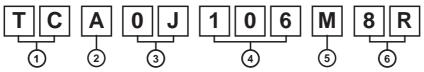

Chip tantalum capacitors TC Series A Case


●Features (A)

- 1) Vital for all hybrid integrated circuits board application.
- 2) Wide capacitance range.
- 3) Screening by thermal shock.

●Dimensions (Unit: mm)

●Part No. Explanation

- 1)Series name
- Case style
- 3 Rated voltage

Rated voltage (V)		6.3				
CODE	0G	0J	1A	1C	1D	1E

(4) Nominal capacitance

Nominal capacitance in pF in 3 digits: 2 significant figures followed by the figure representing the number of 0's.

(5) Capacitance tolerance

 $M: \pm 20\%$ $K: \pm 10\%$

- **6** Taping
 - 8 : Tape width
 - R : Positive electrode on the side opposite to sprocket hole

Rated table

		ı	Rated vo	ltage (V)	
(μF)	4	6.3	10	16	20	25
	0G	0J	1A	1C	1D	1E
1 (105)				Α	А	А
1.5 (155)			Α	A I	<i>New</i> A	<i>New</i> A
2.2 (225)			Α	A I	<i>New</i> A	<i>New</i> A
3.3 (335)		Α	Α	A I	<i>New</i> A	<i>New</i> A
4.7 (475)	Α	Α	Α	A I	<i>New</i> A	<i>New</i> A
6.8 (685)	Α	Α	Α	Α		
10 (106)	Α	Α	Α	Α		
15 (156)	Α	Α	А			
22 (226)	Α	Α	Α			
33 (336)	Α	Α	*A			
47 (476)	Α	Α	*A			
68 (686)	A	New A				
100 (107)	Α	*A				
150 (157)						

Remark) Case size codes (A) in the above show products line-up.

New indicates new product

Marking

The indications listed below should be given on the surface of a capacitor.

- (1) Polarity : The polarity should be shown by □ bar. (on the anode side)
 (2) Rated DC voltage : Due to the small size of A case, a voltage code is used as shown below.
 (3) Visual typical example (1) voltage code (2) capacitance code

Voltage Code	Rated DC Voltage (V)
g	4
j	6.3
А	10
С	16
D	20
Е	25

Capacitance	Nominal
Code	Capacitance (μF)
А	1.0
Е	1.5
J	2.2
N	3.3
S	4.7
W	6.8
а	10
е	15
j	22
n	33
S	47
W	68
ā	100

[A case] note 1)

note 2) voltage code and capacitance code are variable with parts number

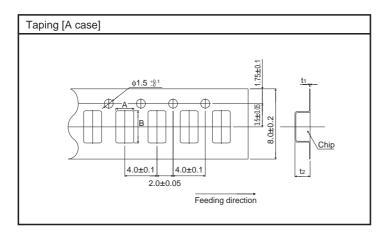
Characteristics

Iter	n					F	Perl	orr	ma	nce		Test conditions (based on JIS C 5101–1 and JIS C 5101–						
Operating Temp		-5	5°	C~+′	125°	С						Volta	age	re	eduction w	hen	temperature ex	cceeds +85°C
Maximum operat temperature with derating		+8	5°	0														
Rated voltage (VDC)	4	6.	3 10	16	2	20	25				at 85	s°C	;				
Category voltag	e (VDC)	2.5	5 4 6.3 10 13 16					at 12	25°	С								
Surge voltage (VDC)	5	8	13	20	2	26	32				at 85	s°C	;				
DC Leakage cu	rrent			or (n in						er is greater		As p	er ·	4.5	JIS C 51 5.1 JIS C 5 Rated volt	5101	-3	
Capacitance tol	erance			be s		ied	d all	ow	an	ce range.		As possession Measurement Meas	er sur sur	4.5 ring ring		5101 cy : 1 : 0		
Tangent of loss (Df, tan δ)	angle			be s			d the	e vo	olt	age on		As per 4.8 JIS C 5101-1 As per 4.5.3 JIS C 5101-3 Measuring frequency: 120±12Hz Measuring voltage: 0.5Vrms +1.5 to 2V.DC Measuring circuit: DC Equivalent series circuit						
Impedance				be s			d the	e vo	olta	age on		As per 4.10 JIS C 5101-1 As per 4.5.4 JIS C 5101-3 Measuring frequency: 100±10kHz Measuring voltage: 0.5Vrms or less Measuring circuit: DC Equivalent series circuit				eries circuit		
Resistance to Soldering heat	Appearance							no significant abnormality.			ity.	As per 4.14 JIS C 5101-1 As per 4.6 JIS C 5101-3 Dip in the solder bath						
L.C.		Less than initial limit						Solo					260±5°C					
	ΔC / C	TC	A()J68)G1(6 □ 07□	: V : V	Vith Vith	in ± in ±	±2(±2(5% of initial valu 0% of initial valu 0% of initial valu % of initial value	ne ne	Duration : 5±0.5s Repetition : 1						
	Df (tan δ)	Le	SS	than	initi	al	limi	t										
Temperature cycle	Appearance									ficant abnormal	ity.	As p	er ·	4.1	6 JIS C 5 0 JIS C 5	101		
	L.C.	TC Ot								150% of initial initial limit	limit				<u> </u>	4) v	vithout discontir	nuation.
	$\Delta C / C$ Df (tan δ)	TC TC TC Ot	CAC CAC CAC)G1(1A22)J47)J68	07 🗆 26 🗆 6 🗆	: V : V : V : V	Vith Vith Vith Vith Vith	in ± in ± in ± in ±	±20 ±1; ±1; ±20	5% of initial value of	ne ne ne	After the s			mp. C mp.	Time 30±3min. 3min.or less 30±3min. 3min.or less ave it at room te sure the sample		
Moisture resistance	Appearance									ficant abnormal e clear.	ity.	As p	er ·	4.1	22 JIS C 5 2 JIS C 5	101	-3	mosphoria
	L.C.	Le	ss	than	initi	al	limi	t									e under such at erature and hun	
	ΔC / C	1	Α)G10	7 🗆	: V	Vith	in ∃	±2(5% of initial valu 0% of initial valu 0% of initial valu	ue 60±2°C and 90 to 95% RH,respectively leave it at room			, for 500±12h				
Df (tan δ)			TCA0G686 □: Less than 150% of initial limit TCA0G107 □: Less than 150% of initial limit TCA0J686 □: Less than 150% of initial limit Others : Less than initial limit			- campio.												

Iter	n	Performance	Test conditions (based on JIS C 5101–1 and JIS C 5101–3)					
Temperature	Temp.	−55°C	As per 4.29 JIS C 5101-1					
Stability	ΔC / C	Within 0/–12% of initial value	As per 4.13 JIS C 5101-3					
	Df (tan δ)	Shall be satisfied the voltage on " Standard list "						
	L.C.	-						
	Temp.	+85°C						
	ΔC / C	TCA0G686 □: Within +12/0% of initial value TCA0G107 □: Within +12/0% of initial value TCA0J686 □: Within +12/0% of initial value Others : Within +10/0% of initial value						
	Df (tan δ)	Shall be satisfied the voltage on " Standard list "						
	L.C.	5μA or 0.1CV whichever is greater						
	Temp.	+125°C						
	ΔC / C	Within +15/0% of initial value						
	Df (tan δ)	Shall be satisfied the voltage on " Standard list "						
	L.C.	6.3μA or 0.125CV whichever is greater						
Surge voltage	Appearance	There should be no significant abnormality.	As per 4.26JIS C 5101-1					
	L.C.	Shall be satisfied the voltage on " Standard list "	As per 4.14JIS C 5101-3 Apply the specified surge voltage every 5±0.5 min.					
	ΔC / C	TCA0G686□: Within ±15% of initial value TCA0G107□: Within ±20% of initial value TCA0J686□: Within ±20% of initial value Others: ±10% of initial value	for 30±5 s. each time in the atmospheric condition of 85±2°C. Repeat this procedure 1,000 times. After the specimens, leave it at room temperature for over 24h and then measure the sample.					
	Df (tan δ)	Less than initial limit						
Loading at	Appearance	There should be no significant abnormality.	As per 4.23 JIS C 5101-1					
High temperature	L.C.	TCA0G686□: Less than 125% of initial limit TCA0G107□: Less than 125% of initial limit TCA1E105□: Less than 125% of initial limit TCA1A226□: Less than 125% of initial limit TCA0J686□: Less than 125% of initial limit Others : Less than initial limit	As per 4.15 JIS C 5101-3 After applying the rated voltage for 2000+72/0 h without discontinuation via the serial resistance of 3Ω or less at a temperature of $85\pm2^{\circ}$ C, leave the sample at room temperature / humidity for over 24h and measure the value.					
	ΔC / C	TCA0G686 \square : Within ±15% of initial value TCA0G107 \square : Within ±20% of initial value TCA1A226 \square : Within ±15% of initial value TCA0J476 \square : Within ±15% of initial value TCA0J686 \square : Within ±20% of initial value Others :±10% of initial value						
	Df (tan δ)	Less than initial limit						
Terminal	Capacitance	The measured value should be stable.	As per 4.35 JIS C 5101-1					
strength	Appearance	There should be no significant abnormality.	As per 4.9 JIS C 5101-3 A force is applied to the terminal until it bends to 1mm and by a prescribed tool maintain the condition for 5s. (See the figure below) (Unit: mm) F (Apply force) R230 F (Apply force)					

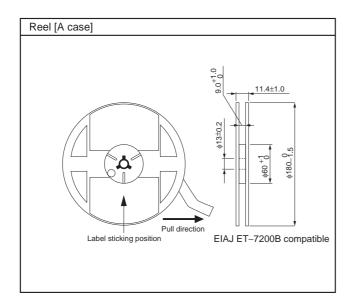
Tantalum capacitors

It	em	Performance	Test conditions (JIS C 5101–1 and JIS C 5101–3)				
Adhesiveness		The terminal should not come off.	As per 4.34 JIS C 5101-1 As per 4.8 JIS C 5101-3 Apply force of 5N in the two directions shown in the figure below for 10±1s after mounting the terminal on a circuit board.				
Dimensions		Refer to "External dimensions"	Measure using a caliper of JIS B 7507 Class 2 or higher grade.				
Resistance	e to solvents	The indication should be clear	As per 4.32 JIS C 5101-1 As per 4.18 JIS C 5101-3 Dip in the isopropyl alcohol for 30±5s, at room temperature.				
Solderability		3/4 or more surface area of the solder coated terminal dipped in the soldering bath should be covered with the new solder.	As per 4.15.2 JIS C 5101-1 As per 4.7 JIS C 5101-3 Dip speed=25±2.5mm / s Pre-treatment(accelerated aging): Leave the sample on the boiling distilled water for 1 h. Solder temp.: 245±5°C Duration : 3±0.5s Solder : M705 Flux : Rosin 25% IPA 75%				
Vibration	Capacitance	Measure value should not fluctuate during the measurement.	As per 4.17 JIS C 5101-1 Frequency : 10 to 55 to 10Hz/min. Amplitude : 1.5mm				
Appearance		There should be no significant abnormality.	Time : 2h each in X and Y directions Mounting : The terminal is soldered on a print circuit board				


• Standard products list, TC series A case

- Ottai idai a pi od	,	1 0 001100			1	ı	ı			
Part No.	Rated voltage 85°C	Category voltage 125°C	Surge voltage 85°C	Cap. 120Hz	Tolerance	Leakage current 25°C		Df 120Hz (%)		Impedance 100kHz
r divivo.	(V)	(V)	(V)	(μF)	(%)	1WV.60s (μA)	–55°C	25°C 85°C	125°C	(Ω)
TC A 0G 475□	4	2.5	5	4.7	±20,10	0.5	10	6	8	5.6
TC A 0G 685 □	4	2.5	5	6.8	±20,10	0.5	12	8	10	4.9
TC A 0G 106□	4	2.5	5	10	±20,10	0.5	12	8	10	4.2
TC A 0G 156□	4	2.5	5	15	±20,10	0.6	12	8	10	4.0
TC A 0G 226□	4	2.5	5	22	±20,10	0.9	12	8	10	3.0
TC A 0G 336 □	4	2.5	5	33	±20,10	1.3	14	10	10	3.5
TC A 0G 476□	4	2.5	5	47	±20,10	1.9	30	12	16	3.2
TC A 0G 686 □	4	2.5	5	68	±20,10	2.7	34	18	24	3.0
TC A 0G 107□	4	2.5	5	100	±20,10	4	54	30	36	3.0
TC A 0J 335□	6.3	4	8	3.3	±20,10	0.5	10	6	8	5.6
TC A 0J 475□	6.3	4	8	4.7	±20,10	0.5	12	8	10	4.9
TC A 0J 685□	6.3	4	8	6.8	±20,10	0.5	12	8	10	4.2
TC A 0J 106□	6.3	4	8	10	±20,10	0.6	12	8	10	4.0
TC A 0J 156□	6.3	4	8	15	±20,10	0.9	12	8	10	3.0
TC A 0J 226□	6.3	4	8	22	±20,10	1.4	14	10	12	3.5
TC A 0J 336□	6.3	4	8	33	±20,10	2.1	30	12	16	3.2
TC A 0J 476□	6.3	4	8	47	±20,10	3.0	34	18	24	3.2
TC A 1A 155 □	10	6.3	13	1.5	±20,10	0.5	10	6	8	8.8
TC A 1A 225 □	10	6.3	13	2.2	±20,10	0.5	10	6	8	5.6
TC A 1A 335 □	10	6.3	13	3.3	±20,10	0.5	12	8	10	4.9
TC A 1A 475 □	10	6.3	13	4.7	±20,10	0.5	12	8	10	4.2
TC A 1A 685 □	10	6.3	13	6.8	±20,10	0.7	12	8	10	4.0
TC A 1A 106 □	10	6.3	13	10	±20,10	1.0	12	8	10	3.0
TC A 1A 156 □	10	6.3	13	15	±20,10	1.5	14	10	12	3.5
TC A 1A 226 □	10	6.3	13	22	±20,10	2.2	30	12	16	3.2
TC A 1C 105 □	16	10	20	1.0	±20,10	0.5	10	6	8	7.0
TC A 1C 155 □	16	10	20	1.5	±20,10	0.5	10	6	8	5.6
TC A 1C 225 □	16	10	20	2.2	±20,10	0.5	10	6	8	4.9
TC A 1C 335 □	16	10	20	3.3	±20,10	0.5	10	6	8	4.8
TC A 1C 475 □	16	10	20	4.7	±20,10	0.8	10	6	8	3.9
TC A 1C 685 □	16	10	20	6.8	±20,10	1.1	10	6	8	3.8
TC A 1C 106 □	16	10	20	10	±20,10	1.6	12	8	10	3.5
TC A 1D 105 □	20	13	26	1.0	±20,10	0.5	10	6	8	7.0
TC A 1D 155 □	20	13	26	1.5	±20,10	0.5	10	6	8	6.0
TC A 1D 225 □	20	13	26	2.2	±20,10	0.5	10	6	8	5.2
TC A 1D 335 □	20	13	26	3.3	±20,10	0.7	10	6	8	4.8
TC A 1D 475 □	20	13	26	4.7	±20,10	0.9	10	6	8	3.9
TC A 1E 105 □	25	16	32	1.0	±20,10	0.5	10	6	8	7.0
TC A 1E 155 □	25	16	32	1.5	±20,10	0.5	10	6	8	6.0
TC A 1E 225 □	25	16	32	2.2	±20,10	0.6	10	6	8	5.2
TC A 1E 335 □	25	16	32	3.3	±20,10	0.8	10	6	8	4.8
TC A 1E 475 □	25	16	32	4.7	±20,10	1.2	10	6	8	3.4
□-Tolerance (M : ±				I	· · ·		1	l		

□=Tolerance (M : ±20%, K : ±10%)


Packaging specifications

Case code	A±0.1	B±0.1	t1±0.05	$t_2 \pm 0.1$
А	1.9	3.5	0.25	1.9

Packaging style

Case code	Packaging	Packag	ging style	Symbol	Basic ordering units
A case	Taping	plastic taping	∮180mm Reel	R	2,000pcs

•Recommended condition of reflow soldering

(1) Leakage current-to-voltage ratio

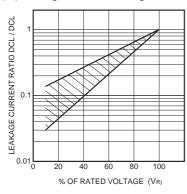
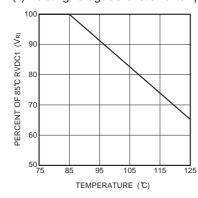



Fig.1

(2) Derating voltage as function of temperature

85	5°C	125	5°C
Rated Voltage	Surge Voltage	Category Voltage	Surge Voltage
(V.DC)	(V.DC)	(V.DC)	(V.DC)
4	5	2.5	3.2
6.3	8	4	5
10	13	6.3	8
16	20	10	13
20	26	13	16
25	32	16	20

Fig.2

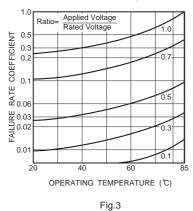
(3) Reliability

The malfunction rate of tantalum solid state electrolytic capacitors varies considerably depending on the conditions of usage (ambient temperature, applied voltage, circuit resistance).

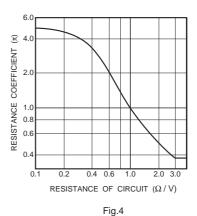
Formula for calculating malfunction rate

 $\lambda p = \lambda b \times (\pi E \times \pi SR \times \pi Q \times \pi CV)$

λp : Malfunction rate stemming from operation


 $\begin{array}{lll} \lambda b & : \mbox{Basic malfunction rate} \\ \pi E & : \mbox{Environmental factors} \\ \pi s R & : \mbox{Series resistance} \end{array}$

 πQ : Level of malfunction rate


 πcv : Capacitance

For details on how to calculate the malfunction rate stemming from operation, see the tantalum solid state electrolytic capacitors column in MIL-HDBK-217.

Malfunction rate as function of operating temperature and rated voltage

Malfunction rate as function of circuit resistance (Ω /V)

(4) Maximum power dissipation

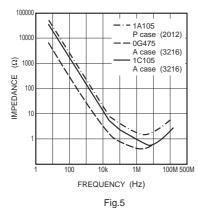
Warming of the capacitor due to ripple voltage balances with warming caused by Joule heating and by radiated heat. Maximum allowable warming of the capacitor is to 5°C above ambient temperature. When warming exceeds 5°C, it can damage the dielectric and cause a short circuit.

Power dissipation (P) = $I^2 \cdot R$

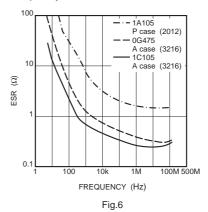
Ripple current

P: As shown in table at right

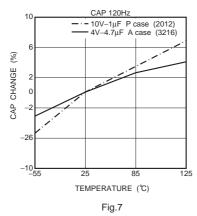
R: Equivalent series resistance

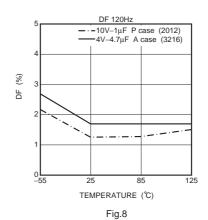

Notes:

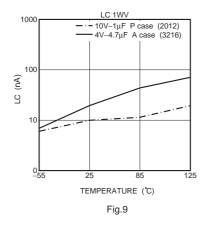
- 1. Please be aware that when case size is changed, maximum allowable power dissipation is reduced.
- 2. Maximum power dissipation varies depending on the package. Be sure to use a case which will keep warming within the limits shown in the table below.

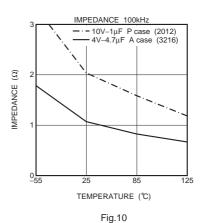

Allowable power dissipation (W) and maximum temperature rising

Temp.	+25℃	+55℃	+85℃	+125℃
P case (2012)	0.025	0.022	0.020	0.010
A case (3216)	0.070	0.063	0.056	0.028
Max. Temp Rise [°C]	5	5	5	2


(5) Impedance frequency characteristics




(6) ESR frequency characteristics



(7) Temperature characteristics

Rush current

The rush current is in inverse proportion to the ESR. The excessive rush current may cause a damage.

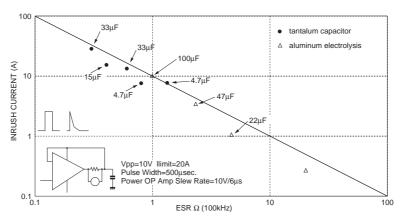


Fig. 11 Max. rush current and ESR

The rush current may be reduced by the protection resistors

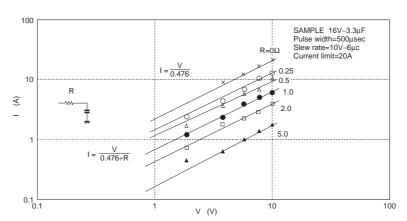


Fig. 12 Change in I max by protection resistors

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUPOPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2007 ROHM CO.,LTD.

ROHM CO., LTD. 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

pan TEL:+81-75-311-2121 FAX:+81-75-315-0172

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.