General Description

The MAX4238/MAX4239 are low-noise, low-drift, ultrahigh precision amplifiers that offer near-zero DC offset and drift through the use of patented autocorrelating zeroing techniques. This method constantly measures and compensates the input offset, eliminating drift over time and temperature and the effect of 1/f noise. Both devices feature rail-to-rail outputs, operate from a single 2.7V to 5.5V supply, and consume only 600µA. An activelow shutdown mode decreases supply current to 0.1µA.

The MAX4238 is unity-gain stable with a gain-bandwidth product of 1MHz, while the decompensated MAX4239 is stable with A_V \geq 10V/V and a GBWP of 6.5MHz. The MAX4238/MAX4239 are available in 8-pin narrow SO, 6-pin TDFN and SOT23 packages.

Applications

- Thermocouples
- Strain Gauges
- Electronic Scales
- Medical Instrumentation
- Instrumentation Amplifiers

Typical Application Circuit

Features

- ♦ Ultra-Low, 0.1µV Offset Voltage 2.0µV (max) at +25°C 2.5µV (max) at -40°C to +85°C 3.5µV (max) at -40°C to +125°C
- Low 10nV/°C Drift
- Specified over the -40°C to +125°C Automotive Temperature Range
- ♦ Low Noise: 1.5µVp-p from DC to 10Hz
- ♦ 150dB Avol, 140dB PSRR, 140dB CMRR
- High Gain-Bandwidth Product 1MHz (MAX4238)
 6.5MHz (MAX4239)
- 0.1µA Shutdown Mode
- Rail-to-Rail Output (R_L = 1kΩ)
- Low 600µA Supply Current
- Ground-Sensing Input
- ♦ Single 2.7V to 5.5V Supply Voltage Range
- Available in a Space-Saving 6-Pin SOT23 and TDFN Packages

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX4238AUT-T	6 SOT23	AAZZ
MAX4238AUT/V+T	6 SOT23	
MAX4238ASA	8 SO	_
MAX4238ATT+T	6 TDFN-EP*	+ANG
MAX4239AUT-T	6 SOT23	ABAA
MAX4239AUT/V+T	6 SOT23	_
MAX4239ASA	8 SO	
MAX4239ATT+T	6 TDFN-EP*	+ANH

Note: All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

*EP = Exposed paddle.

/V denotes an automotive-qualified part.

Selector Guide

PART	MINIMUM STABLE GAIN	GAIN BANDWIDTH (MHz)
MAX4238	1V/V	1
MAX4239	10V/V	6.5

Pin Configurations appear at end of data sheet.

MAX4238/MAX4239

___ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V_{CC} to GND)......6V All Other Pins($V_{GND} - 0.3V$) to ($V_{CC} + 0.3V$) **Output Short-Circuit Duration**

(OUT shorted to V_{CC} or GND)Continuous Continuous Power Dissipation ($T_A = +70^{\circ}C$)

6-Pin Plastic SOT23

(derate 9.1mW/°C above +70°C).....727mW 8-Pin Plastic SO (derate 5.88mW/°C above +70°C)....471mW

6-Pin TDFN-EP (derate 18.2mW above +70°C)......1454mW

Operating Temperature Range	
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	
Lead(Pb)-Free Packages	+260°C
Packages Containing Lead	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(2.7V \le V_{CC} \le 5.5V, V_{CM} = V_{GND} = 0V, V_{OUT} = V_{CC}/2, R_L = 10k\Omega$ connected to $V_{CC}/2, \overline{SHDN} = V_{CC}, T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
Input Offset Voltage	Vos	(Note 1)	(Note 1)		0.1	2	μV	
Long-Term Offset Drift					50		nV/1000hr	
Input Bias Current	Ι _Β	(Note 2)	(Note 2)		1		рА	
Input Offset Current	los	(Note 2)			2		рА	
Peak-to-Peak Input Noise Voltage	enP-P	$R_{\rm S} = 100\Omega, 0.01 {\rm Hz}$ to 10H	lz		1.5		μV _{P-P}	
Input Voltage-Noise Density	en	f = 1kHz			30		NV/√Hz	
Common-Mode Input Voltage Range	VCM	Inferred from CMRR test		V _{GND} - 0.1		V _{CC} - 1.3	V	
Common-Mode Rejection Ratio	CMRR	$-0.1V \le V_{CM} \le V_{CC} - 1.3V$ (N	lote 1)	120	140		dB	
Power-Supply Rejection Ratio	PSRR	$2.7V \le V_{CC} \le 5.5V$ (Note 1)		120	140		dB	
	A	$0.05V \le V_{OUT} \le V_{CC} - 0.05V$ (Note 1)	$R_L = 10k\Omega$	125	150		dD	
Large-Signal Voltage Gain	Avol	$0.1V \le V_{OUT} \le V_{CC} - 0.1V$ (Note 1)	$R_L = 1k\Omega$	125	145	dB		
		V _{CC} -V _{OH}	V _{CC} - V _{OH}		4	10		
Output Voltage Swing		$R_L = 10 k\Omega$	Vol		4	10	mV	
Output voltage Swing	V _{OH} /V _{OL}	$R_{\rm I} = 1 k \Omega$	VCC - VOH		35	50		
		$\Pi = 1K22$	Vol		35	50		
Output Short-Circuit Current		To either supply			40		mA	
Output Leakage Current		$0 \le V_{OUT} \le V_{CC}, \overline{SHDN} = G$	iND (Note 2)		0.01	1	μA	
Slew Rate		$V_{CC} = 5V, C_L = 100pF,$	MAX4238		0.35		V/µs	
Siew hate		V _{OUT} = 2V step MAX4239			1.6		v/µ5	
Gain-Bandwidth Product	GBWP	$R_{L} = 10 k \Omega, C_{L} = 100 pF,$	MAX4238		1		- MHz	
		measured at f = 100kHz	MAX4239		6.5			
Minimum Stable Closed-Loop		$R_{L} = 10 k \Omega, C_{L} = 100 pF,$	MAX4238		1		- V/V	
Gain		phase margin = 60°	MAX4239		10		v/v	

ELECTRICAL CHARACTERISTICS (continued)

 $(2.7V \le V_{CC} \le 5.5V, V_{CM} = V_{GND} = 0V, V_{OUT} = V_{CC}/2, R_L = 10k\Omega$ connected to $V_{CC}/2$, $\overline{SHDN} = V_{CC}$, $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
Maximum Classed Loop Cain		$R_{L} = 10k\Omega, C_{L} = 100pF,$	MAX4238		1000		ms ms ms
Maximum Closed-Loop Gain		phase margin = 60°	MAX4239		6700		
			0.1% (10 bit)		0.5		
Cottling Time		1\/ atap	$ \begin{array}{c} 0.1\% (10 \text{ bit}) & 0.5 \\ 0.025\% (12 \text{ bit}) & 1.0 \\ 0.006\% (14 \text{ bit}) & 1.7 \\ 0.0015\% (16 \text{ bit}) & 2.3 \\ 0.0015\% (16 \text{ bit}) & 2.3 \\ 0.1\% (10 \text{ bit}) & 3.3 \\ 0.025\% (12 \text{ bit}) & 4.1 \\ 0.006\% (14 \text{ bit}) & 4.9 \\ 0.0015\% (16 \text{ bit}) & 5.7 \\ 0.1\% (10 \text{ bit}) & 5.7 \\ 0.1\% (10 \text{ bit}) & 5.7 \\ 0.1\% (10 \text{ bit}) & 1.8 \\ 0.025\% (12 \text{ bit}) & 2.6 \\ 0.006\% (14 \text{ bit}) & 3.4 \\ 0.0015\% (16 \text{ bit}) & 3.4 \\ 0.0015\% (16 \text{ bit}) & 4.3 \\ \end{array} $	1.0		mo	
Settling Time		-1V step		1.7		1115	
			0.0015% (16 bit)	1000 6700 0.5 1.0 1.7 2.3 3.3 4.1 4.9 5.7 1.8 2.6 3.4 4.3 2.7 5.5 600 850 0.1 1 2.2 0.8			
			0.1% (10 bit)		3.3		
Overload Recovery Time		$A_{V} = 10$	0.025% (12 bit)		4.1		ms
		(Note 4)	0.006% (14 bit)		4.9		
			0.0015% (16 bit)	6 bit) 5.7			
			0.1% (10 bit)		1.8		
Startup Time	$A_V = 10$ (Note 4) $0.025\% (12 \text{ bit})$ $0.006\% (14 \text{ bit})$ $0.0015\% (16 \text{ bit})$ $0.1\% (10 \text{ bit})$ $0.025\% (12 \text{ bit})$ $0.025\% (12 \text{ bit})$ $0.006\% (14 \text{ bit})$ $0.006\% (14 \text{ bit})$ $0.0015\% (16 \text{ bit})$		2.6		~		
Startup Time		$A_V = 10$ (Note 4) $A_V = 10$ $A_V = 10$ (Note 4) $0.025\% (12 \text{ bit})$ $0.006\% (14 \text{ bit})$ $0.0015\% (16 \text{ bit})$ $0.0015\% (16 \text{ bit})$ $0.025\% (12 \text{ bit})$ $0.0015\% (16 \text{ bit})$ $0.025\% (12 \text{ bit})$ $0.025\% (12 \text{ bit})$ $0.006\% (14 \text{ bit})$ $0.006\% (14 \text{ bit})$ $0.0015\% (16 \text{ bit})$		3.4		ms	
			0.0015% (16 bit)		4.3		
Supply Voltage Range	Vcc	Inferred by PSRR test	·	2.7		5.5	V
Supply Current	1				600	850	0
Supply Current	ICC			0.1	1	μΑ	
Shutdown Logic-High	ViH			2.2			V
Shutdown Logic-Low	VIL					0.8	V
Shutdown Input Current		$0V \le V \overline{SHDN} \le V_{CC}$			0.1	1	μA

ELECTRICAL CHARACTERISTICS

 $(2.7V \le V_{CC} \le 5.5V, V_{CM} = GND = 0V, V_{OUT} = V_{CC}/2, R_L = 10k\Omega$ connected to $V_{CC}/2$, $\overline{SHDN} = V_{CC}$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS		
Input Offset Voltage	V _{OS}	(Note 1)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			2.5 3.5	μV		
Input Offset Drift	TCVOS	(Note 1)			10		nV/°C		
Common-Mode Input Voltage Range	VCM	Inferred from	CMRR test	Vgnd - 0.05		V _{CC} - 1.4	V		
Common-Mode Rejection Ratio	CMRR	VGND - 0.05V	\leq T _A = -40°C to +85°C	115			dD		
Common-wode Rejection Ratio	CIVINN	V _{CM} ≤ V _{CC} - 1.4V (Note 1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	90			dB		
Power-Supply Rejection Ratio	PSRR	$2.7V \le V_{CC} \le$	5.5V (Note 1)	120			dB		
		$R_{L} = 10k\Omega,$ 0.1V \leq V _{OUT}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	125			dP		
	Avol	≤ V _{CC} - 0.1V (Note 1)	$T_{A} = -40^{\circ}C \text{ to } + 125^{\circ}C$	95			dB		
Large-Signal Voltage Gain		$ \begin{array}{c c} \mbox{L} & \mbox{$0.1V \le V_{OUT} \le V_{CC} - 0.1V$,} \\ \mbox{$T_A = -40^\circ C \ to \ +85^\circ C$} \\ \mbox{$(Note \ 1)$} & \mbox{$0.2V \le V_{OUT} \le V_{CC} - 0.2V$,} \\ \mbox{$T_A = -40^\circ C \ to \ +125^\circ C$} \\ \end{array} $		120			-10		
			80			dB			
		$R_L = 10k\Omega$	V _{CC} - V _{OH}			20			
Output Voltage Swing	VOH/VOL		V _{OL}			20	mV		
Ouput voltage Swing		VOH/VOL	VOH/VOL	$R_L = 1k\Omega$	V _{CC} - V _{OH}			100	IIIV
			VOL			100			
Output Leakage Current		$0V \le V_{OUT} \le V_{OUT}$ (Note 3)	$I_{\rm CC}, \overline{\rm SHDN} = {\rm GND}$			2	μΑ		
Supply Voltage Range	Vcc	Inferred by PS	SRR test	2.7		5.5	V		
Supply Current		$\overline{SHDN} = V_{CC}, \text{ no load}, V_{CC} = 5.5V$ $\overline{SHDN} = GND, V_{CC} = 5.5V$		$\overline{\text{SHDN}} = V_{CC}$, no load, $V_{CC} = 5.5V$				900	
Supply Current	Icc					2	μA		
Shutdown Logic High	VIH			2.2			V		
Shutdown Logic Low	VIL					0.7	V		
Shutdown Input Current		0V ≤ V SHDN ≤	Vcc			2	μA		

Note 1: Guaranteed by design. Thermocouple and leakage effects preclude measurement of this parameter during production testing. Devices are screened during production testing to eliminate defective units.

Note 2: IN+ and IN- are gates to CMOS transistors with typical input bias current of 1pA. CMOS leakage is so small that it is impractical to test and guarantee in production. Devices are screened during production testing to eliminate defective units.
 Note 3: Leakage does not include leakage through feedback resistors.

Note 4: Overload recovery time is the time required for the device to recover from saturation when the output has been driven to either rail.

Note 5: Specifications are 100% tested at $T_A = +25^{\circ}C$, unless otherwise noted. Limits over temperature are guaranteed by design.

OFFSET VOLTAGE INPUT OFFSET DISTRIBUTION **OFFSET VOLTAGE vs. SUPPLY VOLTAGE** vs. COMMON-MODE VOLTAGE 50 0.4 0.4 T_A = +125°C 40 T_A = +125°C PERCENTAGE OF UNITS (%) $T_A = +25^{\circ}C$ 0.2 0.2 OFFSET VOLTAGE (µV) OFFSET VOLTAGE (µV) -40°C TΑ $T_A = +25^{\circ}C$ 30 $T_A = -40^{\circ}C$ 0 0 20 -0.2 -0.2 10 0 -0.4 -0.4 -1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 2.7 3.4 4.1 4.8 5.5 0 0.9 1.8 2.7 3.6 OFFSET VOLTAGE (µV) SUPPLY VOLTAGE (V) COMMON-MODE VOLTAGE (V) MAX4238 **OUTPUT HIGH VOLTAGE OUTPUT LOW VOLTAGE** GAIN AND PHASE vs. FREQUENCY vs. OUTPUT SOURCE CURRENT vs. OUTPUT SINK CURRENT 80 0.30 0.35 V_{OH} = V_{CC} - V_{OUT} 60 0.30 40 0.25 AIN AND PHASE (dB/DEGREES) 20 OUTPUT HIGH VOLTAGE (V) OUTPUT LOW VOLTAGE (V) 0.25 0 0.20 $V_{CC} = 2.7V$ -20 $V_{CC} = 2.7V$ 0.20 -40 0.15 $V_{CC} = 5V$ -60 0.15 $V_{CC} = 5V$ -80 0.10 -100 0.10 $V_{CC} = 5V$ -120 GAIN = 60dB 0.05 -140 0.05 $R_L = 10 k \Omega$ -160 $C_L = 0 p F$ -180 0 0 100 0 5 10 15 20 0 5 10 15 20 1k 10k 100k 1M 10M FREQUENCY (Hz) SINK CURRENT (mA) SOURCE CURRENT (mA) MAX4238 **MAX4238 MAX4238 GAIN AND PHASE vs. FREQUENCY GAIN AND PHASE vs. FREQUENCY GAIN AND PHASE vs. FREQUENCY** 80 80 80 60 60 60 40 40 40 **BAIN AND PHASE (dB/DEGREES)** GAIN AND PHASE (dB/DEGREES) GAIN AND PHASE (dB/DEGREES) 20 20 20 0 0 0 -20 -20 -20 -40 -40 -40 -60 -60 -60 -80 -80 -80 -100 -100 -100 $V_{CC} = 5V$ $V_{CC} = 5V$ $V_{CC} = 5V$ -120 -120 -120 GAIN = 60dB GAIN = 40dB GAIN = 40dB -140 -140 -140 $R_L=10k\Omega$ $R_L = 10k\Omega$ $R_L = 10k\Omega$ -160 -160 -160 $C_{I} = 100 pF$ $C_{I} = 0 pF$ Cı = 68pF -180 -180 -180 100 1k 10k 100k 1M 10M 100 1k 10k 100k 1M 10M 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz)

__Typical Operating Characteristics

 $(V_{CC} = 5V, V_{CM} = 0V, R_L = 10k\Omega$ connected to $V_{CC}/2$, $\overline{SHDN} = V_{CC}, T_A = +25^{\circ}C$, unless otherwise noted.)

MAX4238/MAX4239

MAX4238/MAX4239

6

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{CM} = 0V, R_L = 10k\Omega$ connected to $V_{CC}/2$, $\overline{SHDN} = V_{CC}, T_A = +25^{\circ}C$, unless otherwise noted.)

SHDN 2V/div

SHUTDOWN WAVEFORM

 $\mathsf{OUT} = 100\mathsf{F}$

Offset Error Sources

To achieve very low offset, several sources of error common to autozero-type amplifiers need to be considered. The first contributor is the settling of the sampling capacitor. This type of error is independent of inputsource impedance, or the size of the external gain-setting resistors. Maxim uses a patented design technique to avoid large changes in the voltage on the sampling capacitor to reduce settling time errors.

The second error contributor, which is present in both autozero and chopper-type amplifiers, is the charge injection from the switches. The charge injection appears as current spikes at the input, and combined with the impedance seen at the amplifier's input, contributes to input offset voltage. Minimize this feedthrough by reducing the size of the gain-setting resistors and the input-source impedance. A capacitor in parallel with the feedback resistor reduces the amount of clock feedthrough to the output by limiting the closed-loop bandwidth of the device.

The design of the MAX4238/MAX4239 minimizes the effects of settling and charge injection to allow specification of an input offset voltage of $0.1\mu V$ (typ) and less than $2.5\mu V$ over temperature (-40°C to +85°C).

1/f Noise

1/f noise, inherent in all semiconductor devices, is inversely proportional to frequency. 1/f noise increases 3dB/octave and dominates amplifier noise at lower frequencies. This noise appears as a constantly changing voltage in series with any signal being measured. The MAX4238/MAX4239 treat 1/f noise as a slow varying offset error, inherently canceling the 1/f noise.

$\begin{array}{l} \mathsf{R}_{\mathsf{L}} = 10 \mathsf{k} \Omega \\ \mathsf{C}_{\mathsf{L}} = 100 \mathsf{pF} \end{array}$

Pin Description

	PIN		NAME	FUNCTION
TDFN	SOT23	SO		Amplifier Output Ground Noninverting Input Inverting Input Shutdown Input. Active-low
1	1	6	OUT	Amplifier Output
2	2	4	GND	Ground
3	3	3	IN+	Noninverting Input
4	4	2	IN-	Inverting Input
5	5	1	SHDN	
6	6	7	Vcc	Positive Power Supply
	_	5, 8	N.C.	No Connection. Not internally connected.
			EP	Exposed Pad (TDFN only). Connect EP to GND.

Detailed Description

The MAX4238/MAX4239 are high-precision amplifiers that have less than 2.5μ V of input-referred offset and low 1/f noise. These characteristics are achieved through a patented autozeroing technique that samples and cancels the input offset and noise of the amplifier. The pseudorandom clock frequency varies from 10kHz to 15kHz, reducing intermodulation distortion present in chopper-stabilized amplifiers.

MAX4238/MAX4239

Output Overload Recovery

Autozeroing amplifiers typically require a substantial amount of time to recover from an output overload. This is due to the time it takes for the null amplifier to correct the main amplifier to a valid output. The MAX4238/ MAX4239 require only 3.3ms to recover from an output overload (see *Electrical Characteristics* and *Typical Operating Characteristics*).

Shutdown

The MAX4238/MAX4239 feature a low-power (0.1 μ A) shutdown mode. When SHDN is pulled low, the clock stops and the device output enters a high-impedance state. Connect SHDN to V_{CC} for normal operation.

Applications Information

Minimum and Maximum Gain Configurations

The MAX4238 is a unity-gain stable amplifier with a gainbandwidth product (GBWP) of 1MHz. The MAX4239 is decompensated for a GBWP of 6.5MHz and is stable with a gain of 10V/V. Unlike conventional operational amplifiers, the MAX4238/MAX4239 have a maximum gain specification. To maintain stability, set the gain of the MAX4238 between $A_V = 1000V/V$ to 1V/V, and set the gain of the MAX4239 between $A_V = 6700V/V$ and 10V/V.

ADC Buffer Amplifier

The low offset, fast settling time, and 1/f noise cancellation of the MAX4238/MAX4239 make these devices ideal for ADC buffers. The MAX4238/MAX4239 are well suited for low-speed, high-accuracy applications such as strain gauges (see *Typical Application Circuit*).

Error Budget Example

When using the MAX4238/MAX4239 as an ADC buffer, the temperature drift should be taken into account when determining the maximum input signal. With a typical offset drift of 10nV/°C, the drift over a 10°C range is 100nV. Setting this equal to 1/2LSB in a 16-bit system yields a full-scale range of 13mV. With a single 2.7V supply, an acceptable closed-loop gain is $A_V = 200$. This provides sufficient gain while maintaining headroom.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SOT23	U6F-6	<u>21-0058</u>	<u>90-0175</u>
8 SO	S8-4	<u>21-0041</u>	<u>90-0096</u>
6 TDFN	T633+2	<u>21-0137</u>	<u>90-0058</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
2	5/06		_
3	8/11	Added MAX4238 and MAX4239 automotive-qualified parts	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

9

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.