LC²MOS Quad SPST Switches ## ADG441/ADG442/ADG444 #### **FEATURES** 44 V supply maximum ratings V_{SS} to V_{DD} analog signal range Low on resistance ($<70 \Omega$) Low ΔR_{ON} (9 Ω max) Low R_{ON} match (3 Ω max) Low power dissipation Fast switching times toN < 110 ns $t_{OFF} < 60 \text{ ns}$ Low leakage currents (3 nA max) Low charge injection (6 pC max) **Break-before-make switching action** Latch-up proof A grade Plug-in upgrade for DG201A/ADG201A, DG202A/ADG202A, DG211/ADG211A Plug-in replacement for DG441/DG442/DG444 #### **APPLICATIONS** Audio and video switching **Automatic test equipment** Precision data acquisition **Battery-powered systems** Sample-and-hold systems **Communication systems** #### **GENERAL DESCRIPTION** The ADG441, ADG442, and ADG444 are monolithic CMOS devices that comprise of four independently selectable switches. They are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance. The on resistance profile is very flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments. The ADG441, ADG442, and ADG444 contain four independent SPST switches. Each switch of the ADG441 and ADG444 turns on when a logic low is applied to the appropriate control input. The ADG442 switches are turned on with logic high on the appropriate control input. The ADG441 and ADG444 switches #### Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. #### FUNCTIONAL BLOCK DIAGRAM differ in that the ADG444 requires a 5 V logic power supply that is applied to the V_L pin. The ADG441 and ADG442 do not have a V_L pin, the logic power supply is generated internally by an on-chip voltage generator. Each switch conducts equally well in both directions when ON and has an input signal range that extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is the low charge injection for minimum transients when switching the digital inputs. #### **PRODUCT HIGHLIGHTS** - 1. Extended signal range. The ADG441A/ADG442A/ ADG444A are fabricated on an enhanced LC2MOS, trenchisolated process, giving an increased signal range that extends to the supply rails. - 2. Low power dissipation. - 3. Low Ron. - 4. Trench isolation guards against latch-up for A grade parts. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions. - 5. Break-before-make switching. This prevents channel shorting when the switches are configured as a multiplexer. - 6. Single-supply operation. For applications where the analog signal is unipolar, the ADG441/ADG442/ADG444 can be operated from a single-rail power supply. The parts are fully specified with a single 12 V power supply. Fax: 781.461.3113 ©2005 Analog Devices, Inc. All rights reserved. ## **TABLE OF CONTENTS** | Specifications | 3 | |--|---| | Dual Supply | 3 | | Single Supply | 4 | | Absolute Maximum Ratings | 5 | | ESD Caution | 5 | | Pin Configurations and Function Descriptions | 6 | | Typical Performance Characteristics | 7 | | | | | Test Circuits | 9 | |--------------------|----| | Terminology | 11 | | Trench Isolation | 12 | | Outline Dimensions | 13 | | Ordering Guide | 14 | #### **REVISION HISTORY** # 5/05—Data Sheet Changed from Rev. 0 to Rev. AChanges to FormatUniversalDeleted CERDIP Package and T GradeUniversalChanges to Features and Product Highlights1Changes to Test Conditions in Table 24Changes to Figure 118Changes to Trench Isolation Section12Updated Outline Dimensions13Changes to Ordering Guide14 4/94-Revision 0: Initial Version ## **SPECIFICATIONS** #### **DUAL SUPPLY**¹ $V_{DD} = +15~V \pm 10\%, V_{SS} = -15~V \pm 10\%, V_L = +5~V \pm 10\% \ (ADG444), GND = 0~V, unless otherwise noted.$ Table 1. | | | B Version | Version | | |--|--------|----------------------|------------------|---| | Parameter | +25°C | -40°C to +85°C | Unit | Test Conditions/Comments | | ANALOG SWITCH | | | | | | Analog Signal Range | | V_{SS} to V_{DD} | V | | | Ron | 40 | | Ω typ | $V_D = \pm 8.5 \text{ V, } I_S = -10 \text{ mA}$ | | | 70 | 85 | Ω max | $V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$ | | ΔR_{ON} | | 4 | Ωtyp | $-8.5 \text{ V} \le \text{V}_{\text{D}} \le +8.5 \text{ V}$ | | | | 9 | Ω max | | | Ron Match | | 1 | Ωtyp | $V_D = 0 \text{ V, } I_S = -10 \text{ mA}$ | | | | 3 | Ω max | | | LEAKAGE CURRENTS | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | Source OFF Leakage Is (OFF) | ±0.01 | | nA typ | · | | 20 a. c. 2 | | . 2 | | $V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V}$ | | D : 0551 1 1 (055) | ±0.5 | ±3 | nA max | See Figure 15 | | Drain OFF Leakage I _D (OFF) | ±0.01 | | nA typ | $V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V}$ | | | ±0.5 | ±3 | nA max | See Figure 15 | | Channel ON Leakage ID, Is (ON) | ±0.08 | | nA typ | $V_S = V_D = \pm 15.5 \text{ V}$ | | | ±0.5 | ±3 | nA max | See Figure 16 | | DIGITAL INPUTS | | | | | | Input High Voltage, V _{INH} | | 2.4 | V min | | | Input Low Voltage, V _{INL} | | 0.8 | V max | | | Input Current | | | | | | I _{INL} or I _{INH} | | ±0.00001 | μA typ | $V_{IN} = V_{INL}$ or V_{INH} | | | | ±0.5 | μA max | | | DYNAMIC CHARACTERISTICS ² | | | , | | | ton | 85 | | ns typ | $R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$; | | | 110 | 170 | ns max | $V_s = \pm 10 \text{ V}$; see Figure 17 | | toff | 45 | | ns typ | $R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$; | | | 60 | 80 | ns max | $V_s = \pm 10 \text{ V}$; see Figure 17 | | topen | 30 | | ns typ | $R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$; | | Charge Injection | 1 | | pC typ | $V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ | | gy | 6 | | pC max | $V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}; \text{ see Figure 18}$ | | OFF Isolation | 60 | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 19 | | Channel-to-Channel Crosstalk | 100 | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 20 | | Cs (OFF) | 4 | | pF typ | f = 1 MHz | | C _D (OFF) | 4 | | pF typ | f = 1 MHz | | C _D , C _s (ON) | 16 | | pF typ | f = 1 MHz | | POWER REQUIREMENTS | 10 | | pi typ | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | I _{DD} | | | | Digital Inputs = $0 \text{ V or } 5 \text{ V}$ | | ADG441/ADG442 | | 80 | IIA may | Digital inputs = 0 v of 5 v | | ADG441/ADG442
ADG444 | 0.001 | OU | μΑ max
μΑ typ | | | ADQ 111 | | 2.5 | | | | | 1 | 2.5 | μA max | | | I _{SS} | 0.0001 | 2.5 | μA typ | | | L (ADC 444 Only) | 1 | 2.5 | μA max | V 55V | | I∟ (ADG444 Only) | 0.001 | 2.5 | μA typ | $V_L = 5.5 \text{ V}$ | | | 1 | 2.5 | μA max | | $^{^{1}}$ Temperature range is: B Version: -40°C to $+85^{\circ}\text{C}$. ² Guaranteed by design, not subject to production test. #### SINGLE SUPPLY¹ V_{DD} = +12 V \pm 10%, V_{SS} = 0 V, V_{L} = +5 V \pm 10% (ADG444), GND = 0 V, unless otherwise noted. Table 2. | | B Version | | | | | |---|-----------|------------------------|------------------|--|--| | Parameter | +25°C | -40°C to +85°C | Unit | Test Conditions/Comments | | | ANALOG SWITCH | | | | | | | Analog Signal Range | | 0 to V_{DD} | V | | | | R _{ON} | 70 | | Ωtyp | $V_D = +3 \text{ V}, +8 \text{ V}, I_S = -5 \text{ mA}$ | | | | 110 | 130 | Ωmax | $V_{DD} = 10.8 \text{ V}$ | | | ΔR_{ON} | | 4 | Ωtyp | $3 \text{ V} \leq \text{V}_{D} \leq 8 \text{ V}$ | | | | | 9 | Ω max | | | | R _{on} Match | | 1 | Ωtyp | $V_D = +6 \text{ V}, I_S = -5 \text{ mA}$ | | | | | 3 | Ω max | | | | LEAKAGE CURRENT | | | | V _{DD} = 13.2 V | | | Source OFF Leakage I _s (OFF) | ±0.01 | | nA typ | $V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$ | | | | ±0.5 | ±3 | nA max | See Figure 15 | | | Drain OFF Leakage I _D (OFF) | ±0.01 | | nA typ | $V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V}$ | | | Z.a 311 Zeallage ID (3.17) | ±0.5 | ±3 | nA max | See Figure 15 | | | Channel ON Leakage ID, Is (ON) | ±0.08 | | nA typ | $V_S = V_D = 12.2 \text{ V/1 V}$ | | | Charmer Ort Leanage 10, 13 (ON) | ±0.56 | ±3 | nA max | Figure 16 | | | DIGITAL INPUTS | | | TIT CITICA | rigate to | | | Input High Voltage, V _{INH} | | 2.4 | V min | | | | Input Low Voltage, V _{INL} | | 0.8 | V max | | | | Input Current | | 0.0 | VIIIdx | | | | lint or linh | | ±0.00001 | μA typ | V _{IN} = V _{INI} or V _{INH} | | | TINE OF TINH | | ±0.5 | μΑ typ | VIN — VINL OI VINH | | | DYNAMIC CHARACTERISTICS ² | | ±0.5 | μΑπιαχ | | | | | 105 | | ns tun | $R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$ | | | ton | 150 | 220 | ns typ
ns max | $V_S = 8 \text{ V}$; Figure 17 | | | •. | 40 | 220 | | $V_S = 0$ V, Figure 17
$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$ | | | toff | 60 | 100 | ns typ | $V_S = 8 \text{ V}$; Figure 17 | | | | | 100 | ns max | $V_S = 6 \text{ V}$, Figure 17
$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$ | | | topen | 50 | | ns typ | · | | | Charge Injection | 2 | | pC typ | $V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$ | | | OFF lastetian | 6 | | pC max | $V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}; \text{ see Figure 18}$ | | | OFF Isolation | 60 | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 19 | | | Channel-to-Channel Crosstalk | 100 | | dB typ | $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20 | | | C _s (OFF) | 7 | | pF typ | f = 1 MHz | | | C _D (OFF) | 10 | | pF typ | f = 1 MHz | | | C _D , C _S (ON) | 16 | | pF typ | f = 1 MHz | | | POWER REQUIREMENTS | | | | $V_{DD} = 13.2 \text{ V}$ | | | I _{DD} | | | | Digital Inputs = 0 V or 5 V | | | ADG441/ADG442 | | 80 | μA max | | | | ADG444 | 0.001 | | μA typ | | | | | 1 | 2.5 | μA max | | | | I∟ (ADG444 Only) | 0.001 | | μA typ | $V_L = 5.5 \text{ V}$ | | | | 1 | 2.5 | μA max | | | $^{^1}$ Temperature range is: B Version: -40°C to +85°C. 2 Guaranteed by design, not subject to production test. ## **ABSOLUTE MAXIMUM RATINGS** $T_A = 25$ °C unless otherwise noted. #### Table 3. | Table 3. | | |---|---| | Parameter | Rating | | V _{DD} to V _{SS} | 44 V | | V _{DD} to GND | -0.3 V to +25 V | | V _{SS} to GND | +0.3 V to -25 V | | V _L to GND | $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ | | Analog, Digital Inputs | V _{SS} – 2 V to V _{DD} + 2 V or 30 mA, Whichever Occurs First | | Continuous Current, S or D | 30 mA | | Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) | 100 mA | | Operating Temperature Range | | | Industrial (B Version) | −40°C to +85°C | | Storage Temperature Range | −65°C to +150°C | | Junction Temperature | 150°C | | Lead Temperature, Soldering (10 sec) | 300°C | | Plastic Package, Power Dissipation | 470 mW | | θ_{JA} , Thermal Impedance | 177°C/W | | Lead Temperature, Soldering (10 sec) | 260°C | | SOIC Package, Power Dissipation | 600 mW | | θ_{JA} , Thermal Impedance | 77°C/W | | Lead Temperature, Soldering | | | Vapor Phase (60 sec) | 215°C | | Infrared (15 sec) | 220°C | Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. **Table 4. Truth Table** | ADG441/ADG444 IN | ADG442 IN | Switch Condition | | |------------------|-----------|------------------|--| | 0 | 1 | ON | | | 1 | 0 | OFF | | #### **ESD CAUTION** ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. ## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 2. ADG441/ADG442 (DIP/SOIC) Figure 3. ADG444 (DIP/SOIC) Table 5. ADG441/ADG442 Pin Function Descriptions | Pin No. | Mnemonic | Description | |--------------|-----------------|--| | 1, 8, 9, 16 | IN1 to IN4 | Logic Control Input. | | 2, 7, 10, 15 | D1 to D4 | Drain Terminal. May be an input or output. | | 3, 6, 11, 14 | S1 to S4 | Source Terminal. May be an input or output. | | 4 | V _{SS} | Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground. | | 5 | GND | Ground (0 V) Reference. | | 12 | NC | No Connect. | | 13 | V_{DD} | Most Positive Power Supply Potential. | **Table 6. ADG444 Pin Function Descriptions** | Pin No. | Mnemonic | Description | |--------------|-----------------|--| | 1, 8, 9, 16 | IN1 to IN4 | Logic Control Input. | | 2, 7, 10, 15 | D1 to D4 | Drain Terminal. May be an input or output. | | 3, 6, 11, 14 | S1 to S4 | Source Terminal. May be an input or output. | | 4 | V _{SS} | Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground. | | 5 | GND | Ground (0 V) Reference. | | 12 | V_L | Logic Power Supply (5 V). | | 13 | V_{DD} | Most Positive Power Supply Potential. | ## TYPICAL PERFORMANCE CHARACTERISTICS Figure 4. R_{ON} as a Function of V_D (V_S): Dual Supply Figure 5. R_{ON} as a Function of V_D (V_S): Single Supply Figure 6. R_{ON} as a Function of V_D (V_S) for Different Temperatures Figure 7. Leakage Currents as a Function of $V_S(V_D)$ Figure 8. Crosstalk and Off Isolation vs. Frequency Figure 9. R_{ON} as a Function of V_D (V_S) for Different Temperatures Figure 10. Leakage Currents as a Function of V_S (V_D) Figure 11. Charge Injection vs. Source Voltage Figure 12. Switching Time vs. Bipolar Supply Figure 13. Switching Time vs. Single Supply ## **TEST CIRCUITS** Figure 14. On Resistance Figure 15. Off Leakage Figure 16. On Leakage Figure 17. Switching Times Figure 18. Charge Injection Figure 19. Off Isolation Figure 20. Channel-to-Channel Crosstalk 05233-022 ## **TERMINOLOGY** $\mathbf{R}_{\mathbf{ON}}$ Ohmic resistance between D and S. Ron Match Difference between the Ron of any two channels. Is (OFF) Source leakage current with the switch OFF. I_D (OFF) Drain leakage current with the switch OFF. I_D, I_S (ON) Channel leakage current with the switch ON. $V_D(V_S)$ Analog voltage on Terminals D, S. Cs (OFF) OFF switch source capacitance. C_D (OFF) OFF switch drain capacitance. C_D , C_S (ON) ON switch capacitance. t_{ON} Delay between applying the digital control input and the output switching on. t_{OFF} Delay between applying the digital control input and the output switching off. **t**open Break-before-make delay when switches are configured as a multiplexer. Crosstalk A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. **Off Isolation** A measure of unwanted signal coupling through an OFF switch. **Charge Injection** A measure of the glitch impulse transferred from the digital input to the analog output during switching. ### TRENCH ISOLATION In the ADG441A, ADG442A, and ADG444A, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch. In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward-biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch. Figure 21. Trench Isolation ## **OUTLINE DIMENSIONS** COMPLIANT TO JEDEC STANDARDS MO-095AC CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 22. 16-Lead Plastic Dual In-Line Package [PDIP] (N-16) Dimensions shown in inches and (millimeters) COMPLIANT TO JEDEC STANDARDS MS-012AC CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 23. 16-Lead Standard Small Outline Package [SOIC] (R-16) Dimensions shown in millimeters and (inches) #### **ORDERING GUIDE** | Model | Temperature Range | Package Description | Package Option | |---------------------------------|-------------------|---|----------------| | ADG441BN | −40°C to +85°C | 16-Lead Plastic Dual In-Line Package (PDIP) | N-16 | | ADG441BR | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441BR-REEL | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441BRZ ¹ | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441BRZ-REEL ¹ | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441BCHIPS | | DIE | | | ADG441ABCHIPS ² | | DIE | | | ADG441ABN ² | -40°C to +85°C | 16-Lead Plastic Dual In-Line Package (PDIP) | N-16 | | ADG441ABR ² | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441ABR-REEL ² | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441ABRZ-REEL ^{1,2} | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442BN | −40°C to +85°C | 16-Lead Plastic Dual In-Line Package (PDIP) | N-16 | | ADG442BR | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442BR-REEL | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442BRZ ¹ | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442BRZ-REEL ¹ | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442ABN ² | -40°C to +85°C | 16-Lead Plastic Dual In-Line Package (PDIP) | N-16 | | ADG442ABR ² | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442ABR-REEL ² | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442ABRZ ^{1, 2} | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG442ABRZ-REEL ^{1,2} | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444BN | −40°C to +85°C | 16-Lead Plastic Dual In-Line Package (PDIP) | N-16 | | ADG444BR | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444BR-REEL | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444BRZ ¹ | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444BRZ-REEL ¹ | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444ABN ² | -40°C to +85°C | 16-Lead Plastic Dual In-Line Package (PDIP) | N-16 | | ADG444ABR ² | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444ABR-REEL ² | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444ABRZ ^{1, 2} | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG444ABRZ-REEL ^{1, 2} | -40°C to +85°C | 16-Lead Standard Small Outline Package (SOIC) | R-16 | | ADG441 | /∆N | C447 | /ΔΓ | 1G <i>444</i> | |---------------|-----|------|-----|---------------| | ADUTT | IAD | UTTL | ML | /U444 | # NOTES **NOTES** Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.