19-1378; Rev 1; 10/98 EVALUATION KIT

AVAILABLE

5th-Order, Lowpass, Elliptic, **Switched-Capacitor Filters**

General Description

The MAX7408/MAX7411/MAX7412/MAX7415 5th-order, lowpass, elliptic, switched-capacitor filters (SCFs) operate from a single +5V (MAX7408/MAX7411) or +3V (MAX7412/MAX7415) supply. The devices draw only 1.2mA of supply current and allow corner frequencies from 1Hz to 15kHz, making them ideal for low-power post-DAC filtering and anti-aliasing applications. They can be put into a low-power mode, reducing supply current to 0.2µA.

Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff-frequency control. An offset-adjust pin allows for adjustment of the DC output level.

The MAX7408/MAX7412 deliver 53dB of stopband rejection and a sharp rolloff with a transition ratio of 1.6. The MAX7411/MAX7415 achieve a sharper rolloff with a transition ratio of 1.25 while still providing 37dB of stopband rejection. Their fixed response limits the design task to selecting a clock frequency.

	Applications
ADC Anti-Aliasing	CT2 Base Stations
Post-DAC Filtering	Speech Processing

Selector Guide

PART	TRANSITION RATIO	OPERATING VOLTAGE (V)
MAX7408	r = 1.6	+5
MAX7411	r = 1.25	+5
MAX7412	r = 1.6	+3
MAX7415	r = 1.25	+3

Typical Operating Circuit

M/X/M

8 CLK COM

Features

- 5th-Order, Elliptic Lowpass Filters
- Low Noise and Distortion: -80dB THD + Noise
- Clock-Tunable Corner Frequency (1Hz to 15kHz)
- Single-Supply Operation +5V (MAX7408/MAX7411) +3V (MAX7412/MAX7415)
- Low Power 1.2mA (operating mode) 0.2µA (shutdown mode)
- Available in 8-Pin µMAX/DIP Packages
- Low Output Offset: ±4mV

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX7408CP	A $0^{\circ}C$ to $+70^{\circ}C$	8 Plastic DIP
MAX7408CU	A 0°C to +70°C	8 µMAX
MAX7408EPA	-40°C to +85°C	8 Plastic DIP
MAX7408EU/	A −40°C to +85°C	8 µMAX
MAX7411CP	A $0^{\circ}C$ to $+70^{\circ}C$	8 Plastic DIP
MAX7411CU	A 0°C to +70°C	8 µMAX
MAX7411EPA	-40°C to +85°C	8 Plastic DIP
MAX7411EU/	A −40°C to +85°C	8 µMAX
MAX7412CP	A $0^{\circ}C$ to $+70^{\circ}C$	8 Plastic DIP
MAX7412CU	A $0^{\circ}C$ to $+70^{\circ}C$	8 µMAX
MAX7412EPA	-40°C to +85°C	8 Plastic DIP
MAX7412EU/	A −40°C to +85°C	8 µMAX
MAX7415CP	A $0^{\circ}C$ to $+70^{\circ}C$	8 Plastic DIP
MAX7415CU	A $0^{\circ}C$ to $+70^{\circ}C$	8 µMAX
MAX7415EPA	-40°C to +85°C	8 Plastic DIP
MAX7415EUA	A -40°C to +85°C	8 µMAX

Pin Configuration

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND0.3V to +6V	
IN, OUT, COM, OS, CLK, SHDN0.3V to (V _{DD} + 0.3V)	
OUT Short-Circuit Duration1sec	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin DIP (derate 6.90mW/°C above +70°C)552mW	
8-Pin µMAX (derate 4.1mW/°C above +70°C)330mW	

Operating Temperature Ranges

MAX74C_A	0°C to +70°C
MAX74E_A	40°C to +85°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7408/MAX7411

 $(V_{DD} = +5V; filter output measured at OUT, 10k\Omega II 50pF load to GND at OUT, SHDN = V_{DD}, OS = COM, 0.1\muF from COM to GND, f_{CLK} = 100kHz, T_A = T_{MIN}$ to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FILTER						
Corner-Frequency Range	f _C	(Note 1)	0	.001 to	15	kHz
Clock-to-Corner Ratio	fclk/fc			100:1		
Clock-to-Corner Tempco				10		ppm/°C
Output Voltage Range			0.25		V _{DD} - 0.25	V
Output Offset Voltage	VOFFSET	$V_{IN} = V_{COM} = V_{DD} / 2$		±4	±25	mV
DC Insertion Gain with Output Offset Removed		V _{COM} = V _{DD} / 2 (Note 2)	0	0.2	0.4	dB
Total Harmonic Distortion plus Noise	THD+N	$f_{IN} = 200Hz$, $V_{IN} = 4Vp-p$, measurement bandwidth = 22kHz		-81		dB
Offset Voltage Gain	A _{OS}	OS to OUT		1		V/V
		Input, COM externally driven	<u>V_{DD}</u> - 0.5	<u>V_{DD}</u> 2	$\frac{V_{DD}}{2} + 0.5$	V
COM Voltage Range	Vсом	Output, COM internally driven	$\frac{V_{DD}}{2} - 0.2$	$\frac{V_{DD}}{2}$	$\frac{V_{DD}}{2} + 0.2$	V
Input Voltage Range at OS	Vos	Measured with respect to COM		±0.1		V
Input Resistance at COM	R _{COM}		110	180		kΩ
Clock Feedthrough		$T_A = +25^{\circ}C$		5		mVp-p
Resistive Output Load Drive	RL		10	1		kΩ
Maximum Capacitive Load at OUT	CL		50	500		pF
Input Leakage Current at COM		$\overline{\text{SHDN}} = \text{GND}, \text{V}_{\text{COM}} = 0 \text{ to } \text{V}_{\text{DD}}$		±0.2	±10	μA
Input Leakage Current at OS		$V_{OS} = 0$ to V_{DD}		±0.2	±10	μA
CLOCK						
Internal Oscillator Frequency	fosc	C _{OSC} = 1000pF (Note 3)	19	27	34	kHz
Clock Output Current (Internal Oscillator Mode)	ICLK			±12	±20	μA
Clock Input High	ViH		4.5			V
Clock Input Low	VIL				0.5	V

ELECTRICAL CHARACTERISTICS—MAX7408/MAX7411 (continued)

 $(V_{DD} = +5V; filter output measured at OUT, 10k\Omega II 50pF load to GND at OUT, SHDN = V_{DD}, OS = COM, 0.1\muF from COM to GND, f_{CLK} = 100kHz, T_A = T_{MIN}$ to T_MAX, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER REQUIREMENTS						
Supply Voltage	V _{DD}		4.5		5.5	V
Supply Current	IDD	Operating mode, no load		1.16	1.5	mA
Shutdown Current	ISHDN	SHDN = GND		0.2	1	μA
Power-Supply Rejection Ratio	PSRR	Measured at DC		70		dB
SHUTDOWN						
SHDN Input High	VSDH		4.5			V
SHDN Input Low	VSDL				0.5	V
SHDN Input Leakage Current		$V_{\overline{SHDN}} = 0$ to V_{DD}		±0.2	±10	μA

ELECTRICAL CHARACTERISTICS—MAX7412/MAX7415

 $(V_{DD} = +3V, filter output measured at OUT pin, 10k\Omega \parallel 50pF$ load to GND at OUT, $\overline{SHDN} = V_{DD}, OS = COM, 0.1\mu F$ from COM to GND, f_{CLK} = 100kHz; T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FILTER CHARACTERISTICS	1					1
Corner-Frequency Range	fC	(Note 1)	0	.001 to	15	kHz
Clock-to-Corner Ratio	fCLK/fC			100:1		
Clock-to-Corner Tempco				10		ppm/°C
Output Voltage Range			0.25		V _{DD} - 0.25	V
Output Offset Voltage	VOFFSET	$V_{IN} = V_{COM} = V_{DD} / 2$		±4	±25	mV
DC Insertion Gain with Output Offset Removed		V _{COM} = V _{DD} / 2 (Note 2)	0	0.2	0.4	dB
Total Harmonic Distortion plus Noise	THD+N	f _{IN} = 200Hz, V _{IN} = 2.5Vp-p, measurement bandwidth = 22kHz		-79		dB
Offset Voltage Gain	Aos	OS to OUT		1		V/V
COM Voltage Range	Vcom		<u>V_{DD}</u> - 0.1	V _{DD} 2	$\frac{V_{DD}}{2} + 0.1$	V
Input Voltage Range at OS	V _{OS}	Measured with respect to COM		±0.1		V
Input Resistance at COM	RCOM		110	180		kΩ
Clock Feedthrough		$T_A = +25^{\circ}C$		3		mVp-p
Resistance Output Load Drive	RL		10	1		kΩ
Maximum Capacitive Load at OUT	CL		50	500		pF
Input Leakage Current at COM		$\overline{\text{SHDN}} = \text{GND}, \text{V}_{\text{COM}} = 0 \text{ to } \text{V}_{\text{DD}}$		±0.2	±10	μA
Input Leakage Current at OS		$V_{OS} = 0$ to V_{DD}		±0.2	±10	μA

ELECTRICAL CHARACTERISTICS—MAX7412/MAX7415 (continued)

 $(V_{DD} = +3V)$, filter output measured at OUT pin, $10k\Omega \parallel 50pF$ load to GND at OUT, $\overline{SHDN} = V_{DD}$, OS = COM, $0.1\mu F$ from COM to GND, f_{CLK} = 100kHz; T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCK						1
Internal Oscillator Frequency	fosc Cosc = 1000pF (Note 3)		19	27	34	kHz
Clock Output Current (Internal Oscillator Mode)	ICLK	V _{CLK} = 0 or 3V		±12	±20	μA
Clock Input High	VIH		2.5			V
Clock Input Low VIL					0.5	V
POWER REQUIREMENTS		-				
Supply Voltage	V _{DD}		2.7		3.6	V
Supply Current	IDD	Operating mode, no load		1.13	1.5	mA
Shutdown Current	ISHDN	SHDN = GND		0.2	1	μA
Power-Supply Rejection Ratio	jection Ratio PSRR Measured at DC			70		dB
SHUTDOWN						
SHDN Input High	V _{SDH}		2.5			V
SHDN Input Low	VSDL				0.5	V
SHDN Input Leakage Current		$V \overline{SHDN} = 0$ to V_{DD}		±0.2	±10	μA

ELLIPTIC FILTER (r = 1.6) CHARACTERISTICS—MAX7408/MAX7412

 $(V_{DD} = +5V \text{ for MAX7408}, V_{DD} = +3V \text{ for MAX7412}; \text{ filter output measured at OUT; } 10k\Omega \parallel 50pF \text{ load to GND at OUT; } SHDN = V_{DD}; V_{COM} = V_{OS} = V_{DD} / 2; f_{CLK} = 100kHz; T_A = T_{MIN} \text{ to } T_{MAX}; \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) (Note 3)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	$f_{IN} = 0.34 f_C$	-0.4	-0.2	0.4	
	$f_{\rm IN} = 0.63 f_{\rm C}$	-0.4	0.2	0.4	
	$f_{IN} = 0.84 f_C$	-0.4	-0.2	0.4	
Insertion Gain with DC Gain Error Removed	$f_{\rm IN} = 0.96 f_{\rm C}$	-0.4	0.2	0.4	dB
(Note 4)	fIN = fC	-0.7	-0.2	0.2	uв
	$f_{\rm IN} = 1.60 f_{\rm C}$		-53.4	-50	
	$f_{IN} = 1.90 f_C$		-53.4	-50	
	$f_{IN} = 4.62 f_{C}$		-53.4	-50	1

ELLIPTIC FILTER (r = 1.25) CHARACTERISTICS—MAX7411/MAX7415

 $(V_{DD} = +5V \text{ for MAX7411}, V_{DD} = +3V \text{ for MAX7415}; \text{ filter output measured at OUT}; 10k\Omega II 50pF load to GND at OUT; <math>\overline{SHDN} = V_{DD} V_{COM} = V_{OS} = V_{DD} / 2; \text{ f}_{CLK} = 100 \text{ kHz}; \text{ T}_{A} = T_{MIN} \text{ to } T_{MAX}; \text{ unless otherwise noted}. Typical values are at T_{A} = +25^{\circ}C.) (Note 3)$

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
	$f_{\rm IN} = 0.38 f_{\rm C}$	-0.4	-0.2	0.4	
	$f_{\rm IN} = 0.68 f_{\rm C}$	-0.4	0.2	0.4	
	$f_{\rm IN} = 0.87 f_{\rm C}$	-0.4	-0.2	0.4	
Insertion Gain with DC Gain Error Removed	$f_{\rm IN} = 0.97 f_{\rm C}$	-0.4	0.2	0.4	dB
(Note 4)	$f_{IN} = f_C$	-0.7	-0.2	0.2	
	$f_{IN} = 1.25 f_C$		-38.5	-34	
	$f_{\rm IN} = 1.43 f_{\rm C}$		-37.2	-35	1
	$f_{IN} = 3.25 f_{C}$		-37.2	-35]

Note 1: The maximum f_C is defined as the clock frequency $f_{CLK} = 100 \cdot f_C$ at which the peak SINAD drops to 68dB with a sinusoidal input at 0.2 f_C .

Note 2: DC insertion gain is defined as $\Delta V_{OUT} / \Delta V_{IN}$.

Note 3: f_{OSC} (kHz) $\approx 27 \cdot 10^3$ / Cosc (Cosc in pF).

Note 4: The input frequencies, f_{IN} , are selected at the peaks and troughs of the ideal elliptic frequency responses.

Typical Operating Characteristics

 $(V_{DD} = +5V \text{ for MAX7408/MAX7411}, V_{DD} = +3V \text{ for MAX7412/MAX7415}; f_{CLK} = 100 \text{kHz}; \overline{\text{SHDN}} = V_{DD}; V_{COM} = V_{OS} = V_{DD} / 2; T_A = +25^{\circ}\text{C}; unless otherwise noted.}$

MAX7408/MAX7411/MAX7412/MAX7415

-10

-20

-30

-90

0

1

THD + NOISE (dB) -40 -50 -60 -70 -80

6

Typical Operating Characteristics (continued)

Table A. THD + Noise Test Conditions f.... . Т .

LABEL	f _{IN} (Hz)	f _C (kHz)	fCLK (kHz)	MEASUREMENT BANDWIDTH (kHz)
А	200	1	100	22
В	1k	5	500	80

5

SEE TABLE A

A٠

4

3

А

AMPLITUDE (Vp-p)

2

5th-Order, Lowpass, Elliptic, Switched-Capacitor

Typical Operating Characteristics (continued)

 $(V_{DD} = +5V \text{ for MAX7408/MAX7411}, V_{DD} = +3V \text{ for MAX7412/MAX7415}; f_{CLK} = 100kHz; \overline{SHDN} = V_{DD}; V_{COM} = V_{OS} = V_{DD} / 2; T_A = +25^{\circ}C; unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION Common Input Pin. Biased internally at mid-supply. Bypass externally to GND with 0.1µF capacitor. To override internal biasing, drive with an external supply.				
1	СОМ					
2	IN	Filter Input				
3	GND	Ground				
4	V _{DD}	Positive Supply Input, +5V for MAX7408/MAX7411 or +3V for MAX7412/MAX7415				
5	OUT	Filter Output				
6	OS	Offset Adjust Input. To adjust output offset, bias OS with a resistive voltage-divider between an external supply and ground. Connect OS to COM if no offset adjustment is needed.				
7	SHDN	Shutdown Input. Drive low to enable shutdown mode; drive high or connect to V _{DD} for normal opera				
8	CLK	Clock Input. Connect an external capacitor (C _{OSC}) from CLK to GND to set the internal oscillator frequency. To override the internal oscillator, connect to an external clock.				

Detailed Description

The MAX7408/MAX7411/MAX7412/MAX7415 family of 5th-order, elliptic, lowpass filters provides sharp rolloff with good stopband rejection. All parts operate with a 100:1 clock-to-corner frequency ratio and a 15kHz maximum corner frequency.

Most switched-capacitor filters (SCFs) are designed with biquadratic sections. Each section implements two pole-zero pairs, and the sections can be cascaded to produce higher order filters. The advantage to this approach is ease of design. However, this type of design is highly sensitive to component variations if any section's Q is high. The MAX7408/MAX7411/ MAX7412/MAX7415 use an alternative approach, which is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network may be synthesized using CAD programs, or may be found in many filter books. Figure 1 shows a basic 5th-order ladder elliptic filter structure.

A switched-capacitor filter that emulates a passive ladder filter retains many of the same advantages. The component sensitivity of a passive ladder filter is low when compared to a cascaded biquadratic design,

Figure 1. 5th-Order Ladder Elliptic Filter Network

because each component affects the entire filter shape rather than a single pole-zero pair. In other words, a mismatched component in a biquadratic design has a concentrated error on its respective poles, while the same mismatch in a ladder filter design spreads its error over all poles.

Elliptic Characteristics

Lowpass elliptic filters such as the MAX7408/MAX7411/ MAX7412/MAX7415 provide the steepest possible rolloff with frequency of the four most common filter types (Butterworth, Bessel, Chebyshev, and elliptic). The high Q value of the poles near the passband edge combined with the stopband zeros allows for the sharp attenuation characteristic of elliptic filters, making these devices ideal for anti-aliasing and post-DAC filtering in single-supply systems (see the *Anti-Aliasing and Post-DAC Filtering* section).

In the frequency domain, the first transmission zero causes the filter's amplitude to drop to a minimum level. Beyond this zero, the response rises as the frequency increases until the next transmission zero. The stopband begins at the stopband frequency, f_S . At frequencies above f_S , the filter's gain does not exceed the gain at f_S . The corner frequency, f_C , is defined as the point where the filter output attenuation falls just below the passband ripple. The transition ratio (r) is defined as the ratio of the stopband frequency to the corner frequency:

$$r = f_S / f_C$$

The MAX7408/MAX7412 have a translation ratio of 1.6 and typically 53dB of stopband rejection. The MAX7411/MAX7415 have a transition ratio of 1.25 (providing a steeper rolloff) and typically 37dB of stopband rejection.

Figure 2. Elliptic Filter Response

Clock Signal

External Clock

These SCFs are designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock, drive the CLK pin with a CMOS gate powered from 0 to V_{DD} . Varying the rate of the external clock adjusts the corner frequency of the filter:

$$f_{\rm C} = \frac{f_{\rm CLK}}{100}$$

Internal Clock

When using the internal oscillator, the capacitance (COSC) on CLK determines the oscillator frequency:

$$f_{OSC}(kHz) = \frac{k}{C_{OSC}(pF)}$$

Since C_{OSC} is in the low picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Varying the rate of the internal oscillator adjusts the filter's corner frequency by a 100:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 100kHz produces a nominal corner frequency of 1kHz.

Input Impedance vs. Clock Frequencies The MAX7408/MAX7411/MAX7412/MAX7415's input impedance is effectively that of a switched-capacitor resistor (see the following equation), and is inversely proportional to frequency. The input impedance values determined by the equation represent the average input impedance, since the input current is not continuous. As a rule, use a driver with an output resistance less than 10% of the filter's input impedance.

Figure 3. Offset Adjustment Circuit

Estimate the input impedance of the filter by using the following formula:

$$Z_{\rm IN} = \frac{1}{(f_{\rm CLK} \times C_{\rm IN})}$$

where f_{CLK} = clock frequency and C_{IN} = 1pF.

Low-Power Shutdown Mode

The MAX7408/MAX7411/MAX7412/MAX7415 have a shutdown mode that is activated by driving SHDN low. In shutdown mode, the filter supply current reduces to 0.2 μ A, and the output of the filter becomes high impedance. For normal operation, drive SHDN high or connect to V_{DD}.

Applications Information Offset (OS) and Common-Mode (COM) Input Adjustment

COM sets the common-mode input voltage and is biased at mid-supply with an internal resistor-divider. If the application does not require offset adjustment, connect OS to COM. For applications where offset adjustment is required, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 3. For applications that require DC level shifting, adjust OS with respect to COM. (Note: Do not leave OS unconnected.) The output voltage is represented by these equations:

$$V_{OUT} = (V_{IN} - V_{COM}) + V_{OS}$$
$$V_{COM} = \frac{V_{DD}}{2} \text{ (typical)}$$

where $(V_{IN} - V_{COM})$ is lowpass filtered by the SCF and OS is added at the output stage. See the *Electrical*

Characteristics table for the input voltage range of COM and OS. Changing the voltage on COM or OS significantly from mid-supply reduces the dynamic range.

Power Supplies

The MAX7408/MAX7411 operate from a single +5V supply and the MAX7412/MAX7415 operate from a single +3V supply. Bypass V_{DD} to GND with a 0.1 μ F capacitor. If dual supplies are required, connect COM to the system ground and GND to the negative supply. Figure 5 shows an example of dual-supply operation. Single-supply and dual-supply performance are equivalent. For either single-supply or dual-supply operation, drive CLK and SHDN from GND (V- in dual supply operation) to V_{DD}. Use the MAX7408/MAX7411 for ±2.5, and use the MAX7412/MAX7415 for ±1.5V. For ±5V dual-supply applications, see the MAX291/MAX292/MAX295/MAX296 and MAX293/MAX294/MAX297 data sheets.

Input Signal Amplitude Range

The optimal input signal range is determined by observing the voltage level at which the signal-to-noise plus distortion (SINAD) ratio is maximized for a given corner frequency. The *Typical Operating Characteristics* show the THD+Noise response as the input signal's peak-topeak amplitude is varied.

Anti-Aliasing and Post-DAC Filtering

When using the MAX7408/MAX7411/MAX7412/ MAX7415 for anti-aliasing or post-DAC filtering, synchronize the DAC (or ADC) and the filter clocks. If the

Table 1. Typical Harmonic Distortion

Figure 5. Dual-Supply Operation

clocks are not synchronized, beat frequencies may alias into the desired passband.

Harmonic Distortion

Harmonic distortion arises from nonlinearities within the filter. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 1 lists typical harmonic distortion values with a 10k Ω load at T_A = +25°C.

FILTER	f _{CLK} (kHz)	f _{IN} (Hz)	V _{IN} (Vp-p)	TYPICAL HARMONIC DISTORTION (dB)			
FILIER				2nd	3rd	4th	5th
MAX7408	500	1k	- 4	TBD	TBD	TBD	TBD
WIAA7400	100	200		TBD	TBD	TBD	TBD
MAX7411	500	1k	- 4	TBD	TBD	TBD	TBD
IVIAA7411	100	200		TBD	TBD	TBD	TBD
MAX7412	500	1k	- 2	TBD	TBD	TBD	TBD
IVIAA7412	100	200		TBD	TBD	TBD	TBD
MAX7415	500	1k	- 2	TBD	TBD	TBD	TBD
101477413	100	200		TBD	TBD	TBD	TBD

Chip Information

TRANSISTOR COUNT: 1457

Package Information

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

© 1998 Maxim Integrated Products

12

Printed USA

is a registered trademark of Maxim Integrated Products.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.