DirectFET™ ISOMETRIC

AUTOMOTIVE GRADE

International

Logic Level

- Advanced Process Technology
- Optimized for Automotive DC-DC, Motor Drive and other Heavy Load Applications
- Exceptionally Small Footprint and Low Profile
- High Power Density
- Low Parasitic Parameters
- Dual Sided Cooling
- 175°C Operating Temperature
- Repetitive Avalanche Capability for Robustness and Reliability
- Lead free, RoHS and Halogen free

V _{(BR)DSS}	40V
R _{DS(on)} typ.	5.0m Ω
max.	6.6m Ω
ID (Silicon Limited)	58A
Q _g	22nC

AUIRL7732S2TR

AUIRL7732S2TR1

Applicable DirectFET Outline and Substrate Outline ①					L	30				
SB	SC			M2	M4		L4	L6	L8	

Description

The AUIRL7732S2 combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve low gate charge as well as the lowest on-state resistance in a package that has the footprint which is 38% smaller than an SO-8 and only 0.7mm profile. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infrared or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in automotive power systems.

This HEXFET® Power MOSFET is designed for applications where efficiency and power density are of value. The advanced DirectFET® packaging platform coupled with the latest silicon technology allows the AUIRL7732S2 to offer substantial system level savings and performance improvement specifically in high frequency DC-DC, motor drive and other heavy load applications on ICE, HEV and EV platforms. The AUIRL7732S2 can be utilized together with the AUIRL7736M2 as a control/sync MOSFET pair in a buck converter topology. This MOSFET utilizes the latest processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for high current automotive applications.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	N	Units	
/ _{DS}	Drain-to-Source Voltage		V	
V _{GS}	Gate-to-Source Voltage	ŧ	- v	
_D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)		58	
_D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)		41	^
_D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) ³		14	- A
DM	Pulsed Drain Current Ø	2	230	
P _D @T _c = 25°C	Power Dissipation ④		41	w
$P_{D} @T_{A} = 25^{\circ}C$	Power Dissipation 3	:	2.2	
AS	Single Pulse Avalanche Energy (Thermally Limited) 6			
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value 6	124		— mJ
AR	Avalanche Current 5	See Fig. 18a,18b,16,17		A
AR	Repetitive Avalanche Energy (5)	1		mJ
Г _Р	Peak Soldering Temperature	260		
ГJ	Operating Junction and	-55 t	°C	
Г _{STG}	Storage Temperature Range			
Thermal Res	sistance			
	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③	<u> </u>		
$R_{\theta JA}$	Junction-to-Ambient ®			
R _{0JA}	Junction-to-Ambient	20		°C/W
R _{0JCan}	Junction-to-Can ④ ⁽¹⁾	3.7		
R _{0J-PCB}	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ④	C).27	W/°C

HEXFET® is a registered trademark of International Rectifier.

Static Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise stated)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.0	6.6	mΩ	V _{GS} = 10V, I _D = 35A ⑦
			7.5	10.5		V _{GS} = 4.5V, I _D = 29A ⑦
V _{GS(th)}	Gate Threshold Voltage	1.0	1.8	2.5	V	$V_{DS} = V_{GS}, I_D = 50 \mu A$
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Coefficient		-7.1		mV/°C	$v_{\rm DS} = v_{\rm GS}, v_{\rm D} = 50\mu A$
gfs	Forward Transconductance	64			S	$V_{DS} = 10V, I_{D} = 35A$
R _G	Gate Resistance		0.64		Ω	
DSS	Drain-to-Source Leakage Current			5		$V_{DS} = 40V, V_{GS} = 0V$
				250		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
GSS	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -16V

Dynamic Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise stated)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge		22	33		$V_{DS} = 20V$
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.3			$V_{GS} = 4.5V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.8		nC	I _D = 35A
Q_{gd}	Gate-to-Drain ("Miller") Charge		13			See Fig.11
Q _{godr}	Gate Charge Overdrive		2.9			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		15.8			
Q _{oss}	Output Charge		13		nC	$V_{DS} = 16V, V_{GS} = 0V$
t _{d(on)}	Turn-On Delay Time		21			$V_{DD} = 20V, V_{GS} = 4.5V$ ⑦
t _r	Rise Time		123		ns	I _D = 35A
t _{d(off)}	Turn-Off Delay Time		22			$R_{G} = 6.8\Omega$
t _f	Fall Time		37		1	
C _{iss}	Input Capacitance		2020			$V_{GS} = 0V$
C _{oss}	Output Capacitance		410		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		210		pF	f = 1.0MHz
Coss	Output Capacitance		1460		1	$V_{GS} = 0V, V_{DS} = 1.0V, f=1.0MHz$
C _{oss}	Output Capacitance		365		1	$V_{GS} = 0V, V_{DS} = 32V, f=1.0MHz$
C _{oss} eff.	Effective Output Capacitance		630		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$

Diode Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise stated)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current (Body Diode)	—		58		MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ^⑤	—		230		integral reverse p-n junction diode.	G
V _{SD}	Diode Forward Voltage			1.3	V	$I_S = 35A, V_{GS} = 0V$ ⑦	
t _{rr}	Reverse Recovery Time		23	35	ns	$I_F = 35A, V_{DD} = 20V$	
Q _{rr}	Reverse Recovery Charge		16	24	nC	di/dt = 100A/µs ⑦	

③ Surface mounted on 1 in. square Cu (still air).

 Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Notes 0 through 0 are on page 11

Qualification Information[†]

		Automotive				
			(per AEC-Q101) ^{††}			
Qualification Level		Comments: This part number(s) passed Automotive qualification IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity	Level	SMALL-CAN	MSL1, 260°C			
	Maahina Madal	Class M4 (+/- 425V) ^{†††}				
	Machine Model	AEC-Q101-002				
ESD			Class H1B (+/- 1000V) ^{†††}			
230	Human Body Model	AEC-Q101-001				
	Charged Device	N/A				
	Model	AEC-Q101-005				
RoHS Compliant	*	Yes				

† Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com</u>

†† Exceptions to AEC-Q101 requirements are noted in the qualification report.

††† Highest passing voltage.

International **tor** Rectifier

Fig 6. Normalized On-Resistance vs. Temperature www.irf.com

T.I , Junction Temperature (°C)

Fig 9. Typical Forward Transconductance vs. Drain Current

Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage www.irf.com

Fig 8. Typical Source-Drain Diode Forward Voltage

Fig 10. Typical Capacitance vs. Drain-to-Source Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

Fig 16. Typical Avalanche Current vs.Pulsewidth

International

Fig 18a. Unclamped Inductive Test Circuit

Fig 19a. Gate Charge Test Circuit

Fig 20a. Switching Time Test Circuit

AUIRL7732S2TR/TR1

Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long $\mbox{as}\mbox{T}_{\mbox{jmax}}$ is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 16, 17).
 - t_{av} = Average time in avalanche. D = Duty cycle in avalanche = t_{av} f

 $Z_{\text{th,IC}}(D, t_{av}) = \text{Transient thermal resistance, see figure 15}$

Fig 18b. Unclamped Inductive Waveforms

Fig 19b. Gate Charge Waveform

Fig 20b. Switching Time Waveforms

Automotive DirectFET[®] Board Footprint, SC (Small Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

Automotive DirectFET[®] Outline Dimension, SC Outline (Small Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DIMENSIONS								
	MET	RIC	IMPE	RIAL				
CODE	MIN	MAX	MIN	MAX				
Α	4.75	4.85	0.187	0.191				
В	3.70	3.95	0.146	0.156				
С	2.75	2.85	0.108	0.112				
D	0.35	0.45	0.014	0.018				
Е	0.58	0.62	0.023	0.024				
F	0.78	0.82	0.031	0.032				
G	0.75	0.80	0.030	0.031				
Н	0.63	0.67	0.025	0.026				
J	0.38	0.42	0.015	0.016				
К	0.95	1.05	0.037	0.041				
L	2.15	2.25	0.085	0.088				
М	0.68	0.74	0.027	0.029				
Р	0.08	0.17	0.003	0.007				
R	0.02	0.08	0.001	0.003				

Automotive DirectFET® Part Marking

Note: For the most current drawing please refer to IR website at <u>http://www.irf.com/package/</u> www.irf.com

Automotive DirectFET[®] Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm

Std reel quantity is 4800 parts. (ordered as AUIRL7732S2TR). For 1000 parts on 7" reel, order AUIRL7732S2TR1

REEL DIMENSIONS									
STANDARD OPTION (QTY 4800)					TR	1 OPTION	I (QTY 10	00)	
	ME	TRIC	IMP	IMPERIAL		ETRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- ③ Surface mounted on 1 in. square Cu board, steady state.
- $\circledast\ensuremath{\,\text{T}_{\text{C}}}$ measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25^{\circ}C$, L = 0.075mH, $R_G = 50\Omega$, $I_{AS} = 35A$, Vgs = 16V.
- \bigodot Pulse width \leq 400 $\mu s;$ duty cycle \leq 2%.

NOTE: CONTROLLING DIMENSIONS IN MM

- \circledast Used double sided cooling, mounting pad with large heatsink.
- In Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- @ R_{θ} is measured at T_J of approximately 90°C.

	DIMENSIONS									
	MET	RIC	IMPE	RIAL						
CODE	MIN	MAX	MIN	MAX						
А	7.90	8.10	0.311	0.319						
В	3.90	4.10	0.154	0.161						
С	11.90	12.30	0.469	0.484						
D	5.45	5.55	0.215	0.219						
Е	4.00	4.20	0.158	0.165						
F	5.00	5.20	0.197	0.205						
G	1.50	N.C	0.059	N.C						
Н	1.50	1.60	0.059	0.063						

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements

For technical support, please contact IR's Technical Assistance Center <u>http://www.irf.com/technical-info/</u>

> WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.