC standard MO-229.

EXAMPLE OF ORDERING INFORMATION

Ordering Number	V _{out} Voltage	Package	Quantity per Reel
CAT6217-150TD-GT3	1.50V	TSOT-23	3,000
CAT6217-180TD-GT3	1.80V	TSOT-23	3,000
CAT6217-250TD-GT3	2.50V	TSOT-23	3,000
CAT6217-280TD-GT3	2.80V	TSOT-23	3,000
CAT6217-285TD-GT3 (4)	2.85V	TSOT-23	3,000
CAT6217-330TD-GT3 (4)	3.30V	TSOT-23	3,000

For Product Top Mark Codes, click here: http://www.catsemi.com/techsupport/producttopmark.asp

Notes:

- (1) All packages are RoHS-compliant (Lead-free, Halogen-free).
- (2) The standard finish is NiPdAu.
- (3) The device used in the above example is a CAT6217-280TD-GT3 (V_{OUT} = 2.80V, in a TSOT-23 package, NiPdAu, Tape and Reel, 3,000/Reel).
- (4) Standard voltages are 1.50V, 1.80V, 2.50V, 2.80V. For other voltage options, please contact your nearest Catalyst Semiconductor Sales office.
- (5) Top marking for CAT6217 is RT.

REVISION HISTORY

Date	Rev. Reason	
21-Jun-07	А	Preliminary Revision
07-Nov-07	В	Update Package Outline Drawing Update Example of Ordering Information Change Document Number from MD-4011 to MD-10011
08-Feb-08	С	Update Electrical Operating Characteristics
22-May-08	D	Add link to Top Mark Codes

Copyrights, Trademarks and Patents

© Catalyst Semiconductor, Inc.

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following: Adaptive Analog[™], Beyond Memory[™], DPP[™], EZDim[™], LDD[™], MiniPot[™], Quad-Mode[™] and Quantum Charge Programmable[™]

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 2975 Stender Way Santa Clara, CA 95054 Phone: 408.542.1000 Fax: 408.542.1200 0Hwww.catsemi.com

Document No:MD-10011Revision:DIssue date:05/22/08

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.