ON Semiconductor® Monolithic Digital IC For Fan Motor Single-phase Full-wave Driver http://onsemi.com #### Overview The LB11970FV is a single-phase full-wave driver for fan motor. #### **Functions** - Single-phase full-wave drive (16V to 1.2A output transistor incorporated) - Variable speed function using thermistor input and external signal incorporated →Enables silent and low-vibration variable speed control through direct PWM control with separately-excited upper Tr - Current limiter circuit (limit at I_O =480mA with R_L =1 Ω connection, the limiter value determined with Rf) - Kick-back absorption circuit incorporated - Low-consumption, low-loss, and low-noise drive enabled by the soft switching circuit during phase shift - Regeneration Di incorporated with less external parts - HB incorporated - Lock protection and automatic reset functions incorporated - FG (rotation detection) output - Thermal shutdown circuit incorporated #### **Specifications** #### **Absolute Maximum Ratings** at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |--|----------------------|-----------------------|-----------------|------| | V _{CC} maximum supply voltage | V _{CC} max | | 17 | V | | VM maximum supply voltage | VM max | | 17 | V | | OUT pin maximum output current | I _{OUT} max | | 1.2 | Α | | OUT pin output withstand voltage | V _{OUT} max | | 18 | V | | HB maximum output current | НВ | | 10 | mA | | VTH, RMI input pin withstand voltage | VTH RMI max | | 7 | V | | P-IN input pin withstand voltage | VP-IN max | | V _{CC} | V | | FG output pin output withstand voltage | VFG max | | 18 | V | | FG output current | IFG max | | 10 | mA | | Allowable power dissipation | Pd max | Specified substrate * | 0.8 | W | | Operating temperature range | Topr | | -30 to 90 | °C | | Storage temperature range | Tstg | | -55 to 150 | °C | ^{*} Specified substrate: 30mm×30mm×0.8mm, paper phenol. Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ## **Recommended Operating Ranges** at $Ta = 25^{\circ}C$ | Parameter | Symbol | Conditions | Ratings | Unit | |---|----------|------------|----------------------|------| | V _{CC} supply voltage | Vcc | | 4.5 to 16 | V | | VM supply voltage | VM | | 3.5 to 16 | V | | VTH, RMI input level voltage range | VTH, RMI | | 0 to 6 | V | | P-IN input level voltage range | VP-IN | | 0 to V _{CC} | V | | Triangular wave input range | VRM | | 0.5 to 4 | V | | Hall input common phase input voltage range | VICM | | 0.2 to 3 | V | ## **Electrical Characteristics** at $Ta=25^{\circ}C,\ V_{CC}=12V,\ R_f=0\Omega,\ unless$ otherwise specified. | Deventes | Cumbal | O and distance | | Ratings | | | | |-----------------------------------|-------------------|-----------------------------------|------|---------|------|------|--| | Parameter | Symbol | Conditions | min | typ | max | unit | | | Circuit current I _{CC} 1 | | During drive | 12 | 15 | 18 | mA | | | | I _{CC} 2 | During lock protection | 11 | 14 | 17 | mA | | | HB voltage | VHB | IHB=5mA | 1.12 | 1.22 | 1.32 | V | | | 6VREG voltage | V6VREG | I6VREG=5mA | 5.85 | 5.95 | 6.10 | V | | | CT pin H level voltage | V _{CT} H | | 3.4 | 3.6 | 3.8 | V | | | CT pin L level voltage | V _{CT} L | | 1.4 | 1.6 | 1.8 | V | | | CT pin charge current | I _{CT} 1 | | 1.8 | 2.2 | 2.6 | μΑ | | | CT pin discharge current | I _{CT} 2 | | 0.18 | 0.22 | 0.26 | μΑ | | | CT charge/discharge current ratio | R _{CT} | | 8 | 10 | 12 | | | | OUT output L saturation voltage | V _O L | I _O =200mA | | 0.1 | 0.2 | V | | | OUT output H saturation voltage | V _O H | I_O =200mA, R_f =1 Ω | | 0.6 | 0.8 | V | | | Current limiter | VRF | | | 480 | | mV | | | Hall input sensitivity | VHN | Zero peak value | | 10 | 20 | mV | | | | | (including offset and hysteresis) | | | | | | | FG output pin L voltage | VFG | IFG=5mA | | 0.2 | 0.3 | V | | | FG output pin leak current | IFGL | VFG=7V | | | 30 | μΑ | | | Overheat protection circuit | THD | * Design guarantee value | | 180 | | °C | | ^{*:} Design target value and no measurement was made. ## **Package Dimensions** unit: mm (typ) 3338 ## **Pin Assignment** PGND: Motor system GND SGND: Control system GND ## **Equivalent Circuit Diagram** ### **Truth Table** | VTH | PIN | IN- | IN+ | СТ | OUT1 | OUT2 | FG | Mode | | |--------|-----|-----|-----|----|------|------|-----|--------------------------|--| | L | L | Н | ┙ | | Н | L | L | Dunning drive | | | (OPEN) | L | L | Н | | L | Н | OFF | Running - drive | | | Н | L | Н | L | L | OFF | L | L | Dunning regeneration | | | п | L | L | Н | | L | OFF | OFF | Running - regeneration | | | - | Н | Н | L | L | OFF | L | L | Output regeneration mode | | | - | H | L | H | | L | OFF | OFF | with external signal | | | - | 1 | Н | L | Н | OFF | L | L | Lock protection | | | - | - | L | Н | Н | L | OFF | OFF | | | VTH, P-IN = L means VTH, P-IN < CPWM VTH, P-IN = H means VTH, P-IN > CPWM ## **Application Circuit Example** #### *1. Power supply - GND wiring PGND is connected to the motor power system while SGND is connected to the control circuit power system. Wiring is made separately for PGND and SGND, and external parts of each control system are connected to SGND. #### *2. Power stabilization capacitor for regeneration CM capacitor is a power stabilizing capacitor for PWM drive and kick-back absorption and has the capacitance of $4.7\mu F$ or more. Since this IC performs current regeneration with the lower Tr through switching of the upper Tr, connect CM with the thick and shortest possible pattern between VM and PGND. #### *3. Setting of the temperature detection variable speed Setting of the triangular wave oscillation voltage The rotation speed variable range for the temperature is set with the triangular wave oscillation voltage. There are two setting methods as follows: - 3-1 The upper voltage (VCPH) of triangular wave is determined by V[voltage of the R1 connection counterpart]× (R2/(R1+R2)) and the lower voltage (VCPL) of triangular wave is determined by V× ((R2//R3) / (R1+R2)/R3)). - The upper voltage (VCPH) of triangular wave is determined by $V \times ((R2+R3) / (R1+R2+R3))$ and the lower voltage (VCPL) of triangular wave is determined by $V \times (R2/(R1+R2))$. #### Setting of the thermistor The resistance (RTU from V_{CC} or 6VREG and the voltage generated through division of thermistor (TH) are input in the VTH pin. When the voltage at the VTH pin drops below VCPL due to temperature change, the full speed (thermistor input speed control side only) is obtained. To set the full speed with the thermistor tripping, connect each pin of 3-3 to V_{CC} and each input voltage is generated by divided resistance from V_{CC} . When the thermistor trips and the VTH pin is pulled up to VCC, the full speed (thermistor input speed control side only) is obtained. #### *4. Setting the current limiter The current limiter is activated when the voltage between current detection resistors exceeds 0.48V between V_{CC} and V_{CC} The current limiter is activated at I_O = 480mA when R_L = 1Ω . Setting is made with the Rf resistance. Short-circuit V_{CC} and VM when the current limiter is not to be used. When 12V is used, the current limiter must be applied at 1A or less if the coil resistance is 10Ω or less. #### *5. Hall input Wiring must be as short as possible to prevent carrying of noise. The Hall input circuit is a comparator with hysteresis of 20mV. The Hall input level is recommended to be three times (60mVp-p) or more of this hysteresis. #### *6. Capacitor to set the PWM oscillation frequency Oscillation with f = 25 kHz occurs at CP = 100 pF and PWM voltage width of 1.6V, and becomes the reference frequency of PWM. #### *7. FG output This is the open collector output, enabling detection of the rotation speed using the FG output corresponding to the phase shift. Keep this output OPEN when not used. #### *8. HB pin Hall element bias pin, which is a 1.22V constant-voltage output pin #### *9. RMI pin Minimum speed setting pin for thermistor speed control, which must be pulled up with 6 VREG when not used. By connecting the capacitor, the time to ignore thermistor input at startup can be set. #### *10. PIN pin Direct PWM speed control pin. Pull down the P-IN input to GND when not using this pin. The lowest output DUTY setting is made with R4 and R5. Keep R5 open for stop with DUTY at 0%. ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ON Semiconductor: LB11970FV-W-AH Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.