N

MICROCHIP

M PLAB® XC32 C/C++ Compiler
User’s Guide

88888888

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= 1SO/TS 16949:2009 =

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KeeLoQ, KEeLOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC3? logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2012, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

‘::) Printed on recycled paper.

ISBN: 978-1-62076-455-8

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51686E-page 2

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Table of Contents

] = Lo = PP RPRPRRPPRPR 7
Chapter 1. Compiler Overview
L1 INErOAUCTION oiiiiiiiiii i 13
1.2 DEVICE DESCIIPLION ..uiiiiiiiiieei ittt e e e e st e e e e e s 13
1.3 Compiler Description and Documentationccccoeeeeeiieiini e, 13
1.4 Compiler and Other Development TOOIS ..., 15
Chapter 2. Common C Interface
P2 I [Vi o To [Tox 1o] [P PP PPPTPPPPP 17
2.2 Background — The Desire for Portable Codeccccviviiiieiiiiiiiiiiiieeeees 17
2.3 USING the CCl i et s e e e et e e e e aeeenes 20
2.4 ANSI Standard RefinemMeNteuuuuiuiiiiiiiiiiiiiiiieeiieeieeeeeeeieeeeeeeeeereeeeeeeenes 21
2.5 ANSI Standard EXIENSIONScuiiiiiiiiiiiiiiiiiiiiiiiie et 29
2.6 COMPIIET FEATUMNES ..ottt ettt ettt et et e e e e e e e e e e e e eeeeaeaaees 43
Chapter 3. Compiler Command Line Driver
G 700 R 1 70T [Tt i o] I PP PPTPPPPP 45
3.2 Invoking the COMPIIET ... 45
3.3 The C Compilation SEQUENCEcevvvuiiiiiee et e e e e e e e e e 49
3.4 The C++ Compilation SEQUENCEeviiieiiiiiiiiiiiiee e 51
3.5 RUNLIME FlES .ottt ettt e e e e e et e e e eeeeeeeeeaeaeaeeas 55
3.6 Start-up and INILIANTZALIONoooiiiiiiiiiie e 58
R T A @a] o] o 11 1T @ U1 o 11 | PO 58
3.8 COMPIIEr MESSAGEScooiiiiiiiiie ettt ettt e e 60
3.9 Driver Option DESCHPLONSiiiiieiiieiiiicis e e e e e 60
Chapter 4. Device-Related Features
g I 10T [T 4o o PP 85
A B LAV Tt IR o] o o] o AP 85
4.3 DeVvice Header FIleScoco et seeeeeeeeees 85
Y = Lo QP PPPTPPPRP 86
4.5 USIiNg SFRS From C COUEooiiiiiiiiiiiiiie ettt 88
Chapter 5. ANSI C Standard Issues
5.1 Divergence from the ANSI C Standardcccccciiiiiiiiiiiiicice e 91
5.2 Extensions to the ANSI C Standardeeeeeveiiiiiiiieiiiiiiieeieeeeeeeeeeeeeeeeee. 91
5.3 Implementation-defined behaviorccccoviieiiiiiiiiiiii e 92
Chapter 6. Supported Data Types and Variables
L0 I [To [o 1o] o PP 93
LI [0 =T o1 1] 11T PP PTPPPPPPPP 93

© 2012 Microchip Technology Inc. DS51686E-page 3

MPLAB® XC32 C/C++ Compiler User’s Guide

6.3 Data Representationooouiiieiieieeiiiiiee e
6.4 INteger Data TYPES ..ovveeiiiiieii et
6.5 Floating-Point Data TYPESccvvviiiiiieeiiiiieie e
6.6 Structures and UNIONSoocuiiiiiiiieiiiiiiiee e
6.7 POINIET TYPES oottt e e
6.8 CompleX Data TYPES ..uuveiieieeiieeeiiis e e e e e e eees
6.9 Constant Types and FOrMALScccooviiiiiimiiiieieeniiiieee e
6.10 Standard Type QUAIIfIErSccovvuviiiiii e
6.11 Compiler-Specific QUAIITIEIScocoviiiiiiiiiiiee e
6.12 Variable AribDULES ...

Chapter 7. Memory Allocation and Access

7.1 INFOAUCHION oo
7.2 AAArESS SPACES ..covvvviiiiiiieeiiieeieie e e et e e e e e e e e e eeae
7.3 Variables in Data MEMOIYc..eviiiiiiiiiiiiie e
7.4 Auto Variable Allocation and ACCESScooeveeiiiiiiiii i
7.5 Variables in Program MemOTIYccooiiiiiiiiiieieeniiiieeeee e
7.6 Variables in REQISIEISccocoiiiiiici e
7.7 Dynamic Memory AlIOCALIONoeviiieiiiiiiiiiiiee e
A= 3\ 1T g L] VALY, o o 1= RSP

Chapter 8. Operators and Statements

S 700 1 0T [T 1o o ISP
8.2 Integral Promotionooovuiiiiiiii e
8.3 TYPE REFEIENCES ...t
8.4 Labels aS ValUESoouiiiiiiiiiiiiiiiiiiiieteeett et
8.5 Conditional Operator OPerandscccccvoeiieiriiieeeeiiiiiiiee e
8.6 CASE RANGES ...ovviiiiiiiii it e

Chapter 9. Register Usage

Q.1 INFOAUCTION eeeeviieiieeieee e
9.2 REQISIEr USAQE ...cevviiiiiiii it eiieeeeie ettt e e e e e e e e e e e aees
9.3 RegiSter CONVENTIONScciiiiiiiiiiiiieeee et

Chapter 10. Functions

O 0 YA T o TN W] o o o £
10.2 Function Attributes and SPeCIfiersccccccvviiiiiiiiiiieeeen e
10.3 Allocation of FUNCLON COAEccovvviiiiiiiiiieeeeee e,
10.4 Changing the Default Function Allocationcccccceeeviiiiiienneen.
10.5 FUNnction Size LIMIES ...oouuiiiiiie e
10.6 FUNCLION PArameterscoooevvueieiiiiieee et
10.7 Function Return ValUESooeeiiiiiiiiieiiie e,
10.8 Calling FUNCHIONSviiiiiiiiiiiiiiiiie et
10.9 INliN€ FUNCLIONS ...ovuniiiiiiie e

Chapter 11. Interrupts

0 0 T o o 11 Tox o R
11.2 Interrupt OPErationccvieeeeeiiieiiiee e e e e e

DS51686E-page 4 © 2012 Microchip Technology Inc.

Chapter 12.

Chapter 13.

Chapter 14.

Chapter 15.

Chapter 16.

Chapter 17.

11.3 Writing an Interrupt Service ROULINEcoooiiiiiiiiiiiiieee e 134

11.4 Associating a Handler Function with an Exception Vectorcc.ccc.u...... 139
11.5 EXCePLion HANAIETScooiiiiiiiiiiiie et 141
11.6 Interrupt Service Routine Context Switchingcccccceeevviiviceeee, 141
A I =] [PP 142
11.8 NeStNG INTEITUPLS .ovvuuiii i e e e e e e 142
11.9 Enabling/Disabling INtEITUPLScocoiiiiiiiiiiiiiieeee e 142
11.10 ISR CONSIAEIAtiONS ...cceeeeieiiiiieiee e 142
Main, Runtime Start-up and Reset
022 I [1 o To 18 o { o o PSR 143
12.2 The Main FUNCHION ..o, 143
12.3 RUNtiMe Start-up COUEooiiiiiiiiiiie ettt 143
12.4 The ON ReSet ROULINGcoooiiiiiiiiiie e, 157
Library Routines
13.1 Using Library ROULINESc.ooiiiiiiiiieee ittt 159
Mixing C/C++ and Assembly Language
141 INEFOAUCTION eeiiiiiiiiii i, 161
14.2 Using Inline Assembly LANQUAGEccooiuriiiiiieeeiiiiiiiiee e 161
14.3 Predefined ASSeMDBIY MACIOScoooieeiiiiiiiiie e 164
Optimizations
ST [1 o To 18 od (o o PSR 167
Preprocessing
16.1 INTFOAUCTION oeiiiiiiiiieie e, 169
16.2 C/C++ Language COMMENTSceiieeiiiiiiiiiiiieeee et reee e e e s eiirenee e e e aaes 169
16.3 PreproCessor DIFECHVEScuuiiiiiii e e e e 169
16.4 Pragma DiIr€CHIVESeeviiiiiiiiiiiiiie ettt e e 171
16.5 Predefined MACIOScoooiiiiiiiiiiiii 172
Linking Programs
A [1 o o 13 o { o o PSR 175
17.2 Replacing Library SymbBoIS ... 175
17.3 Linker-Defined SymbOISooeiiiiiiii e 175
17.4 Default LINKEr SCrIPtcovveiiiciie e e e e e ee e 176
Appendix 18. Implementation-Defined Behavior
RS 0 [g1 o o 18 o { o o PR 191
S 7 T | 17T | 191
L18.3 OVEIVIEW .cieiiiiiieeee ettt 191
18.4 TranSIationcovviiiiiiiiii 192
18.5 ENVIFONMENT oiiiiiiiiiiee e 192
18.6 1ENLITIEIS .eviiiiiiiiiiie e 193
18.7 Characters ...cocovviiiiiiiie e 193
GRS I 11 (=T o T £ PP 194
18.9 Floating-POINT ..ottt 194
18.10 Arrays and POINTEISccooiiviiiiiiie e e e e e e e e 196

© 2012 Microchip Technology Inc. DS51686E-page 5

MPLAB® XC32 C/C++ Compiler User’s Guide

S 700 I 11 0 £ SRR 196
18.12 Structures, Unions, Enumerations, and Bit fieldscoovcovviviiiiiniinnnns 197
18.13 QUANIEIS oo 197
18.14 DECIArAtOrSceeviiiiieee et aeas 198
18.15 STAEMENTS ..ot et e e et e e et e e e e e e e eaaa e 198
18.16 Pre-Processing DIr€CLIVEScc.cuvuiiiiiiiiiceeeeis e e e e ee e 198
18.17 Library FUNCHONSoiiiiiiiiiiiiie ettt e e e 199
18.18 ArCRILECIUIE ... e e e e e 202

Appendix 19. ASCII Character Set
Appendix 20. Deprecated Features

2 T4 R T o To [T 1o o U 205
20.2 Variables in Specified REQISTEISccovveviiiiiiii e 205
Gl O S S AN ittt ettt e e e e e e e e e et 207
1o 1= SRR 225
Worldwide SaleS and SEIVICEoouuuuuiiiiiiiiie e 238

DS51686E-page 6 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documenta-
tion are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions
may differ from those in this document.

For the most up-to-date information on development tools, see the MPLAB® IDE or MPLAB X IDE
Help. Select the Help menu and then “Topics” or “Help Contents” to open a list of available Help files.

For the most current PDFs, please refer to our web site (http://www.microchip.com). Documents are
identified by “DSXXXXXA”, where “XXXXX" is the document number and “A” is the revision level of
the document. This number is located on the bottom of each page, in front of the page number.

MPLAB® XC32 C/C++ Compiler documentation and support information is discussed
in the sections below:

¢ Document Layout

e Conventions Used

« Recommended Reading

* myMicrochip Personalized Notification Service

« The Microchip Web Site

¢ Microchip Forums

e Customer Support

© 2012 Microchip Technology Inc. DS51686E-page 7

MPLAB® XC32 C/C++ Compiler User’s Guide

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 32-bit
applications. The document layout is as follows:

¢ Chapter 1. Compiler Overview — describes the compiler, development tools and
feature set.

e Chapter 2. Common C Interface — explains what you need to know about
making code portable.

* Chapter 3. Compiler Command Line Driver — describes how to use the
compiler from the command line.

» Chapter 4. Device-Related Features — describes the compiler header and
register definition files, as well as how to use with the SFRs.

« Chapter 5. ANSI C Standard Issues — describes the differences between the
C/C++ language supported by the compiler syntax and the standard ANSI-89 C.

« Chapter 6. Supported Data Types and Variables — describes the compiler
integer and pointer data types.

e Chapter 7. Memory Allocation and Access — describes the compiler run-time
model, including information on sections, initialization, memory models, the
software stack and much more.

* Chapter 8. Operators and Statements — discusses operators and statements.
« Chapter 9. Register Usage — explains how to access and use SFRs.

e Chapter 10. Functions — details available functions.

e Chapter 11. Interrupts — describes how to use interrupts.

¢ Chapter 12. Main, Runtime Start-up and Reset — describes important elements
of C/C++ code.

e Chapter 13. Library Routines — explains how to use libraries.

¢ Chapter 14. Mixing C/C++ and Assembly Language — provides guidelines for
using the compiler with 32-bit assembly language modules.

* Chapter 15. Optimizations — describes optimization options.
« Chapter 16. Preprocessing — details the preprocessing operation.
» Chapter 17. Linking Programs — explains how linking works.

* Appendix 18. Implementation-Defined Behavior — details compiler-specific
parameters described as implementation-defined in the ANSI standard.

« Appendix 19. ASCII Character Set” — contains the ASCII character set.

« Appendix 20. Deprecated Features — details features that are considered
obsolete.

DS51686E-page 8 © 2012 Microchip Technology Inc.

Preface

CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or dia- | “Save project before build”
log
Underlined, italic text with | A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #defi ne START
Filenames aut oexec. bat
File paths c:\ntcl8\h
Keywords _asm _endasm static
Command-line options - Opa+, - Opa-
Bit values 0, 1
Constants OxFF, "A
Italic Courier A variable argument file.o,wherefil e canbe

any valid filename

Square brackets []

Optional arguments

npasma n [opti ons]
file [options]

Curly brackets and pipe
character: { |}

Choice of mutually exclusive
arguments; an OR selection

errorl evel

{0] 1}

Ellipses...

Replaces repeated text

var_nane [,
var _nane...]

Represents code supplied by
user

void main (void)
{
}

Sidebar Text

Device Dependent.

This feature is not supported on
all devices. Devices supported
will be listed in the title or text.

Xmenory attribute

© 2012 Microchip Technology Inc.

DS51686E-page 9

MPLAB® XC32 C/C++ Compiler User’s Guide

RECOMMENDED READING

This documentation describes how to use the MPLAB XC32 C/C++ Compiler. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources.

Release Notes (Readme Files)

For the latest information on Microchip tools, read the associated Release Notes
(HTML files) included with the software.

MPLAB® Assembler, Linker and Utilities for PIC32 MCUs User’s Guide (DS51833)
A guide to using the 32-bit assembler, object linker, object archiver/librarian and various
utilities.

32-Bit Language Tools Libraries (DS51685)

Lists all library functions provided with the MPLAB XC32 C/C++ Compiler with detailed
descriptions of their use.

Dinkum Compleat Libraries

The Dinkum Compleat Libraries are organized into a number of headers, files that you
include in your program to declare or define library facilities. A link to the Dinkum librar-
ies is available in the MPLAB X IDE application, on the My MPLAB X IDE tab, Refer-

ences & Featured Links section.

PIC32MX Configuration Settings

Lists the Configuration Bit settings for the Microchip PIC32MX devices supported by
the MPLAB XC32 C/C++ Compiler’s #pr agna confi g.

Device-Specific Documentation

The Microchip website contains many documents that describe 32-bit device functions
and features. Among these are:

« Individual and family data sheets
« Family reference manuals
* Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C++ Standards Information

Stroustrup, Bjarne, C++ Programming Language: Special Edition, 3rd Edition.
Addison-Wesley Professional; Indianapolis, Indiana, 46240.

ISO/IEC 14882 C++ Standard. The ISO C++ Standard is standardized by ISO (The
International Standards Organization) in collaboration with ANSI (The American
National Standards Institute), BSI (The British Standards Institute) and DIN (The
German national standards organization).

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C++. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C++ language programs on a
variety of computing systems.

DS51686E-page 10

© 2012 Microchip Technology Inc.

Preface

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

GCC Documents
http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/

MmyMICROCHIP PERSONALIZED NOTIFICATION SERVICE

Microchip's personal notification service helps keep customers current on their Micro-
chip products of interest. Subscribers will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a specified product family or develop-
ment tool.

Please visit http://www.microchip.com/pcn to begin the registration process and select
your preferences to receive personalized notifications. A FAQ and registration details
are available on the page, which can be opened by selecting the link above.

When you are selecting your preferences, choosing “Development Systems” will pop-
ulate the list with available development tools. The main categories of tools are listed
below:

e Compilers — The latest information on Microchip C/C++ compilers, assemblers,
linkers and other language tools. These include all MPLAB C/C++ compilers; all
MPLAB assemblers (including MPASM™ assembiler); all MPLAB linkers (includ-
ing MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

« Emulators — The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators

« In-Circuit Debuggers — The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3
debug express.

« MPLAB IDE/MPLAB X IDE — The latest information on Microchip MPLAB IDE,
the Windows® Integrated Development Environment, or MPLAB X IDE, the open
source, cross-platform Integrated Development Environment. These lists focus on
the IDE, Project Manager, Editor and Simulator, as well as general editing and
debugging features.

* Programmers — The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3 and development (nonproduction)
programmers MPLAB ICD 2 in-circuit debugger, PICSTART® Plus and PICkit 2
and 3.

* Starter/Demo Boards — These include MPLAB Starter Kit boards, PICDEM™
demo boards, and various other evaluation boards.

© 2012 Microchip Technology Inc. DS51686E-page 11

http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/
http://support.microchip.com/pcn

MPLAB® XC32 C/C++ Compiler User’s Guide

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at http://www.microchip.com. This
web site is used as a means to make files and information easily available to
customers. Accessible by using your favorite Internet browser, the web site contains
the following information:

« Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQSs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

MICROCHIP FORUMS

Microchip provides additional online support via our web forums at
http://www.microchip.com/forums. Currently available forums are:
« Development Tools

« 8-bit PIC® MCUs

e 16-bit PIC MCUs

e 32-bit PIC MCUs

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative
 Local Sales Office

« Field Application Engineer (FAE)
« Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document. See our web site
for a complete, up-to-date listing of sales offices.

Technical support is available through the web site at http://support.microchip.com.
Documentation errors or comments may be emailed to docerrors@microchip.com.

DOCUMENT REVISION HISTORY

Revision D (January 2012)

» Changed product name from MPLAB C32 C Compiler to MPLAB XC32 C/C++
Compiler. Completely reorganized document to align with other Microchip
compiler documentation.

Revision E (July 2012)

« Added information pertaining to C++ throughout the document.
« Added new section describing the Common Compiler Interface (CCI) Standard

DS51686E-page 12 © 2012 Microchip Technology Inc.

http://support.microchip.com
http://www.microchip.com/forums
http://support.microchip.com

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 1. Compiler Overview

1.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler is defined and described in the following topics:

« Device Description
e Compiler Description and Documentation
e Compiler and Other Development Tools

1.2 DEVICE DESCRIPTION
The MPLAB XC32 C/C++ Compiler fully supports all Microchip 32-bit devices.

1.3 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC32 C/C++ Compiler is a full-featured, optimizing compiler that trans-
lates standard ANSI C programs into 32-bit device assembly language source. The
compiler also supports many command-line options and language extensions that
allow full access to the 32-bit device hardware capabilities, and affords fine control of
the compiler code generator.

The compiler is a port of the GCC compiler from the Free Software Foundation.

The compiler is available for several popular operating systems, including 32 and 64-bit
windows®, Linux and Apple OS X.

The compiler can run in one of three operating modes: Free, Standard or PRO. The
Standard and PRO operating modes are licensed modes and require an activation key
and Internet connectivity to enable them. Free mode is available for unlicensed cus-
tomers. The basic compiler operation, supported devices and available memory are
identical across all modes. The modes only differ in the level of optimization employed
by the compiler.

1.3.1 Conventions

Throughout this manual, the term “the compiler” is often used. It can refer to either all,
or some subset of, the collection of applications that form the MPLAB XC32 C/C++
Compiler. Often it is not important to know, for example, whether an action is performed
by the parser or code generator application, and it is sufficient to say it was performed
by “the compiler”.

Itis also reasonable for “the compiler” to refer to the command-line driver (or just driver)
as this is the application that is always executed to invoke the compilation process. The
driver for the MPLAB XC32 C/C++ Compiler package is called xc32- gcc. The driver
for the C/ASM projects is also xc32- gcc. The driver for C/C++/ASM projects is
xc32- g++. The drivers and their options are discussed in Section 3.9 “Driver Option
Descriptions”. Following this view, “compiler options” should be considered com-
mand-line driver options, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating
source code into an executable binary image.

© 2012 Microchip Technology Inc. DS51686E-page 13

MPLAB® XC32 C/C++ Compiler User’s Guide

1.3.2 ANSI C Standards

The compiler is a fully validated compiler that conforms to the ANSI C standard as
defined by the ANSI specification (ANSI x3.159-1989) and described in Kernighan and
Ritchie’s The C Programming Language (second edition). The ANSI standard includes
extensions to the original C definition that are now standard features of the language.
These extensions enhance portability and offer increased capability. In addition, lan-
guage extensions for PIC32 MCU embedded-control applications are included.

1.3.3 Optimization

The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C/C++ source. The
optimization passes include high-level optimizations that are applicable to any C/C++
code, as well as PIC32 MCU-specific optimizations that take advantage of the particu-
lar features of the device architecture.

For more on optimizations, see Chapter 15. “Optimizations”.

1.3.4 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions
have been validated and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping and math functions (trigonometric, exponential and hyperbolic). The standard
I/0 functions for file handling are also included, and, as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution,
and may be used as a starting point for applications that require this capability.

135 ISO/IEC C++ Standard
The compiler is distributed with the 2003 Standard C++ Library.

Note: Do not specify an MPLAB XC32 system include directory (e.qg.
/ pi ¢c32nx/ i ncl ude/) in your project properties. The xc32- gcc and
xc32- g++ compilation drivers automatically select the XC libc or the Din-
kumware libc and their respective include-file directory for you. Manually
adding a system include file path may disrupt this mechanism and cause
the incorrect libc include files to be compiled into your project, causing a
conflict between the include files and the library. Note that adding a system
include path to your project properties has never been a recommended
practice.

1.3.6 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled and linked in a single step.

1.3.7 Documentation

The C compiler is supported under both the MPLAB IDE v8.xx or higher, and the
MPLAB X IDE. For C++, MPLAB X IDE v1.40 or higher is required. For simplicity, both
IDEs are referred to throughout the book as simply MPLAB IDE.

Features that are unique to specific devices, and therefore specific compilers, are
noted with “DD” text the column (see the Preface) and text identifying the devices to
which the information applies.

DS51686E-page 14

© 2012 Microchip Technology Inc.

Compiler Overview

1.4 COMPILER AND OTHER DEVELOPMENT TOOLS

The compiler works with many other Microchip tools including:

« MPLAB XC32 assembler and linker - see the “MPLAB® Assembler, Linker and
Utilities for PIC32 MCUs User’s Guide”.

* MPLAB IDE v8.xx and MPLAB X IDE (C++ required MPLAB X IDE v1.30 or
higher)

* The MPLAB Simulator

« All Microchip debug tools and programmers

« Demo boards and starter kits that support 32-bit devices

© 2012 Microchip Technology Inc. DS51686E-page 15

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 16 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 2. Common C Interface

2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCl-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC32 MCU using the MPLAB XC32 C/C++ Compiler.

The CCl assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CClI, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

The following topics are examined in this chapter:

» Background — The Desire for Portable Code
« Using the CCI

« ANSI Standard Refinement

« ANSI Standard Extensions

e Compiler Features

2.2 BACKGROUND - THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You may only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler ver-
sion may change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

© 2012 Microchip Technology Inc. DS51686E-page 17

MPLAB® XC32 C/C++ Compiler User’s Guide

221 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the runtime environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
i nt type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an i nt actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures may not allow the compiler to conform?.
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would loose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Implementation-defined behavior

This is unspecified behavior where each implementation documents how the choice
is made.

Unspecified behavior

The standard provides two or more possibilities and imposes no further requirements
on which possibility is chosen in any particular instance.

Undefined behavior
This is behavior for which the standard imposes no requirements.

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an

i nt, which we used as an example earlier, falls into the category of behavior that is
defined by implementation. That is to say, the size of an i nt is defined by which com-
piler is being used, how that compiler is being used, and the device that is being tar-
geted.

All the MPLAB XC compilers conform to the ANS X3.159-1989 Standard for program-
ming languages (with the exception of the XC8 compiler’s inability to allow recursion,
as mentioned in the footnote). This is commonly called the C89 Standard. Some fea-
tures from the later standard, C99, are also supported.

1. Case in point: The mid-range PIC® microcontrollers do not have a data stack. Because
a compiler targeting this device cannot implement recursion, it (strictly speaking) cannot
conform to the ANSI C Standard. This example illustrate a situation in which the stan-
dard is too strict for mid-range devices and tools.

DS51686E-page 18

© 2012 Microchip Technology Inc.

Common C Interface

For freestanding implementations — or for what we typically call embedded applications
—the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code
portability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the ANSI C Standard

The CCI documents specific behavior for some code in which actions are implemen-
tation-defined behavior under the ANSI C Standard. For example, the result of
right-shifting a signed integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device characteristics, such as
the size of ani nt , are not defined by the CCI.

Consistent syntax for non-standard extensions

The CCI non-standard extensions are mostly implemented using keywords with a uni-
form syntax. They replace keywords, macros and attributes that are the native com-
piler implementation. The interpretation of the keyword may differ across each com-
piler, and any arguments to the keywords may be device specific.

Coding guidelines

The CCI may indicate advice on how code should be written so that it can be ported
to other devices or compilers. While you may choose not to follow the advice, it will
not conform to the CCI.

© 2012 Microchip Technology Inc. DS51686E-page 19

MPLAB® XC32 C/C++ Compiler User’s Guide

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCl is something you choose to follow and put into effect, thus it is relevant for new
projects, although you may choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.
Enable the CCI

Select the MPLAB IDE widget Use CCI Syntax in your project, or use the
command-line option that is equivalent.

Include <xc.h>in every module
Some CCI features are only enabled if this header is seen by the compiler.

Ensure ANSI compliance
Code that does not conform to the ANSI C Standard does not confirm to the CCI.

Observe refinements to ANSI by the CCI
Some ANSI implementation-defined behavior is defined explicitly by the CCI.

Use the CCI extensions to the language
Use the CCI extensions rather than the native language extensions

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are indi-
cated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses and 24-bit short | ong types are not part of the CCI. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate when you use a non-CCl feature and the CCl is enabled.

DS51686E-page 20 © 2012 Microchip Technology Inc.

Common C Interface

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

24.1 Source File Encoding

Under the CClI, a source file must be written using characters from the 7-bit ASCII set.
Lines may be terminated using a line feed (\n) or carriage return (\r) that is immediately
followed by a line feed. Escaped characters may be used in character constants or
string literals to represent extended characters not in the basic character set.

24.11 EXAMPLE

The following shows a string constant being defined that uses escaped characters.
const char nyName[] = "Bj\370rk\n";

2412 DIFFERENCES
All compilers have used this character set.
2.4.1.3 MIGRATION TO THE CCI

No action required.

2.4.2 The Prototype for mai n

The prototype for the mai n() function is

int main(void);

2421 EXAMPLE

The following shows an example of how mai n() might be defined

int mai n(voi d)

whi | e(1)
process();

}
2.4.2.2 DIFFERENCES
The 8-bit compilers used a voi d return type for this function.

2.4.2.3 MIGRATION TO THE CCI

Each program has one definition for the mai n() function. Confirm the return type for
mai n() in all projects previously compiled for 8-bit targets.

2.4.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

243.1 EXAMPLE

The following example shows two conforming include directives.

#i ncl ude <usb_mai n. h>
#i ncl ude "gl obal . h"

© 2012 Microchip Technology Inc. DS51686E-page 21

MPLAB® XC32 C/C++ Compiler User’s Guide

2.43.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows-style separa-
tors "\ " were used and the code compiled under other host operating systems. Under
the CCI, no directory specifiers should be used.

2.4.3.3 MIGRATION TO THE CCI

Any #i ncl ude directives that use directory separators in the header file specifications
should be changed. Remove all but the header file name in the directive. Add the direc-
tory path to the compiler’s include search path or MPLAB IDE equivalent. This will force
the compiler to search the directories specified with this option.

For example, the following code:
#i ncl ude <inc/lcd. h>

should be changed to:

#i ncl ude <l cd. h>

and the path to the i nc directory added to the compiler’s header search path in your
MPLAB IDE project properties, or on the command-line as follows:

-1lcd

24.4 Include Search Paths
When you include a header file under the CClI, the file should be discoverable in the
paths searched by the compiler detailed below.

For any header files specified in angle bracket delimiters < >, the search paths should
be those specified by - | options (or the equivalent MPLAB IDE option), then the stan-
dard compiler include directories. The - | options are searched in the order in which
they are specified.

For any file specified in quote characters " ", the search paths should first be the cur-
rent working directory. In the case of an MPLAB X project, the current working directory
is the directory in which the C source file is located. If unsuccessful, the search paths
should be the same directories searched when the header files is specified in angle
bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2441 EXAMPLE

If including a header file as in the following directive
#i ncl ude "nyd obal s. h"

The header file should be locatable in the current working directory, or the paths spec-
ified by any - | options, or the standard compiler directories. If it is located elsewhere,
this does not conform to the CCI.

2442 DIFFERENCES
The compiler operation under the CCl is not changed. This is purely a coding guide line.

2443 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the - | option (or
the equivalent MPLAB IDE option), and use the - | option in place of this. Ensure the
header file can be found in the directories specified in this section.

DS51686E-page 22 © 2012 Microchip Technology Inc.

Common C Interface

245 The Number of Significant Initial Characters in an ldentifier

At least the first 255 characters in an identifier (internal and external) are significant.
This extends upon the requirement of the ANSI C Standard which states a lower num-
ber of significant characters are used to identify an object.

2451 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateO PortBwenTheQper at or HasSel ect edAut omat i cMbdeAndMot or | sRunni ngFast ;
int stateCf Port BwhenTheQper at or HasSel ect edAut omat i cModeAndMot or | sRunni ngSl ow;

2452 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed
this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant char-
acters.

2453 MIGRATION TO THE CCI

No action required. You may take advantage of the less restrictive naming scheme.

2.4.6 Sizes of Types

The sizes of the basic C types, for example char, i nt and | ong, are not fully defined
by the CCI. These types, by design, reflect the size of registers and other architectural
features in the target device. They allow the device to efficiently access objects of this
type. The ANSI C Standard does, however, indicate minimum requirements for these
types, as specifiedin<lim ts. h>,

If you need fixed-size types in your project, use the types defined in <st di nt . h>, e.qg.,
uint8_t orintl1l6_t.These types are consistently defined across all XC compilers,
even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes
and formats that are tailored to the device you are using; or those that have a fixed size,
regardless of the target.

24.6.1 EXAMPLE

The following example shows the definition of a variable, nat i ve, whose size will allow
efficient access on the target device; and a variable, f i xed, whose size is clearly indi-
cated and remains fixed, even though it may not allow efficient access on every device.

int native;
intl6_t fixed;

2.4.6.2 DIFFERENCES
This is consistent with previous types implemented by the compiler.

2.4.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <st di nt . h>.

© 2012 Microchip Technology Inc. DS51686E-page 23

MPLAB® XC32 C/C++ Compiler User’s Guide

2.4.7 Plain char Types

The type of a plain char isunsi gned char. Itis generally recommended that all def-
initions for the char type explicitly state the signedness of the object.

24.7.1 EXAMPLE

The following example

char foobar;

defines an unsi gned char object called f oobar.
2.4.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used si gned char as the default plain char type. The
- f unsi gned- char option on those compilers changed the default type to be
unsi gned char.

2.4.7.3 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers
needs review. Any plain char that was intended to be a signed quantity should be
replaced with an explicit definition, for example.

signed char foobar;

You may use the - f unsi gned- char option on XC16/32 to change the type of plain
char, but since this option is not supported on XC8, the code is not strictly conforming.

2.4.8 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the inte-
ger.

2481 EXAMPLE

The following shows a variable, t est , that is assigned the value -28 decimal.
signed char test = OxE4;

2.4.8.2 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2.4.8.3 MIGRATION TO THE CCI

No action required.

DS51686E-page 24

© 2012 Microchip Technology Inc.

Common C Interface

2.4.9 Integer conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the most-significant bit to accommodate the target size.

2491 EXAMPLE

The following shows an assignment of a value that will be truncated.

signed char destination;
unsi gned int source = 0x12FE;
destinati on = source;

Under the CCI, the value of dest i nat i on after the alignment will be -2 (i.e., the bit
pattern OXFE).

2.49.2 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that
described in this section.

2493 MIGRATION TO THE CCI

No action required.

2.4.10 Bit-wise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit. See also Section 2.4.11 “Right-shifting Signed Values”.

2.4.10.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND oper-
ation.

signed char output, input = -13;
out put = input & OX7E;

Under the CClI, the value of out put after the assignment will be 0x72.

2.4.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that
described in this section.

2.4.10.3 MIGRATION TO THE CCI
No action required.

2.4.11 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

24.11.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND oper-

ation.

signed char input, output = -13;

output = input >> 3;

Under the CCI, the value of out put after the assignment will be -2 (i.e., the bit pattern
OXFE).

© 2012 Microchip Technology Inc. DS51686E-page 25

MPLAB® XC32 C/C++ Compiler User’s Guide

2.4.11.2 DIFFERENCES

All compilers have performed right shifting as described in this section.

2.4.11.3 MIGRATION TO THE CCI

No action required.

2.4.12 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-
fier to try to access the contents of another (whether any conversion is applied to the
result) is implementation-defined behavior in the standard. In the CCI, no conversion is
applied and the bytes of the union object are interpreted as an object of the type of the
member being accessed, without regard for alignment or other possible invalid condi-
tions.

2.4.12.1 EXAMPLE

The following shows an example of a union defining several members.

uni on {
signed char code;
unsi gned i nt data;
float offset;

} foobar;

Code that attempts to extract of f set by reading dat a is not guaranteed to read the
correct value.

float result;

result = foobbar. data;

2.4.12.2 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.4.12.3 MIGRATION TO THE CCI

No action required.

2.4.13 Default Bit-field int Type

The type of a bit-field specified as a plain i nt will be identical to that of one defined
using unsi gned i nt . This is quite different to other objects where the types i nt,

si gned and si gned i nt are synonymous. Itis recommended that the signedness of
the bit-field be explicitly stated in all bit-field definitions.

2.4.13.1 EXAMPLE

The following shows an example of a structure tag containing bit-fields which are
unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity 1 3;
int val ue 1 4;

I

DS51686E-page 26 © 2012 Microchip Technology Inc.

Common C Interface

2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type i nt was used for bit-fields,
but would implement the bit-field with an unsi gned i nt type.

The 16- and 32-bit compilers have implemented bit-fields defined using i nt as having
asigned int type, unless the option - f unsi gned- bi t fi el ds was specified.

2.4.13.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plaini nt type should be reviewed. If the inten-
tion was for these to be signed quantities, then the type of these should be changed to
si gned i nt, for example, in:
struct WAYPT ({

int |og 1 3;

int direction 14,
s
the bit-field type should be changed to si gned i nt, as in:

struct WAYPT {
signed int |og 13,
signed int direction :4;

b
2.4.14 Bit-fields Straddling a Storage Unit Boundary

Whether a bit-field can straddle a storage unit boundary is implementation-defined
behavior in the standard. In the CClI, bit-fields will not straddle a storage unit boundary;
a new storage unit will be allocated to the structure, and padding bits will fill the gap.

Note that the size of a storage unit differs with each compiler as this is based on the
size of the base data type (e.g., i nt) from which the bit-field type is derived. On 8-bit
compilers this unit is 8-bits in size; for 16-bit compilers, it is 16 bits; and for 32-bit com-
pilers, it is 32 bits in size.

2.4.14.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
unsigned first : 6;
unsi gned second : 6;
} order;

Under the CCI and using XC8, the storage allocation unit is byte sized. The bit-field
second, will be allocated a new storage unit since there are only 2 bits remaining in
the first storage unit in which f i r st is allocated. The size of this structure, or der, will
be 2 bytes.

2.4.14.2 DIFFERENCES

This allocation is identical with that used by all previous compilers.
2.4.14.3 MIGRATION TO THE CCI

No action required.

2.4.15 The Allocation Order of Bits-field

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C
Standard. In the CCI, the first bit defined will be the least significant bit of the storage
unit in which it will be allocated.

© 2012 Microchip Technology Inc. DS51686E-page 27

MPLAB® XC32 C/C++ Compiler User’s Guide

2.4.15.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
unsigned lo : 1;
unsi gned nmd :6;
unsigned hi : 1;
} foo;

The bit-field I o will be assigned the least significant bit of the storage unit assigned to
the structure f 00. The bit-field m d will be assigned the next 6 least significant bits, and
hi , the most significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES

This is identical with the previous operation of all compilers.
2.4.15.3 MIGRATION TO THE CCI

No action required.

2.4.16 The NULL macro

The NULL macro is defined in <st ddef . h>; however, its definition is implementa-
tion-defined behavior. Under the CCI, the definition of NULL is the expression (0) .

2.4.16.1 EXAMPLE

The following shows a pointer being assigned a null pointer constant via the NULL
macro.

int * ip = NULL;

The value of NULL, (0), is implicitly cast to the destination type.

2.4.16.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).
2.4.16.3 MIGRATION TO THE CCI

No action required.

2.4.17 Floating-point sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.
24.17.1 EXAMPLE

The following shows the definition for out Y, which will be at least 32-bit in size.
float out;

2.4.17.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit f | oat and doubl e types.

2.4.17.3 MIGRATION TO THE CCI

When using 8-bit compilers, the f | oat and doubl e type will automatically be made
32 bits in size once the CCI mode is enabled. Review any source code that may have
assumed a f | oat or doubl e type and may have been 24 bits in size.

No migration is required for other compilers.

DS51686E-page 28

© 2012 Microchip Technology Inc.

Common C Interface

2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

251 Generic Header File

A single header file <xc. h> must be used to declare all compiler- and device-specific
types and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

25.11 EXAMPLE

The following shows this header file being included, thus allowing conformance with the
CCl, as well as allowing access to SFRs.

#i ncl ude <xc. h>

2.5.1.2 DIFFERENCES

Some 8-bit compilers used <ht c. h> as the equivalent header. Previous versions of
the 16- and 32-bit compilers used a variety of headers to do the same job.

2.5.1.3 MIGRATION TO THE CCI

Change:
#i ncl ude <htc. h>

used previously in 8-bit compiler code, or family-specific header files as in the following
examples:

#i ncl ude <p32xxxx. h>

#i ncl ude <p30f xxxx. h>
#i ncl ude <p33Fxxxx. h>
#i ncl ude <p24Fxxxx. h>
#i ncl ude "p30f6014. h"

to:
#i ncl ude <xc. h>

2.5.2 Absolute addressing

Variables and functions can be placed at an absolute address by using the __at ()
construct.qualifier Note that XC16/32 may require the variable or function to be placed
in a special section for absolute addressing to work. Stack-based (aut o and parame-
ter) variables cannot use the __at () specifier.

2.5.21 EXAMPLE

The following shows two variables and a function being made absolute.
int scanMode __at (0x200);
const char keys[] __at(123) ={ 'r’, 's’, 'u, 'd};

int modi fy(int x) __at(0x1000) {
return x * 2 + 3;
}

2.5.2.2 DIFFERENCES

The 8-bit compilers have used an @symbol to specify an absolute address.

The 16- and 32-bit compilers have used the addr ess attribute to specify an object’s
address.

© 2012 Microchip Technology Inc. DS51686E-page 29

MPLAB® XC32 C/C++ Compiler User’s Guide

2.5.2.3 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

In XC8, change absolute object definitions such as the following example:
int scanMbde @ 0x200;

to:

i nt scanMbde __at (0x200);

In XC16/32, change code such as:

int scanMode __attribute__(address(0x200)));

to:

int scanMbde __at (0x200);

2.5.24 CAVEATS

Ifthe __at() and __secti on() specifiers are both applied to an object when using
XC8,the __secti on() specifier is currently ignored.

2.5.3 Far Objects and Functions

The __f ar qualifier may be used to indicate that variables or functions may be located
in ‘far memory’. Exactly what constitutes far memory is dependent on the target device,
but it is typically memory that requires more complex code to access. Expressions
involving far-qualified objects may generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this
qualifier will be ignored. Stack-based (aut o and parameter) variables cannot use the
__far specifier.

25.3.1 EXAMPLE

The following shows a variable and function qualified using __f ar.
__far int serial No;
__far int ext_getCond(int selector);

2.5.3.2 DIFFERENCES

The 8-bit compilers have used the qualifier f ar to indicate this meaning. Functions
could not be qualified as f ar.

The 16-bit compilers have used the f ar attribute with both variables and functions.
The 32-bit compilers have used the f ar attribute with functions, only.

DS51686E-page 30

© 2012 Microchip Technology Inc.

Common C Interface

2.5.3.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the f ar qualifier, as in the following
example:

far char tenplate[20];
to_ far,ie., __far char tenplate[20];

In the 16- and 32-bit compilers, change any occurrence of the f ar attribute, as in the
following

void bar(void) __attribute__ ((far));
int tblldx __attribute__ ((far));

to
void _ far bar(void);
int _ far tblldx;

2.5.34 CAVEATS

None.

254 Near Objects

The __near qualifier may be used to indicate that variables or functions may be

located in ‘near memory’. Exactly what constitutes near memory is dependent on the
target device, but it is typically memory that can be accessed with less complex code.
Expressions involving near-qualified objects may be faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this
qualifier will be ignored. Stack-based (aut o and parameter) variables cannot use the
__hear specifier.

2541 EXAMPLE

The following shows a variable and function qualified using __near.
__near int serial No;
__near int ext_getCond(int selector);

2.5.4.2 DIFFERENCES

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions
could not be qualified as near .

The 16-bit compilers have used the near attribute with both variables and functions.
The 32-bit compilers have used the near attribute for functions, only.

© 2012 Microchip Technology Inc. DS51686E-page 31

MPLAB® XC32 C/C++ Compiler User’s Guide

2543 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the near qualifier, as in the following
example:

near char tenpl ate[20];
to__near,i.e.,, __near char tenplate[20];

In 16- and 32-bit compilers, change any occurrence of the near attribute, as in the fol-
lowing

void bar(void) __attribute__ ((near));
int tblldx __attribute__ ((near));

to
void _ _near bar(void);
int __near tblldx;

2544 CAVEATS

None.

255 Persistent Objects

The __persi st ent qualifier may be used to indicate that variables should not be
cleared by the runtime startup code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

2551 EXAMPLE

The following shows a variable qualified using __per si st ent .
__persistent int serial No;

2552 DIFFERENCES

The 8-bit compilers have used the qualifier, per si st ent , to indicate this meaning.

The 16- and 32-bit compilers have used the per si st ent attribute with variables to
indicate they were not to be cleared.

2553 MIGRATION TO THE CCI

With 8-bit compilers, change any occurrence of the per si st ent qualifier, as in the fol-
lowing example:

persi stent char tenplate[20];
to__persistent,ie., _ persistent char tenplate[20];

For the 16- and 32-bit compilers, change any occurrence of the per si st ent attribute,
as in the following

int thlldx __attribute__ ((persistent));
to
int _ persistent tblldx;

2554 CAVEATS

None.

DS51686E-page 32 © 2012 Microchip Technology Inc.

Common C Interface

2.5.6 X and Y Data Objects

The __xdat a and __ydat a qualifiers may be used to indicate that variables may be
located in special memory regions. Exactly what constitutes X and Y memory is depen-
dent on the target device, but it is typically memory that can be accessed independently
on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have such memory implemented; in which case, use of these
qualifiers will be ignored.

25.6.1 EXAMPLE

The following shows a variable qualified using __xdat a, as well as another variable
qualified with __ydat a.

__xdata char data[16];

__ydata char coeffs[4];

2.5.6.2 DIFFERENCES

The 16-bit compilers have used the xmenory and ynmenor y space attribute with
variables.

Equivalent specifiers have never been defined for any other compiler.

2.5.6.3 MIGRATION TO THE CCI

For 16-bit compilers, change any occurrence of the space attributes xnenory or
ymenory, as in the following example:

char __attribute__ ((space(xmenory)))tenpl ate[20];

to__xdata,or __ydata,i.e.,_ _xdata char tenpl ate[20];

25.6.4 CAVEATS

None.

2.5.7 Banked Data Objects

The __bank(num qualifier may be used to indicate that variables may be located in
a particular data memory bank. The number, num represents the bank number. Exactly
what constitutes banked memory is dependent on the target device, but it is typically a
subdivision of data memory to allow for assembly instructions with a limited address
width field.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have banked data memory implemented, in which case, use of
this qualifier will be ignored. The number of data banks implemented will vary from one
device to another.

2571 EXAMPLE

The following shows a variable qualified using __bank() .

__bank(0) char start;
__bank(5) char stop;

© 2012 Microchip Technology Inc. DS51686E-page 33

MPLAB® XC32 C/C++ Compiler User’s Guide

2.5.7.2 DIFFERENCES

The 8-bit compilers have used the four qualifiers bank0, bank1, bank2 and bank3 to
indicate the same, albeit more limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

2.5.7.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the bankx qualifiers, as in the following
example:

bank2 int |ogEntry;
to __bank(,i.e.,__bank(2) int |ogEntry;

2574 CAVEATS

None.

2.5.8 Alignment of Objects

The __al i gn(alignment) specifier may be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of two. Positive values request that the object’s start
address be aligned; negative values imply the object’'s end address be aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

25.8.1 EXAMPLE

The following shows variables qualified using __al i gn() to ensure they end on an
address that is a multiple of 8, and start on an address that is a multiple of 2,
respectively.

__align(-8) int spacer;
_align(2) char coeffs[6];

2.5.8.2 DIFFERENCES

An alignment feature has never been implemented on 8-bit compilers.
The 16- and 32-bit compilers used the al i gned attribute with variables.
2.5.8.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the al i gned attribute, as in
the following example:

char __attribute__((aligned(4)))node;
to__align,ie.,_ _align(4) char node;
2.5.84 CAVEATS

This feature is not yet implemented on XC8.

DS51686E-page 34 © 2012 Microchip Technology Inc.

Common C Interface

259 EEPROM Objects

The __eepr omqualifier may be used to indicate that variables should be positioned in
EEPROM.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices will
generate a warning. Stack-based (aut o and parameter) variables cannot use the
__eepr omspecifier.

2591 EXAMPLE

The following shows a variable qualified using __eepr om
__eepromint serial Nos[4];

2.5.9.2 DIFFERENCES
The 8-bit compilers have used the qualifier, eepr om to indicate this meaning for some
devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory
space used for EEPROM.

2.5.9.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the eepr omqualifier, as in the following
example:

eepromchar title[20];

to__eepromi.e., _

For 16-bit compilers, change any occurrence of the eedat a space attribute, as in the
following

int minSw __attribute__ ((space(eedata)));

_eepromchar title[20];

to
int __eeprom nmai nSw;

2594 CAVEATS

XC8 does not implement the __eepr omqualifiers for any PIC18 devices; this qualifier
will work as expected for other 8-bit devices.

2.5.10 Interrupt Functions

The __interrupt (type) specifier may be used to indicate that a function is to act
as an interrupt service routine. The t ype is a comma-separated list of keywords that
indicate information about the interrupt function.

The current interrupt types are:
<empty>
Implement the default interrupt function
low_priority
The interrupt function corresponds to the low priority interrupt source (XC8 — PIC18
only)

high_priority
The interrupt function corresponds to the high priority interrupt source (XC8)

© 2012 Microchip Technology Inc. DS51686E-page 35

MPLAB® XC32 C/C++ Compiler User’s Guide

save(symbol-list)

Save on entry and restore on exit the listed symbols (XC16)

irg(irqid)

Specify the interrupt vector associated with this interrupt (XC16)
altirg(altirqid)

Specify the alternate interrupt vector associated with this interrupt (XC16)
preprologue(asm)

Specify assembly code to be executed before any compiler-generated interrupt code
(XC16)

shadow

Allow the ISR to utilise the shadow registers for context switching (XC16)

auto_psv
The ISR will set the PSVPAG register and restore it on exit (XC16)

no_auto_psv
The ISR will not set the PSVPAG register (XC16)

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some devices may not implement interrupts. Use of this qualifier for such devices will
generate a warning. If the argument to the __i nt er r upt specifier does not make
sense for the target device, a warning or error will be issued by the compiler.

2.5.10.1 EXAMPLE

The following shows a function qualified using __i nt er rupt .

_interrupt(low priority) void getData(void) {
if (TMROIE & TMROIF) {
TMROI F=0;
++ti ck_count;

}

2.5.10.2 DIFFERENCES

The 8-bit compilers have used the i nt errupt and | ow_pri ori ty qualifiers to indi-
cate this meaning for some devices. Interrupt routines were by default high priority.

The 16- and 32-bit compilers have used the i nt er r upt attribute to define interrupt
functions.

2.5.10.3 MIGRATION TO THE CCI
For 8-bit compilers, change any occurrence of the i nt er r upt qualifier, as in the
following examples:

void interrupt mnylsr(void)
void interrupt low priority myLol sr(void)

to the following, respectively

void __interrupt(high_priority) mylsr(void)
void __interrupt(low_ priority) myLolsr(void)

For 16-bit compilers, change any occurrence of the i nt er r upt attribute, as in the fol-
lowing example:

void __attribute__((interrupt,auto_psv, (irq(52)))) nylsr(void);

DS51686E-page 36 © 2012 Microchip Technology Inc.

Common C Interface

to
void __interrupt(auto_psv, (irq(52)))) mylsr(void);

For 32-bit compilers, the __i nt errupt () keyword takes two parameters, the vector
number and the (optional) IPL value. Change code which uses the i nt er r upt attri-
bute, similar to these examples:

void __attribute__ ((vector(0), interrupt(lPL7AUTO), nom psl6))
nyi srO_7A(void) {}

void __attribute__((vector(1l), interrupt(lPL6SRS), noni psl6))
nyi sr1_6SRS(void) {}

/* Determine |IPL and context-saving node at runtine */
void __attribute_ ((vector(2), interrupt(), nom psl6))
nyi sr2_RUNTI ME(voi d) {}

to
void __interrupt(0, | PL7AUTO) nyisr0_7A(void) {}

void __interrupt(1,1PL6SRS) nyisrl 6SRS(void) {}

/* Determine |IPL and context-saving node at runtine */
void __interrupt(2) nyisr2_RUNTI ME(void) {}

2.5.10.4 CAVEATS

None.

2.5.11 Packing Objects

The __pack specifier may be used to indicate that structures should not use memory
gaps to align structure members, or that individual structure members should not be
aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some compilers may not pad structures with alignment gaps for some devices and use
of this specifier for such devices will be ignored.

2.5.11.1 EXAMPLE

The following shows a structure qualified using __pack as well as a structure where
one member has been explicitly packed.

__pack struct DATAPO NT {
unsi gned char type;
int val ue;

} x-point;

struct LINETYPE {
unsi gned char type;
__pack int start;
|l ong total;

} line;

2.5.11.2 DIFFERENCES

The __pack specifier is a new CCI specifier available with XC8. This specifier has no
apparent effect since the device memory is byte addressable for all data objects.

The 16- and 32-bit compilers have used the packed attribute to indicate that a struc-
ture member was not aligned with a memory gap.

© 2012 Microchip Technology Inc. DS51686E-page 37

MPLAB® XC32 C/C++ Compiler User’s Guide

2.5.11.3 MIGRATION TO THE CCI

No migration is required for XC8.

For 16- and 32-bit compilers, change any occurrence of the packed attribute, as in the
following example:

struct DOT
{
char a;
int x[2] __attribute__ ((packed));
}s
to:
struct DOT
{
char a;
__pack int x[2];
}

Alternatively, you may pack the entire structure, if required.

2.5.11.4 CAVEATS

None.

2.5.12 Indicating Antiquated Objects

The __depr ecat e specifier may be used to indicate that an object has limited longev-
ity and should not be used in new designs. It is commonly used by the compiler vendor
to indicate that compiler extensions or features may become obsolete, or that better
features have been developed and which should be used in preference.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.12.1 EXAMPLE

The following shows a function which uses the __depr ecat e keyword.
voi d __deprecate getVal ue(int node)

{
...

}
2.5.12.2 DIFFERENCES

No deprecate feature was implemented on 8-bit compilers.
The 16- and 32-bit compilers have used the depr ecat ed attribute (note different spell-
ing) to indicate that objects should be avoided if possible.

2.5.12.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the depr ecat ed attribute, as
in the following example:

int __attribute__(deprecated) intMask;
to:
int _ deprecate intMask;

2.5.12.4 CAVEATS

None.

DS51686E-page 38 © 2012 Microchip Technology Inc.

Common C Interface

2.5.13 Assigning Objects to Sections

The __section() specifier may be used to indicate that an object should be located
in the named section (or psect, using the XC8 terminology). This is typically used when
the object has special and unique linking requirements which cannot be addressed by
existing compiler features.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.13.1 EXAMPLE

The following shows a variable which uses the __sect i on keyword.
int _ section("conBSec") commonFl ag;

2.5.13.2 DIFFERENCES

The 8-bit compilers have used the #pr agna psect directive to redirect objects to a
new section, or psect. The operation of the __secti on() specifier is different to this
pragma in several ways, described below.

Unlike with the pragma, the new psect created with __sect i on() does not inherit the
flags of the psect in which the object would normally have been allocated. This means
that the new psect can be linked in any memory area, including any data bank. The
compiler will also make no assumptions about the location of the object in the new sec-
tion. Objects redirected to new psects using the pragma must always be linked in the
same memory area, albeit at any address in that area.

The __sect i on() specifier allows objects that are initialized to be placed in a different
psect. Initialization of the object will still be performed even in the new psect. This will
require the automatic allocation of an additional psect (whose name will be the same
as the new psect prefixed with the letter i), which will contain the initial values. The
pragma cannot be used with objects that are initialized.

Objects allocated a different psect with __sect i on() will be cleared by the runtime
startup code, unlike objects which use the pragma.

You must reserve memory, and locate via a linker option, for any new psect created with
a__section() specifier in the current XC8 compiler implementation.

The 16- and 32-bit compilers have used the sect i on attribute to indicate a different
destination section name. The __secti on() specifier works in a similar way to the
attribute.

2.5.13.3 MIGRATION TO THE CCI

For XC8, change any occurrence of the #pr agma psect directive, such as

#pragma psect text %Wu=nyText
int getMde(int target) {
...

}

tothe __section() specifier, as in

int __section ("nmyText") getMde(int target) {
/...

}

For 16- and 32-bit compilers, change any occurrence of the sect i on attribute, as in
the following example:

int __attribute__ ((section("nyVars"))) intMask;
to:
int __section("nyVars") intMask;

© 2012 Microchip Technology Inc. DS51686E-page 39

MPLAB® XC32 C/C++ Compiler User’s Guide

2.5.13.4 CAVEATS

With XC8, the __sect i on() specifier cannot be used with any interrupt function.

2.5.14 Specifying Configuration Bits
The #pr agna confi g directive may be used to program the configuration bits for a
device. The pragma has the form:

#pragma config setting = state|val ue
#pragma config register = val ue

where set t i ng is a configuration setting descriptor (e.g., WDT), st at e is a descriptive
value (e.g., ON) and val ue is a numerical value. The register token may represent a
whole configuration word register, e.g., CONFI GLL.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this directive.

2.5.14.1 EXAMPLE

The following shows configuration bits being specified using this pragma.
#pragma config WDOT=ON, WDTPS = Ox1A

2.5.14.2 DIFFERENCES

The 8-bit compilers have used the __ CONFI () macro for some targets that did not
already have support for the #pr agma confi g.

The 16-bit compilers have used a humber of macros to specify the configuration set-
tings.

The 32-bit compilers supported the use of #pr agna confi g.

2.5.14.3 MIGRATION TO THE CCI

For the 8-bit compilers, change any occurrence of the __ CONFI () macro, such as
__CONFI G{WDTEN & XT & DPROT)

to the #pragma confi g directive, as in

#pragma confi g WDTE=ON, FOSC=XT, CPD=ON

No migration is required if the #pr agma conf i g was already used.

For the 16-bit compilers, change any occurrence of the _FOSC() or _FBORPOR()
macros attribute, as in the following example:

_FOSC(CSW FSCM ON & EC PLL16);

to:

#pragma config FCKSMEM = CSW ON_FSCM O\, FPR = ECI O _PLL16
No migration is required for 32-bit code.

2.5.14.4 CAVEATS

None.

DS51686E-page 40

© 2012 Microchip Technology Inc.

Common C Interface

2.5.15 Manifest Macros

The CCI defines the general form for macros that manifest the compiler and target
device characteristics. These macros can be used to conditionally compile alternate
source code based on the compiler or the target device.

The macros and macro families are details in Table 2-1.

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example

__XC__ Compiled with an MPLAB XC compiler __XC__
__CCI_ Compiler is CCI compliant and CCI enforce- | __CCl __

ment is enabled
_ XCH#__ The specific XC compiler used (## canbe 8, | __ XC8___

16 or 32)
__DEVICEFAM LY__ The family of the selected target device __dsPI C30F__
__DEVI CENAVE__ The selected target device name __18F452

2.5.15.1 EXAMPLE

The following shows code which is conditionally compiled dependent on the device
having EEPROM memory.

#ifdef _ XCl6__

void __interrupt(__auto_psv__) nylsr(void)
#el se
void __interrupt(low priority) nylsr(void)
#endi f

2.5.15.2 DIFFERENCES

Some of these CCI macros are new (for example __ CCl _), and others have different
names to previous symbols with identical meaning (for example __18F452 is now
__18F452_).

2.5.15.3 MIGRATION TO THE CCI

Any code which uses compiler-defined macros will need review. Old macros will con-
tinue to work as expected, but they are not compliant with the CCI.

2.5.15.4 CAVEATS

None.

© 2012 Microchip Technology Inc. DS51686E-page 41

MPLAB® XC32 C/C++ Compiler User’s Guide

2.5.16 In-line Assembly

The asm() statement may be used to insert assembly code in-line with C code. The
argument is a C string literal which represents a single assembly instruction. Obviously,
the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this statement.

2.5.16.1 EXAMPLE

The following shows a MOVLWinstruction being inserted in-line.
asm(" MOVLW _f oobar");

2.5.16.2 DIFFERENCES

The 8-bit compilers have used either the asm() or #asm... #endasmeconstructs to
insert in-line assembly code.

This is the same syntax used by the 16- and 32-bit compilers.

2.5.16.3 MIGRATION TO THE CCI
For 8-bit compilers change any instance of #asm... #endasmso that each instruction
in this #asmblock is placed in its own asn{) statement, for example:

#asm
MOVLW 20
MOV i
CLRF li+1
#endasm

to

asm(" MOVLW20") ;
asm("MOWE _i");
asm(" CLRFI | +1");

No migration is required for the 16- or 32-bit compilers.

2.5.16.4 CAVEATS

None.

DS51686E-page 42

© 2012 Microchip Technology Inc.

Common C Interface

26 COMPILER FEATURES

The following items detail compiler options and features that are not directly associated
with source code that

2.6.1 Enabling the CCI

It is assumed you are using the MPLAB X IDE to build projects that use the CCI. The
widget in the MPLAB X IDE Project Properties to enable CCI conformance is Use CCI
Syntax in the Compiler category. A widget with the same name is available in MPLAB
IDE v8 under the Compiler tab.

If you are not using this IDE, then the command-line options are - - CCl for XC8 or
-ncei for XC16/32.

2.6.1.1 DIFFERENCES
This option has never been implemented previously.
2.6.1.2 MIGRATION TO THE CCI

Enable the option.

2.6.1.3 CAVEATS

None.

© 2012 Microchip Technology Inc. DS51686E-page 43

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 44 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 3. Compiler Command Line Driver

3.1 INTRODUCTION

The command line driver (xc32- gcc or xc32- g++) is the application that can be
invoked to perform all aspects of compilation, including C/C++ code generation,
assembly and link steps. Even if you use an IDE to assist with compilation, the IDE will
ultimately call xc32- gcc for C projects or xc32- g++ for C++ projects.

Although the internal compiler applications can be called explicitly from the command
line, using the xc32- gcc or xc32- g++ driver is the recommended way to use the
compiler as it hides the complexity of all the internal applications used and provides a
consistent interface for all compilation steps.

This chapter describes the steps the driver takes during compilation, files that the driver
can accept and produce, as well as the command line options that control the com-
piler’s operation. It also shows the relationship between these command line options
and the controls in the MPLAB IDE Build Options dialog.

Topics concerning the command line use of the driver are discussed below.
* Invoking the Compiler

e The C Compilation Sequence

* The C++ Compilation Sequence

¢ Runtime Files

 Start-up and Initialization

e Compiler Output

e Compiler Messages

* Driver Option Descriptions

3.2 INVOKING THE COMPILER

The compiler is invoked and runs on the command line as specified in the next section.
Additionally, environmental variables and input files used by the compiler are discussed
in the following sections.

3.2.1 Driver Command Line Format

The compilation driver program (xc32- gcc) compiles, assembles and links C and
assembly language modules and library archives. The xc32- g++ driver must be used
when the module source is written in C++. Most of the compiler command line options
are common to all implementations of the GCC toolset (MPLAB XC16 uses the GCC
toolset; XC8 does not). A few are specific to the compiler.

The basic form of the compiler command line is:

xc32-gcc [options] files

xc32-g++ [options] files

For example, to compile, assemble and link the C source file hel | 0. ¢, creating the
absolute executable hel | 0. el f, execute this command:

xc32-gcc -0 hello.elf hello.c

© 2012 Microchip Technology Inc. DS51686E-page 45

MPLAB® XC32 C/C++ Compiler User’s Guide

Or, to compile, assemble and link the C++ source file hel | 0. cpp, creating the
absolute executable hel | 0. el f, execute:

xc32-g++ -0 hello.elf hello.cpp

The available options are described in Section 3.9 “Driver Option Descriptions”. It
is conventional to supply opt i ons (identified by a leading dash “-” before the
filenames), although this is not mandatory.

The fi | es may be any mixture of C/C++ and assembler source files, relocatable
object files (. 0) or archive files. The order of the files is important. It may affect the
order in which code or data appears in memory or the search order for symbols. Typi-
cally archive files are specified after source files. The file types are described in
Section 3.2.2 “Input File Types”.

Note: Command line options and file name extensions are case sensitive. I

Libraries is a list of user-defined object code library files that will be searched by the
linker, in addition to the standard C libraries. The order of these files will determine the
order in which they are searched. They are typically placed after the source filenames,
but this is not mandatory.

It is assumed in this manual that the compiler applications are either in the console’s
search path, the appropriate environment variables have been specified, or the full path
is specified when executing any application.

Environment Variables

The variables in this section are optional, but, if defined, they will be used by the
compiler. The compiler driver, or other subprogram, may choose to determine an
appropriate value for some of the following environment variables if they are not set.
The driver, or other subprogram, takes advantage of internal knowledge about the
installation of the compiler. As long as the installation structure remains intact, with all
subdirectories and executables remaining in the same relative position, the driver or
subprogram will be able to determine a usable value. The “XC32” variables should be
used for new projects; however, the “PIC32” variables may be used for legacy projects.

TABLE 3-1: COMPILER-RELATED ENVIRONMENTAL VARIABLES

Option Definition

XC32_C | NCLUDE_PATH | This variable’s value is a semicolon-separated list of directories,
Pl C32_C_| NCLUDE_PATH | much like PATH. When the compiler searches for header files, it
tries the directories listed in the variable, after the directories
specified with - | but before the standard header file directories.
If the environment variable is undefined, the preprocessor
chooses an appropriate value based on the standard installation.
By default, the following directories are searched for include
files:

<install - pat h>\pi c32mx\ i ncl ude

XC32_COWPI LER_PATH The value of PI C32_COWPI LER_PATHis a semicolon-separated
Pl C32_COWPI LER_PATH |list of directories, much like PATH. The compiler tries the directo-
ries thus specified when searching for subprograms, if it can't
find the subprograms using Pl C32_EXEC_PREFI X.

DS51686E-page 46 © 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-1: COMPILER-RELATED ENVIRONMENTAL VARIABLES
Option Definition

XC32_EXEC_PREFI X If Pl C32_EXEC_PREFI Xis set, it specifies a prefix to use in the
Pl C32_EXEC PREFI X names of subprograms executed by the compiler. No directory
delimiter is added when this prefix is combined with the name of
a subprogram, but you can specify a prefix that ends with a slash
if you wish. If the compiler cannot find the subprogram using the
specified prefix, it tries looking in your PATH environment
variable.

If the PI C32_EXEC_PREFI X environment variable is unset or
set to an empty value, the compiler driver chooses an appropri-
ate value based on the standard installation. If the installation
has not been modified, this will result in the driver being able to
locate the required subprograms.

Other prefixes specified with the - B command line option take
precedence over the user- or driver-defined value of

Pl C32_EXEC_PREFI X.

Under normal circumstances it is best to leave this value unde-
fined and let the driver locate subprograms itself.

XC32_LI BRARY_PATH This variable’s value is a semicolon-separated list of directories,
Pl C32_LI BRARY_PATH much like PATH. This variable specifies a list of directories to be
passed to the linker. The driver’s default evaluation of this vari-

able is:
<install-path>\1ib; <install-path>\pic32m\Ilib.
TWMPDI R If TMPDI Ris set, it specifies the directory to use for temporary

files. The compiler uses temporary files to hold the output of one
stage of compilation that is to be used as input to the next stage:
for example, the output of the preprocessor, which is the input to
the compiler proper.

© 2012 Microchip Technology Inc. DS51686E-page 47

MPLAB® XC32 C/C++ Compiler User’s Guide

3.2.2 Input File Types

The compilation driver recognizes the following file extensions, which are case
sensitive.

TABLE 3-2: FILE NAMES

Extensions Definition
file.c A C source file that must be preprocessed.
file.cpp A C++ source file that must be preprocessed.
file.h A header file (not to be compiled or linked).
file.i A C source file that has already been pre-processed.
file.o An object file.
file.ii A C++ source file that has already been pre-processed.
file.s An assembly language source file.
file.S An assembly language source file that must be preprocessed.
other A file to be passed to the linker.

There are no compiler restrictions imposed on the names of source files, but be aware
of case, name-length and other restrictions imposed by your operating system. If you
are using an IDE, avoid assembly source files whose base name is the same as the
base name of any project in which the file is used. This may result in the source file
being overwritten by a temporary file during the build process.

The terms “source file” and “module” are often used when talking about computer
programs. They are often used interchangeably, but they refer to the source code at
different points in the compilation sequence.

A source file is a file that contains all or part of a program. They may contain C/C++
code, as well as preprocessor directives and commands. Source files are initially
passed to the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of any
header files (or other source files) which are specified by #i ncl ude preprocessor
directives. All preprocessor directives and commands (with the possible exception of
some commands for debugging) have been removed from these files. These modules
are then passed to the remainder of the compiler applications. Thus, a module may be
the amalgamation of several source and header files. A module is also often referred
to as a translation unit. These terms can also be applied to assembly files, as they too
can include other header and source files.

DS51686E-page 48

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

THE C COMPILATION SEQUENCE

331 Single-step C Compilation

A single command-line instruction can be used to compile one file or multiple files.

3.3.1.1 COMPILING A SINGLE C FILE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler's <i nst al | - di r >/ bi n directory has been
added to your PATH variable. The following are other directories of note:

e <install-dir>/pic32nk/incl ude the directory for standard C header files.

e <install-dir>/pic32nk/incl ude/ pr oc the directory for PIC32MX
device-specific header files.

e <install-dir>/pic32nmx/Ii b the directory structure for standard libraries
and start-up files.

e <install-dir>/pic32nk/incl ude/ peri pheral the directory for PIC32MX
peripheral library include files.

e <install-dir>/pic32nx/|i b/ proc the directory for device-specific linker
script fragments, register definition files and configuration data may be found.

The following is a simple C program that adds two numbers. Create the following
program with any text editor and save it as ex1. c.

#i ncl ude <xc. h>
#i ncl ude <plib. h>

/] Device-Specific Configuration-Bit settings

/] SYSCLK = 80 Mz (8M1z Crystal/ FPLLIDIV * FPLLMJUL / FPLLODI V)
/] PBCLK = 40 Mz

/1 Primary Osc w PLL (XT+, HS+, EC+PLL)

/1 WDT OFF

/1l Other options are don't care

11

#pragma config FPLLMUL = MJL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1,
FWDTEN = OFF

#pragma config POSCMOD = HS, FNOSC = PRIPLL, FPBDIV = DIV_8
unsigned int x, y, z;

unsi gned int
add(unsi gned int a, unsigned int b)

{
}

return(a+b);

i nt
mai n(voi d)
{
/* Configure the target for maxi mum performance at 80 MHz. */
SYSTEMConf i gPer f or mance(80000000UL) ;
X 2;
y 5;
z add(x,y);
return O;

© 2012 Microchip Technology Inc. DS51686E-page 49

MPLAB® XC32 C/C++ Compiler User’s Guide

The first line of the program includes the header file xc. h, which provides definitions
for all Special Function Registers (SFRs) on that part.

Compile the program by typing the following at the prompt:

xc32-gcc —npr ocessor =32MX795F512L -0 ex1.out exl.c

The command line option - 0 ex1. out names the output executable file (if the - o
option is not specified, then the output file is named a. out). The executable file may
be loaded into MPLAB IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command:

xc32-bi n2hex ex1. out
This creates an Intel hex file named ex1. hex.

3.3.1.2 COMPILING MULTIPLE C FILES

This section demonstrates how to compile and link multiple files in a single step. Move
the Add() function into a file called add. ¢ to demonstrate the use of multiple files in
an application. That is:

File 1

/* exl.c */

#i ncl ude <xc. h>
#i ncl ude <plib. h>

/'] Device-Specific Configuration-Bit settings

/1 SYSCLK = 80 MHz (8MHz Crystal/ FPLLIDV * FPLLMJL / FPLLODI V)
/1 PBCLK = 40 Mz

/1 Primary Osc w PLL (XT+, HS+, EC+PLL)

/] WDOT OFF

/] Qther options are don't care

11

#pragma config FPLLMJL = MJL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1,
FWDTEN = OFF

#pragma confi g POSCMOD

HS, FNOSC = PRIPLL, FPBDIV = DIV_8

int main(void);
unsi gned int add(unsigned int a, unsigned int b);
unsigned int x, vy, z;
int mai n(voi d)
{
/* Configure the target for maxi mum performance at 80 MHz. */
SYSTEMConf i gPer f or mance(80000000UL) ;
X 2;
y 5;
z Add(x,y);
return O;
}
File 2
/* add.c */
#i ncl ude <xc. h>
unsi gned int
add(unsi gned int a, unsigned int b)
{
return(atb);

}

DS51686E-page 50

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.4

THE C++

Compile both files by typing the following at the prompt:
xc32-gcc - Mprocessor =32MX795F512L -o exl.out exl.c add.c

This command compiles the modules ex1. ¢ and add. c. The compiled modules are
linked with the compiler libraries and the executable file ex1. out is created.

3.3.2 Multi-step C Compilation

Make utilities and IDEs, such as MPLAB IDE, allow for an incremental build of projects
that contain multiple source files. When building a project, they take note of which
source files have changed since the last build and use this information to speed up
compilation.

For example, if compiling two source files, but only one has changed since the last
build, the intermediate file corresponding to the unchanged source file need not be
regenerated.

If the compiler is being invoked using a make utility, the make file will need to be con-
figured to use the intermediate files (. o files) and the options used to generate the
intermediate files (- ¢, see Section 3.9.2 “Options for Controlling the Kind of Out-
put”). Make utilities typically call the compiler multiple times: once for each source file
to generate an intermediate file, and once to perform the second stage compilation.

For example, the files ex1. ¢ and add. ¢ are to be compiled using a make utility. The
command lines that the make utility should use to compile these files might be
something like:

xc32-gcc -nprocessor =32MX795F512L -c exl.c
Xxc32-gcc - nprocessor =32MX795F512L -c add.c
xCc32-gcc - nprocessor =32MX795F512L -0 exl.out exl.o add.o

COMPILATION SEQUENCE

34.1 Single-step C++ Compilation

A single command-line instruction can be used to compile one file or multiple files.

3.4.1.1 COMPILING A SINGLE C++ FILE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler's <i nst al | - di r >/ bi n directory has been
added to your PATH variable. The following are other directories of note:

e <install-dir>/pic32nmk/i ncl ude/ cpp the directory for standard C++
header files.

e <install-dir>/pic32mx/i ncl ude/ proc the directory for
PIC32MXdevice-specific header files.

e <install-dir>/pic32nk/|i b the directory structure for standard libraries
and start-up files.

e <install-dir>/pic32nk/incl ude/ peri pheral the directory for PIC32
peripheral library include files.

e <install-dir>/pic32nx/|i b/ proc the directory for device-specific linker
script fragments, register definition files, and configuration data may be found.

© 2012 Microchip Technology Inc. DS51686E-page 51

MPLAB® XC32 C/C++ Compiler User’s Guide

The following is a simple C++ program. Create the following program with any
plain-text editor and save it as ex2. cpp.

[* ex2.cpp */
#i ncl ude <xc. h> /'l __XC_UART
#i ncl ude <plib. h> /1 SYSTEMConfi gPerf or mance()

#i ncl ude <i ostreane
#i ncl ude <vector>

#i ncl ude <deque>

#i nclude <list>

#i ncl ude <set>

#i ncl ude <map>

#i ncl ude <string>

#i ncl ude <al gorithme
#i nclude <iterator>
#i ncl ude <functional >
#i ncl ude <nuneric>
usi ng nanespace std;

/] Device-Specific Configuration-bit settings

#pragnma config FPLLMJUL=MJL_20, FPLLIDIV=DIV_2, FPLLODI V=DIV_1,
FWDTEN=OFF

#pragnma config POSCMOD=HS, FNOSC=PRI PLL, FPBDI V=Dl V_8

tenpl ate <class T>

inline void print_elenents (const T& coll, const char* optcstr="")
{
typename T::const_iterator pos
std::cout << optcstr;
for (pos=coll.begin(); pos!=coll.end(); ++pos) {
std::cout << *pos << ' ';
}
std::cout << std::endl
}
tenpl ate <class T>
inline void insert_elenents (T& coll, int first, int |ast)
{
for (int i=first; i<=last; ++i)
{
coll.insert(coll.end(),i);
}
}

int main(void) ({

Il Configure the target for max performance at 80 MHz.
SYSTEMConf i gPer f or mance (80000000UL) ;

/!l Direct stdout to UART 1 for use with the sinulator
__XC_UART = 1;

deque<i nt > col |
insert_el ements(coll,1,9);
insert_el ements(coll,1,9);

print_elements(coll, "on entry: ");

DS51686E-page 52 © 2012 Microchip Technology Inc.

Compiler Command Line Driver

//sort elenents
sort (coll.begin(), coll.end());

print_elenments(coll, "sorted: ");

/lsorted reverse
sort (coll.begin(), coll.end(), greater<int>());

print_elements(coll, "sorted > ");

whil e(1);
}

The first line of the program includes the header file xc. h, which provides definitions
for all Special Function Registers (SFRs) on the target device. The second file of the

program includes the header file pl i b. h, which provides the necessary prototypes for
the peripheral library.

Compile the program by typing the following at a command prompt.

XxCc32- g++ - nprocessor =32MX795F512L - W, - - def sym=_m n_heap_si ze=0xF000
-0 ex2.elf ex2.cpp

The option - 0 ex2. el f names the output executable file. This elf file may be loaded
into MPLAB X IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command

xc32- bi n2hex ex2.elf
This creates an Intel hex file named ex2. hex.

© 2012 Microchip Technology Inc. DS51686E-page 53

MPLAB® XC32 C/C++ Compiler User’s Guide

3.4.2 Compiling Multiple C and C++ files

This section demonstrates how to compile and link multiple C and C++ files in a single

step.

File 1

[* main.cpp */

#i ncl ude <xc. h> /'l __XC_UART

#i nclude <plib.h> // SYSTEMConfi gPerfornmance()

#i ncl ude <i ostreanp
usi ng namespace std;

/'] Device-Specific Configuration-bit settings

#pragma config FPLLMUL=MUL_20, FPLLIDIV=DIV_2, FPLLODIV=DIV_1,
FWDTEN=CFF

#pragma confi g POSCMOD=HS, FNOSC=PRI PLL, FPBDI V=Dl V_8

/1 add() must have C |inkage
extern "C' {
extern unsigned int add(unsigned int a, unsigned int b);

}

int main(void) ({
int nmyval ue = 6;

/1 Configure the target for max performance at 80 MHz.
SYSTEMConf i gPer f or mance (80000000UL) ;

/1 Direct stdout to UART 1 for use with the sinulator

__XC_UART = 1;
std::cout << "original value: " << nyvalue << endl
nyval ue = add (nyval ue, 3);
std::cout << "new val ue: " << nyval ue << endl
while(1);

}

File 2

/* ex3.c */
unsi gned int
add(unsi gned int a, unsigned int b)

{

return(a+b);
}
Compile both files by typing the following at the prompt:

XCc32-g++ - nprocessor =32MX795F512L -0 ex3.elf main.cpp ex3.c

The command compiles the modules mai n. cpp and ex3. ¢. The compiled modules
are linked with the compiler libraries for C++ and the executable file ex3. el f is cre-
ated.

Note: Use the xc32-g++ driver (as opposed to the xc32-gcc driver) in order to link
the project with the C++ support libraries necessary for the C++ source file
in the project.

DS51686E-page 54 © 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.5 RUNTIME FILES

In addition to the C/C++ and assembly source files specified on the command line,
there are also compiler-generated source files and pre-compiled library files which
might be compiled into the project by the driver. These files contain:

e C/C++ Standard library routines

« Implicitly called arithmetic routines

» User-defined library routines

e The runtime start-up code

3.5.1 Library Files

The names of the C/C++ standard library files appropriate for the selected target
device, and other driver options, are determined by the driver.

The target libraries, called multilibs, are built multiple times with a permuted set of
options. When the compiler driver is called to compile and link an application, the driver
chooses the version of the target library that has been built with the same options.

By default, the 32-bit language tools use the directory
<install-directory>/1ib/gcc/ to store the specific libraries and the directory
<install-directory>/<pi c32nmx>/1i b to store the target-specific libraries. Both
of these directory structures contain subdirectories for each of the multilib combinations
specified above. These subdirectories, respectively, are as follows:

.Isize

./ speed

./ mps32

./ no-fl oat

./ m ps32/ no-fl oat

./ sizel m ps32

./ sizel no-fl oat
./sizelm ps32/ no-fl oat
./ speed/ nm ps32

./ speed/ no-f | oat

12. ./ speed/ m ps32/ no-fl oat

©® N O~ WNR

ol
= o

The target libraries that are distributed with the compiler are built for the following
options:

 Size versus speed (- Gs vs. - OB)

¢ 16-bit versus 32-bit (- m ps16 vs. - mo- m ps16)

© 2012 Microchip Technology Inc. DS51686E-page 55

MPLAB® XC32 C/C++ Compiler User’s Guide

By default the 32-bit language tools compile for - Q0, - mo- mi ps16, and

-nsof t - f1 oat . Therefore, the options that we are concerned with are - Gs or - 3,
-m ps16, and - mo- f | oat . Libraries built with the following command line options
are made available:

1. Default command line options
2. -Cs

3. -8

4. -mipslé6

5. -mmo-fl oat

6. -m psl6 -mo-fl oat

7. -Cs -nipsl6

8. -G -mmo-fl oat

9. -Os -mpsl6 -mo-fl oat

10. -3 -mi psl6

11. -G8 -mmo-fl oat

12. -G8 -m psl6 -mo-fl oat

The following examples provide details on which of the multilibs subdirectories are
chosen.

1. xc32-gcc foo.c
xc32-g++ foo.cpp

For this example, no command line options have been specified (i.e., the default
command line options are being used). In this case, the . subdirectories are
used.

2. xc32-gcc -Cs foo.c
xc32-g++ -0Cs foo.cpp

For this example, the command line option for optimizing for size has been
specified (i.e., - Gs is being used). In this case, the . / si ze subdirectories are
used.

3. xc32-gcc -2 foo.c
xc32-g++ -2 foo.cpp

For this example, the command line option for optimizing has been specified;
however, this command line option optimizes for neither size nor space (i.e., - Q2
is being used). In this case, the . subdirectories are used.

4. xc32-gcc -0Cs -nmipsl6 foo.c
xc32-g++ -Os -m psl6 foo.cpp

For this example, the command line options for optimizing for size and for
MIPS16 code have been specified (i.e., - Os and - m ps16 are being used). In
this case, the . / si ze/ m ps16 subdirectories are used.

3.5.1.1 STANDARD LIBRARIES

The C/C++ standard libraries contain a standardized collection of functions, such as
string, math and input/output routines. The range of these functions are described in
Chapter 13. “Library Routines”.

These libraries also contain C/C++ routines that are implicitly called by the output code
of the code generator. These are routines that perform tasks such as floating-point
operations and that may not directly correspond to a C/C++ function call in the source
code.

DS51686E-page 56

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.5.1.2 USER-DEFINED LIBRARIES

User-defined libraries may be created and linked in with programs as required. Library
files are more easy to manage and may result in faster compilation times, but must be
compatible with the target device and options for a particular project. Several versions
of a library may need to be created to allow it to be used for different projects.

User-created libraries that should be searched when building a project can be listed on
the command line along with the source files.

As with Standard C/C++ library functions, any functions contained in user-defined
libraries should have a declaration added to a header file. It is common practice to cre-
ate one or more header files that are packaged with the library file. These header files
can then be included into source code when required.

3.5.2 Peripheral Library Functions

Many of the peripherals of the PIC32MX devices are supported by the peripheral library
functions provided with the compiler tools. See the “32-Bit Language Tools Libraries”
(DS51685) for details on the functions provided.

© 2012 Microchip Technology Inc. DS51686E-page 57

MPLAB® XC32 C/C++ Compiler User’s Guide

3.6 START-UP AND INITIALIZATION

For C:

There is only one start-up module, which initializes the C runtime environment.
The source code for this is found in
<install-directory>/pic32-1ibs/|ibpi32c/startup/crt0.Sanditis
precompiled into the library <i nst al | - di rect ory>/ pi c32mx/li b/crtO0. o.
Multilib versions of these modules exist in order to support architectural differences
between device families.

For C++:

Code from five object files link sequentially to create a single initialization routine, which
initializes the C++ runtime environment.

The source code for this is found in
<install-directory>/pic32-1ibs/|ibpic32/startup.

The PIC32 precompiled startup objects are located in

<instal |l -directory>/pic32mx/Ili b/ and the filenames are cpprt 0. o,
crti.o,andcrtn.o.

The GCC precompiled startup objects are located in
<install-directory>/1ib/gcc/pi c32nmx/ <gcc-versi on>/ and the file-
names are crt begi n. o and crt end. 0. Multilib variations of these modules exist in
order to support architectural differences between device families and also optimization
settings.

For more information about what the code in these start-up modules actual does, see
Section 12.3 “Runtime Start-up Code”.

3.7 COMPILER OUTPUT

There are many files created by the compiler during the compilation. A large number of
these are intermediate files and some are deleted after compilation is complete, but
many remain and are used for programming the device, or for debugging purposes.

3.7.1 Output Files

The compilation driver can produce output files with the following extensions, which are
case-sensitive.

TABLE 3-3: FILE NAMES

Extensions Definition
file.hex Executable file
file.elf ELF debug file
file.o Object file (intermediate file)
file.s Assembly code file (intermediate file)
file.i Preprocessed C file (intermediate file)
file.ii Preprocessed C++ file (intermediate file)
file. map Map file

The names of many output files use the same base name as the source file from which
they were derived. For example the source file i nput . ¢ will create an object file called
i nput . o.

The main output file is an ELF file called a. out , unless you override that name using
the - o option.

DS51686E-page 58 © 2012 Microchip Technology Inc.

Compiler Command Line Driver

If you are using an IDE, such as MPLAB IDE, to specify options to the compiler, there
is typically a project file that is created for each application. The name of this project is
used as the base name for project-wide output files, unless otherwise specified by the
user. However check the manual for the IDE you are using for more details.

Note: Throughout this manual, the term project name will refer to the name of the
project created in the IDE.

The compiler is able to directly produce a number of the output file formats which are
used by Microchip development tools.

The default behavior of xc32- gcc and xc32-g++ is to produce an ELF output. To make
changes to the file’s output or the file names, see Section 3.9 “Driver Option
Descriptions”.

3.7.2 Diagnostic Files

Two valuable files produced by the compiler are the assembly list file, produced by the
assembler, and the map file, produced by the linker.

The assembly list file contains the mapping between the original source code and the
generated assembly code. It is useful for information such as how C source was
encoded, or how assembly source may have been optimized. It is essential when con-
firming if compiler-produced code that accesses objects is atomic, and shows the
region in which all objects and code are placed.

The option to create a listing file in the assembler is - a (or - W4, - a if passed to the
driver). There are many variants to this option, which may be found in the “MPLAB
Assembiler, Linker and Utilities for PIC32 MCUs User’s Guide”(DS51833). To pass the
option from the compiler, see Section 3.9.9 “Options for Assembling”.

There is one list file produced for each build. There is one assembler listing file for each
translation unit. This is a pre-link assembler listing so it will not show final addresses.
Thus, if you require a list file for each source file, these files must be compiled sepa-
rately, see Section 3.3.2 “Multi-step C Compilation”. This is the case if you build
using MPLAB IDE. Each list file will be assigned the module name and extension . | st .

The map file shows information relating to where objects were positioned in memory. It
is useful for confirming that user-defined linker options were correctly processed, and
for determining the exact placement of objects and functions.

The option to create a map file in the linker is - Map file (or-W, - Map=fil e if
passed to the driver), which may be found in the “MPLAB Assembler, Linker and Utili-
ties for PIC32 User’s Guide”. To pass the option from the compiler, see

Section 3.9.10 “Options for Linking”.

There is one map file produced when you build a project, assuming the linker was
executed and ran to completion.

© 2012 Microchip Technology Inc. DS51686E-page 59

MPLAB® XC32 C/C++ Compiler User’s Guide

3.8 COMPILER MESSAGES

There are three types of messages. These are described below along with the
compiler’s behavior when encountering a message of each type.

Warning Messages indicate source code or some other situation that can be
compiled, but is unusual and may lead to a runtime failure of the code. The
code or situation that triggered the warning should be investigated; however,
compilation of the current module will continue, as will compilation of any
remaining modules.

Error Messages indicate source code that is illegal or that compilation of this code
cannot take place. Compilation will be attempted for the remaining source
code in the current module, but no additional modules will be compiled and
the compilation process will then conclude.

Fatal Error Messages indicate a situation that cannot allow compilation to proceed
and which requires the compilation process to stop immediately.

For information on options that control compiler output of errors, warnings or
comments, see Section 3.9.4 “Options for Controlling the C++ Dialect”.

3.9 DRIVER OPTION DESCRIPTIONS

All single letter options are identified by a leading dash character, “- ", e.g. - ¢c. Some
single letter options specify an additional data field which follows the option name
immediately and without any whitespace, e.g. - | di r. Options are case sensitive, so
- ¢ is a different option to - C.

The compiler has many options for controlling compilation, all of which are case
sensitive.

» Options Specific to PIC32MX Devices

« Options for Controlling the Kind of Output
« Options for Controlling the C Dialect

« Options for Controlling the C++ Dialect

« Options for Debugging

» Options for Controlling Optimization

« Options for Controlling the Preprocessor

¢ Options for Assembling

 Options for Linking

« Options for Directory Search

« Options for Code Generation Conventions

DS51686E-page 60 © 2012 Microchip Technology Inc.

Compiler Command Line Driver

391 Options Specific to PIC32MX Devices

These options are specific to the device, not the compiler.
TABLE 3-4: PIC32MX DEVICE-SPECIFIC OPTIONS

Option Definition
- npr ocessor Selects the device for which to compile.
(e.g., - mpr ocessor =32MX360F512L)
-m pslé Generate (do not generate) MIPS16 code.
-mo- m ps16
-mo- f | oat Do not use software floating-point libraries.
-G num Put global and static items less than or equal to num

bytes into the small data or bss section instead of the
normal data or bss section. This allows the data to be
accessed using a single instruction.

All modules should be compiled with the same - G num

value.
- menbedded- dat a Allocate variables to the read-only data section first if
- mo- enbedded- dat a possible, then next in the small data section if possible,

otherwise in data. This gives slightly slower code than
the default, but reduces the amount of RAM required

when executing, and thus may be preferred for some

embedded systems.

-muni nit-const-in-rodata Put uninitialized const variables in the read-only data
- ™Mmo- uni ni t - const -i n-rodat a | section. This option is only meaningful in conjunction
with - nenbedded- dat a.

-nmcheck- zer o- di vi si on Trap (do not trap) on integer division by zero. The

- mo- check- zer o- di vi si on default is - ncheck- zer o- di vi si on.

- nrenctpy Force (do not force) the use of mentpy() for non-trivial

- Mmo- nenctpy block moves. The default is - mo- mencpy, which
allows GCC to inline most constant-sized copies.

-m ong-cal |l s Disable (do not disable) use of the j al instruction.

-mo-1long-calls Calling functions using j al is more efficient but

requires the caller and callee to be in the same 256
megabyte segment.

This option has no effect on abicalls code. The default
is - mo- 1 ong-cal | s.

-mo- peri pheral -1ibs -mo- peri pheral - 1i bs is now the default.
-nperi pheral -1 i bs is optional. By default, the
peripheral libraries are linked specified via the
device-specific linker script. Do not use the standard
peripheral libraries when linking.

-nmsmart-i o=[0] 1] 2] This option attempts to statically analyze format strings
passedto pri ntf,scanf andthe 'f *and ‘v’ variations
of these functions. Uses of nonfloating-point format
arguments will be converted to use an integer-only
variation of the library function. For many applications,
this feature can reduce program-memory usage.
-nmsmar t - i 0=0 disables this option, while

-nmsmart - i 0=2 causes the compiler to be optimistic
and convert function calls with variable or unknown
format arguments. - msmar t - i 0=1 is the default and
will convert only when the compiler can prove that
floating-point support is not required.

© 2012 Microchip Technology Inc. DS51686E-page 61

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-4:

PIC32MX DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option Definition

- mappi o- debug

Enable the APPIN/APPOUT debugging library
functions for the MPLAB® ICD 3 debugger and MPLAB
REAL ICE™ in-circuit emulator. This feature allows you
to use the DBPRINTF and related functions and
macros as described in the “32-bit Language Tool
Libraries” document (DS51685). Enable this option
only when using a target PIC32 device that supports
the APPIN/APPOUT feature.

- nccei

Enables the Microchip Common C Interface
compilation mode.

3.9.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.

TABLE 3-5: KIND-OF-OUTPUT CONTROL OPTIONS
Option Definition
-C Compile or assemble the source files, but do not link. The default file
extension is . 0.
-E Stop after the preprocessing stage (i.e., before running the compiler

proper). The default output file is st dout .

-fexceptions

Enable exception handling. You may need to enable this option when
compiling C code that needs to interoperate properly with exception
handlers written in C++.

-o file Place the outputinfil e.

-S Stop after compilation proper (i.e., before invoking the assembler). The
default output file extension is . s.

-V Print the commands executed during each stage of compilation.

- X You can specify the input language explicitly with the - x option:
-x_| anguage
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option
applies to all following input files until the next - x option. The following
values are supported by the compiler:
c
c++
c- header
cpp- out put
assenbl er
assenbl er-w t h-cpp
-X_none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default behavior
but is needed if another - x option has been used. For example:
Xxc32-gcc -x assenbl er foo.asm bar.asm-x none main.c
mabonga. s
Without the - x none, the compiler assumes all the input files are for the
assembler.

--help Print a description of the command line options.

DS51686E-page 62

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.9.3

Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 3-6:

C DIALECT CONTROL OPTIONS

Option

Definition

- ansi

Support all (and only) ANSI-standard C programs.

-aux-info filenane

Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently ignored
in any language other than C. Besides declarations, the file
indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit,
prototyped or unprototyped (I , N for new or Ofor old,
respectively, in the first character after the line number and
the colon), and whether it came from a declaration or a
definition (C or F, respectively, in the following character). In
the case of function definitions, a K&R-style list of arguments
followed by their declarations is also provided, inside
comments, after the declaration.

-fcheck- new /
- f no- check- new

Check that the pointer returned by operator new is non-null.

-fno- enf orce- eh- specs

(defaul t)
-fenforce-eh-specs Generate/Do not generate code to check for violation of
(default) / exception specifications at runtime. The

- f no- enf or ce- eh- specs option violates the C++
standard, but may be useful for reducing code size in
production builds, much like defining 'NDEBUG'. This does
not give user code permission to throw exceptions in
violation of the exception specifications; the compiler will still
optimize based on the specifications, so throwing an
unexpected exception will result in undefined behavior.

-ffreestandi ng

Assert that compilation takes place in a freestanding
environment. This implies - f no- bui | ti n. A freestanding
environment is one in which the standard library may not
exist, and program start-up may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to - f no- host ed.

-fno-asm

Do notrecognize asmi nl i ne or t ypeof as akeyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__and__typeof__
instead.

-ansi implies - f no-asm

-fno-builtin
-fno-builtin-function

Don't recognize built-in functions that do not begin with
__builtin_ as prefix.

-fno- excepti ons

Disable C++ exception handling. This option disables the
generation of extra code needed to propagate exceptions.

-fno-rtti

Enable/Disable runtime type-identification features. The
-fno-rtti option disables generation of information about
every class with virtual functions for use by the C++ runtime
type identification features (‘'dynamic_cast' and 'typeid’). If
you don't use those parts of the language, you can save
some space by using this flag. Note that exception handling
uses the same information, but it will generate it as needed.
The 'dynamic_cast' operator can still be used for casts that
do not require runtime type information, i.e. caststovoi d *
or to unambiguous base classes.

© 2012 Microchip Technology Inc.

DS51686E-page 63

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-6:

C DIALECT CONTROL OPTIONS (CONTINUED)

Option

Definition

- fsi gned- char

Let the type char be signed, like si gned char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsi gned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-tradi tional is used, in which case bit fields are always
unsigned.

- funsi gned- char

Let the type char be unsigned, like unsi gned char.

-fwitabl e-strings

Store strings in the writable data segment and do not make
them unique.

3.94

Options for Controlling the C++ Dialect

The following options define the kind of C++ dialect used by the compiler.

TABLE 3-7: C++ DIALECT CONTROL OPTIONS
Option Definition
-ansi Support all (and only) ANSI-standard C++ programs.

-aux-info filenane

Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently ignored
in any language other than C++. Besides declarations, the
file indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit,
prototyped or unprototyped (I , N for new or Ofor old,
respectively, in the first character after the line number and
the colon), and whether it came from a declaration or a
definition (C or F, respectively, in the following character). In
the case of function definitions, a K&R-style list of arguments
followed by their declarations is also provided, inside
comments, after the declaration.

-ffreestandi ng

Assert that compilation takes place in a freestanding
environment. This implies - f no- bui | ti n. A freestanding
environment is one in which the standard library may not
exist, and program start-up may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to - f no- host ed.

-fno-asm

Do not recognize asm i nl i ne or t ypeof as akeyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__and __typeof__
instead.

-ansi implies - f no-asm

-fno-builtin
-fno-builtin-function

Don't recognize built-in functions that do not begin with
__builtin_ as prefix.

- f si gned- char

Let the type char be signed, like si gned char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsi gned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-traditional isused, in which case bit fields are always
unsigned.

- f unsi gned- char

Let the type char be unsigned, like unsi gned char.

-fwitabl e-strings

Store strings in the writable data segment and do not make
them unique.

DS51686E-page 64

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.95 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently
erroneous, but that are risky or suggest there may have been an error.

You can request many specific warnings with options beginning - W for example,
-Wnplicit, torequestwarnings on implicit declarations. Each of these specific
warning options also has a negative form beginning - Who- to turn off warnings; for
example, - Who- i npl i ci t . This manual lists only one of the two forms, whichever is

not the default.

The following options control the amount and kinds of warnings produced by the

compiler.

TABLE 3-8:

WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option

Definition

-fsyntax-only

Check the code for syntax, but don’t do anything beyond that.

- pedantic

Issue all the warnings demanded by strict ANSI C. Reject all
programs that use forbidden extensions.

-pedantic-errors

Like - pedant i c, except that errors are produced rather than
warnings.

-W

Inhibit all warning messages.

-Val |

This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or
modify to prevent the warning), even in conjunction with macros.
Note that some warning flags are not implied by - Wl | . Some of
them warn about constructions that users generally do not
consider questionable, but which occasionally you might wish to
check for; others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to
modify the code to suppress the warning. Some of them are
enabled by - ext r a but many of them must be enabled
individually.

-\Waddr ess

Warn about suspicious uses of memory addresses. These
include using the address of a function in a conditional
expression, such as voi d func(void);if(func), and
comparisons against the memory address of a string literal, such
asif (x == "abc"). Such uses typically indicate a programmer
error: the address of a function always evaluates to true, so their
use in a conditional usually indicates that the programmer forgot
the parentheses in a function call; and comparisons against
string literals result in unspecified behavior and are not portable
in C, so they usually indicate that the programmer intended to
use strcnp.

-Whar - subscripts

Warn if an array subscript has type char.

-Wonment

Warn whenever a comment-start sequence / * appearsina/*
comment, or whenever a Backslash-Newline appearsina//
comment.

- Wi v- by-zero

Warn about compile-time integer division by zero. To inhibit the
warning messages, use - Who- di v- by- zer o. Floating-point
division by zero is not warned about, as it can be a legitimate
way of obtaining infinities and NaNs.

(This is the default.)

- W or mat

Check calls to pri nt f and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format string
specified.

© 2012 Microchip Technology Inc.

DS51686E-page 65

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option

Definition

-Wnplicit

Equivalent to specifying both - W npl i ci t-i nt and
-Wnplicit-function-declaration.

-Wnplicit-function-
decl aration

Give a warning whenever a function is used before being
declared.

-Wnmplicit-int

Warn when a declaration does not specify a type.

- Wrai n

Warn if the type of mai n is suspicious. mai n should be a
function with external linkage, returning i nt , taking either zero,
two or three arguments of appropriate types.

- Whi ssi ng- br aces

Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for a is not fully bracketed,
but that for b is fully bracketed.

int a[2][2] ={ 0, 1, 2, 3 };

int b[2][2] ={ {0, 1}, {2 3} 1},

-Who-mul ti char

Warn if a multi-character char act er constant is used. Usually,
such constants are typographical errors. Since they have
implementation-defined values, they should not be used in
portable code. The following example illustrates the use of a
multi-character char act er constant:

char

xx(voi d)

{
return(' xx');

}

- War ent heses

Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value is
expected, or when operators are nested whose precedence
people often find confusing.

-Weturn-type

Warn whenever a function is defined with a return-type that
defaults to i nt . Also warn about any r et ur n statement with no
return-value in a function whose return-type is not voi d.

DS51686E-page 66

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS
Option Definition

-Wequence- poi nt Warn about code that may have undefined semantics because
of violations of sequence point rules in the C standard.

The C standard defines the order in which expressions in a C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of the
program: those executed before the sequence point and those
executed after it. These occur after the evaluation of a full
expression (one which is not part of a larger expression), after
the evaluation of the first operand of a &&, | | ,? : or, (comma)
operator, before a function is called (but after the evaluation of its
arguments and the expression denoting the called function), and
in certain other places. Other than as expressed by the
sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a
partial order rather than a total order, since, for example, if two
functions are called within one expression with no sequence
point between them, the order in which the functions are called is
not specified. However, the standards committee has ruled that
function calls do not overlap.

It is not specified when between sequence points modifications
to the values of objects take effect. Programs whose behavior
depends on this have undefined behavior. The C standard
specifies that “Between the previous and next sequence point,
an object shall have its stored value modified, at most once, by
the evaluation of an expression. Furthermore, the prior value
shall be read only to determine the value to be stored.” If a
program breaks these rules, the results on any particular
implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;,
a[n] = b[n++] anda[i++] = i;.Some more complicated
cases are not diagnosed by this option, and it may give an
occasional false positive result, but in general it has been found
fairly effective at detecting this sort of problem in programs.

-Wswi tch Warn whenever a swi t ch statement has an index of enumeral
type and lacks a case for one or more of the named codes of that
enumeration. (The presence of a default label prevents this
warning.) case labels outside the enumeration range also
provoke warnings when this option is used.

-Wsyst em header s Print warning messages for constructs found in system header
files. Warnings from system headers are normally suppressed
on the assumption that they usually do not indicate real
problems and would only make the compiler output harder to
read. Using this command line option tells the compiler to emit
warnings from system headers as if they occurred in user code.
However, note that using - Vil | in conjunction with this option
does not warn about unknown pragmas in system headers. For
that, - Winknown- pr agmas must also be used.

-Wrigraphs Warn if any trigraphs are encountered (assuming they are
enabled).

© 2012 Microchip Technology Inc. DS51686E-page 67

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option

Definition

-Wininitialized

Warn if an automatic variable is used without first being
initialized.

These warnings are possible only when optimization is enabled,
because they require data flow information that is computed only
when optimizing.

These warnings occur only for variables that are candidates for
register allocation. Therefore, they do not occur for a variable
that is declared vol at i | e, or whose address is taken, or whose
size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used
only to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the
warnings are printed.

- Winknown- pr agnmas

Warn when a #pr agna directive is encountered which is not
understood by the compiler. If this command line option is used,
warnings will even be issued for unknown pragmas in system
header files. This is not the case if the warnings were only
enabled by the - WAl | command line option.

-Winused

Warn whenever a variable is unused aside from its declaration,
whenever a function is declared static but never defined,
whenever a label is declared but not used, and whenever a
statement computes a result that is explicitly not used.

In order to get a warning about an unused function parameter,
both - Wand - Winused must be specified.

Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Winused- f uncti on

Warn whenever a static function is declared but not defined or a
non-inline static function is unused.

-Winused- | abel

Warn whenever a label is declared but not used. To suppress
this warning, use the unused attribute.

- Winused- par anet er

Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning, use the unused attribute.

-Winused- vari abl e

Warn whenever a local variable or non-constant static variable is
unused aside from its declaration. To suppress this warning, use
the unused attribute.

-Winused- val ue

Warn whenever a statement computes a result that is explicitly
not used. To suppress this warning, cast the expression to void.

The following - Woptions are not implied by - V&l | . Some of them warn about

constructions that users generally do not consider questionable, but which you might
occasionally wish to check for. Others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to modify the code to suppress

the warning.

DS51686E-page 68

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL
WARNINGS
Option Definition
-wW Print extra warning messages for these events:

« A nonvolatile automatic variable might be changed by a
call to | ongj np. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to set j np. It cannot know where | ongj np will be called.
In fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because | ongj np
cannot in fact be called at the place that would cause a
problem.

A function could exit both viar et urn val ue; and

r et ur n; . Completing the function body without passing
any return statement is treated as r et ur n; .

An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[i, j] causes a
warning, but x[(voi d) i, j] does not.

An unsigned value is compared against zero with < or <=.
A comparison like x<=y<=z appears, This is equivalent
to(x<=y ? 1 : 0) <= z,whichis a different
interpretation from that of ordinary mathematical notation.
Storage-class specifiers like st at i ¢ are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

If - WAl | or-Winused is also specified, warn about
unused arguments.

A comparison between signed and unsigned values
could produce an incorrect result when the signed value
is converted to unsigned. (But don’t warn if

- Who- si gn- conpar e is also specified.)

An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for

X. h:

struct s { int f, g; };
struct t { struct s h; int
struct t x ={ 1, 2, 3};
An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x. h would be implicitly
initialized to zero:

struct s { int f, g, h;
struct s x ={ 3, 4 };

b

b

-WAggregate-return

Warn if any functions that return structures or unions are
defined or called.

-Whad- f uncti on- cast

Warn whenever a function call is cast to a non-matching type.
For example, warn if i nt f oof () is cast to anything *.

-Wast-align Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char *iscasttoanint *.

-Wast - qual Warn whenever a pointer is cast, so as to remove a type

qualifier from the target type. For example, warn if a
const char * is castto an ordinary char *.

© 2012 Microchip Technology Inc.

DS51686E-page 69

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL
WARNINGS (CONTINUED)
Option Definition

-Wonver si on

Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.

Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsi gned) - 1.

-\\error

Make all warnings into errors.

-Wnline

Warn if a function can not be inlined, and either it was
declared as inline, or else the - fi nl i ne-f uncti ons option
was given.

-Warger-than-I|en

Warn whenever an object of larger than | en bytes is defined.

-Wong-1 ong
-Who-1 ong- | ong

Warn if | ong | ong type is used. This is default. To inhibit the
warning messages, use - Who- | ong- | ong. Flags

-Wong- | ong and - Who- | ong- | ong are taken into account
only when - pedant i c flag is used.

-Whi ssi ng- decl arati ons

Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

- Whi ssi ng-
format-attribute

If - W or mat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only
possible candidates, not absolute ones. This option has no
effect unless - W or nat is enabled.

-Whri ssi ng-noreturn

Warn about functions that might be candidates for attribute
nor et ur n. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions. In
fact, do not ever return before adding the nor et ur n attribute,
otherwise subtle code generation bugs could be introduced.

- Wri ssi ng- pr ot ot ypes

Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header
files.)

- Whest ed- ext erns

Warn if an ext er n declaration is encountered within a
function.

- Who- depr ecat ed-
decl arations

Do not warn about uses of functions, variables and types
marked as deprecated by using the depr ecat ed attribute.

- Whadded

Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Whointer-arith

Warn about anything that depends on the size of a function
type or of voi d. The compiler assigns these types a size of 1,
for convenience in calculations with voi d * pointers and
pointers to functions.

- W edundant - decl s

Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

- Wshadow

Warn whenever a local variable shadows another local
variable.

DS51686E-page 70

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL
WARNINGS (CONTINUED)

Option

Definition

-Wi gn- conpar e
- Who- si gn- conpar e

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by - WTo get the other warnings of - Wwithout this warning,
use - W - Who- si gn- conpar e.

-Wtrict-prototypes

Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wraditional

Warn about certain constructs that behave differently in

traditional and ANSI C.

* Macro arguments occurring within string constants in the
macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

« A function declared external in one block and then used
after the end of the block.

¢ A switch statement has an operand of type | ong.

« A nonstatic function declaration follows a static one. This
construct is not accepted by some traditional C
compilers.

- Windef

Warn if an undefined identifier is evaluated in an #i f
directive.

- Winr eachabl e- code

Warn if the compiler detects that code will never be executed.
It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

-Wwite-strings

Give string constants the type const char [| engt h] so that
copying the address of one into a non-const char * pointer
gets a warning. At compile time, these warnings help you find
code that you can try to write into a string constant, but only if
you have been very careful about using const in declarations
and prototypes. Otherwise, it’s just a nuisance, which is why
-Vl | does not request these warnings.

© 2012 Microchip Technology Inc.

DS51686E-page 71

MPLAB® XC32 C/C++ Compiler User’s Guide

3.9.6

Options for Debugging

The following options are used for debugging.
TABLE 3-10: DEBUGGING OPTIONS

Option Definition

-9

Produce debugging information.

The compiler supports the use of - g with - Omaking it possible to

debug optimized code. The shortcuts taken by optimized code may

occasionally produce surprising results:

* Some declared variables may not exist at all

¢ Flow of control may briefly move unexpectedly

* Some statements may not be executed because they compute
constant results or their values were already at hand

* Some statements may execute in different places because they
were moved out of loops

Nevertheless it proves possible to debug optimized output. This makes

it reasonable to use the optimizer for programs that might have bugs.

-Q

Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.

-save-tenps Don't delete intermediate files. Place them in the current directory and
- save-t enps=cwd | name them based on the source file. Thus, compiling f co. ¢ with - ¢

- save- t enps would produce the following files:
foo.i (preprocessed file)

foo.s (assembly language file)

foo.o (objectfile)

-save-t enps=obj |Similarto - save-t enps=cwd, but if the - 0 option is specified, the

temporary files are based on the object file. If the - 0 option is not
specified, the - save-t enps=obj switch behaves like —save-t enps.
For example:
xc32-gcc -save-tenps=obj -c¢ foo.c
xc32-gcc -save-tenps=obj -c bar.c -o dir/xbar.o
xc32-gcc -save-tenps=obj foobar.c -o dir2/yfoobar
would create f 0o.i,foo.s,dir/xbar.i,dir/xbar.s,
di r2/ yfoobar. i, dir2/yfoobar.s,anddir2/yfoobar. o.

3.9.7

Options for Controlling Optimization

The following options control compiler optimizations.
TABLE 3-11: GENERAL OPTIMIZATION OPTIONS

Option Definition

-0 Do not optimize. (This is the default.)
Without - O, the compiler’s goal is to reduce the cost of compilation and to make
debugging produce the expected results. Statements are independent: if you stop
the program with a breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any other statement in
the function and get exactly the results you would expect from the source code.
The compiler only allocates variables declared r egi st er in registers.

-0 Optimization level 1. Optimizing compilation takes somewhat longer, and a lot

-Oa1 more host memory for a large function.
With - O, the compiler tries to reduce code size and execution time.
When - Ois specified, the compiler turns on - f t hr ead- j unps and
- f def er - pop. The compiler turnson -fomi t-frame- poi nter.

DS51686E-page 72

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-11: GENERAL OPTIMIZATION OPTIONS (CONTINUED)

Option

Definition

-2

Optimization level 2. The compiler performs nearly all supported optimizations
that do not involve a space-speed trade-off. - Q2 turns on all optional
optimizations except for loop unrolling (- f unr ol | -1 oops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing).ltalso turns on force copy of memory operands

(- f f or ce- mem) and Frame Painter elimination (- f omi t - f r ane- poi nt er). As
compared to - O, this option increases both compilation time and the performance
of the generated code.

-G8

Optimization level 3. - O3 turns on all optimizations specified by - G2 and also
turns on the i nl i ne-functi ons option.

-Cs

Optimize for size. - Gs enables all - O2 optimizations that do not typically increase
code size. It also performs further optimizations designed to reduce code size.

The following options control specific optimizations. The - Q2 option turns on all of
these optimizations except - funrol | -1 oops,-funroll-all -1 oops and
-fstrict-aliasing.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to
be performed is desired.

TABLE 3-12: SPECIFIC OPTIMIZATION OPTIONS

Option Definition

n

-falign-functions |Align the start of functions to the next power-of-two greater than n,
-falign-functions=|skipping up to n bytes. For instance, - f al i gn-f uncti ons=32

aligns functions to the next 32-byte boundary, but
-falign-functions=24 would align to the next 32-byte
boundary only if this can be done by skipping 23 bytes or less.
-fno-align-functionsand-falign-functions=1are
equivalent and mean that functions are not aligned.

The assembler only supports this flag when n is a power of two, so
n is rounded up. If n is not specified, use a machine-dependent
default.

-falign-1abels Align all branch targets to a power-of-two boundary, skipping up to
-falign-1abel s=n n bytes like - f al i gn- f uncti ons. This option can easily make

code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.
If-falign-1oopsor-falign-junps are applicable and are
greater than this value, then their values are used instead.

If n is not specified, use a machine-dependent default which is very
likely to be 1, meaning no alignment.

-falign-1oops Align loops to a power-of-two boundary, skipping up to n bytes like
-falign-1oops=n -falign-functions. The hope is that the loop is executed many

times, which makes up for any execution of the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that are clobbered by

function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code than would otherwise be produced.

-fcse-fol | owj unps | In common subexpression elimination, scan through jump

instructions when the target of the jump is not reached by any other
path. For example, when CSE encounters ani f statement with an
el se clause, CSE follows the jump when the condition tested is
false.

© 2012 Microchip Technology Inc.

DS51686E-page 73

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-12:

SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option

Definition

- f cse- ski p- bl ocks

This is similar to - f cse- f ol | ow j unps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple i f statement with no el se clause,

- f cse- ski p- bl ocks causes CSE to follow the jump around the
body of the i f.

- f expensi ve-
optim zations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-section
S
-fdat a- secti ons

Place each function or data item into its own section in the output
file. The name of the function or the name of the data item
determines the section's name in the output file.

Only use these options when there are significant benefits for doing
so. When you specify these options, the assembler and linker may
create larger object and executable files and is also slower.

-fgcse

Perform a global common subexpression elimination pass. This
pass also performs global constant and copy propagation.

-fgcse-Im

When - f gcse- | mis enabled, global common subexpression
elimination attempts to move loads which are only killed by stores
into themselves. This allows a loop containing a load/store
sequence to change to a load outside the loop, and a copy/store
within the loop.

-fgcse-sm

When - f gcse- smis enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts to
move stores out of loops. When used in conjunction with

- f gcse- 1 mloops containing a load/store sequence can change to
a load before the loop and a store after the loop.

-fnove-al | - novabl e
S

Forces all invariant computations in loops to be moved outside the
loop.

-fno- def er- pop

Always pop the arguments to each function call as soon as that
function returns. The compiler normally lets arguments accumulate
on the stack for several function calls and pops them all at once.

- fno- peephol e
- f no- peephol e2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.

- f no- peephol e disables peephole optimization on machine
instructions, while - f no- peephol e2 disables high level peephole
optimizations. To disable peephole entirely, use both options.

-foptim ze-
regi ster-nove
-fregnmove

Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the
amount of register tying.

-fregnove and-foptin ze-regi st er-noves are the same
optimization.

-freduce-all -givs

Forces all general-induction variables in loops to be strength
reduced.

These options may generate better or worse code. Results are
highly dependent on the structure of loops within the source code.

-frenane-registers

Attempt to avoid false dependencies in scheduled code by making
use of registers left over after register allocation. This optimization
most benefits processors with lots of registers. It can, however,
make debugging impossible, since variables no longer stay in a
“home register”.

-frerun-cse-after-
| oop

Rerun common subexpression elimination after loop optimizations
has been performed.

-frerun-1 oop- opt

Run the loop optimizer twice.

DS51686E-page 74

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-12:

SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option

Definition

-fschedul e-i nsns

Attempt to reorder instructions to eliminate instruction stalls due to
required data being unavailable.

-fschedul e-i nsns2

Similar to - f schedul e-i nsns, but requests an additional pass of
instruction scheduling after register allocation has been done.

-fstrengt h-reduce

Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fstrict-aliasing

Allows the compiler to assume the strictest aliasing rules applicable
to the language being compiled. For C, this activates optimizations
based on the type of expressions. In particular, an object of one
type is assumed never to reside at the same address as an object
of a different type, unless the types are almost the same. For
example, an unsi gned i nt can alias ani nt, but notavoi d* or
a doubl e. A character type may alias any other type.
Pay special attention to code like this:
uni on a_union {

int i;

doubl e d;
b

int f() {

uni on a_union t;

t.d = 3.0;

return t.i;
}
The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even
with - f stri ct-al i asi ng, type-punning is allowed, provided the
memory is accessed through the union type. So, the code above
works as expected. However, this code might not:
int f() {

a union t;

int* ip;

t.d = 3.0;

ip=§&.i;

return *ip;

}

-fthread-junps

Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed by the
first is found. If so, the first branch is redirected to either the
destination of the second branch or a point immediately following it,
depending on whether the condition is known to be true or false.

-funroll-1oops

Perform the optimization of loop unrolling. This is only done for
loops whose number of iterations can be determined at compile
time or run time. - f unr ol | -1 oops implies both
-fstrength-reduce and -frerun-cse-after-Ioop.

-funroll-all-Ioops

Perform the optimization of loop unrolling. This is done for all loops
and usually makes programs run more slowly.
-funroll-all-Iloopsimplies-fstrength-reduce, aswellas
-frerun-cse-after-1oop.

© 2012 Microchip Technology Inc.

DS51686E-page 75

MPLAB® XC32 C/C++ Compiler User’s Guide

Options of the form - f f | ag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of - f f 0o would be - f no- f 00. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 3-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option

Definition

-fforce-nmem

Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common
subexpressions, instruction combination should eliminate
the separate register load. The - Q2 option turns on this
option.

-finline-functions

Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
st ati c, then the function is normally not output as
assembler code in its own right.

-finline-limt=n

By default, the compiler limits the size of functions that
can be inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline (i.e., marked
with the i nl i ne keyword). n is the size of functions that
can be inlined in number of pseudo instructions (not
counting parameter handling). The default value of n is
10000. Increasing this value can result in more inlined
code at the cost of compilation time and memory
consumption.

Decreasing usually makes the compilation faster and
less code is inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In
no way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the
function is declared st at i ¢, output a separate run time
callable version of the function. This switch does not
affect ext er n inline functions.

-fkeep-static-consts

Emit variables are declared static const when
optimization isn't turned on, even if the variables are not
referenced.

The compiler enables this option by default. If you want
to force the compiler to check if the variable was
referenced, regardless of whether or not optimization is
turned on, use the - f no- keep-stati c-consts
option.

-fno-function-cse

Do not put function addresses in registers. Make each
instruction that calls a constant function contain the
function's address explicitly.

This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this
option is not used.

DS51686E-page 76

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS
Option Definition

-fno-inline Do not pay attention to the i nl i ne keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fom t-frame-pointer Do not keep the Frame Pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore Frame Pointers. It also makes an
extra register available in many functions.

-foptim ze-sibling-calls |Optimize sibling and tail recursive calls.

© 2012 Microchip Technology Inc. DS51686E-page 77

MPLAB® XC32 C/C++ Compiler User’s Guide

3.9.8

Options for Controlling the Preprocessor

The following options control the compiler preprocessor.

TABLE 3-14: PREPROCESSOR OPTIONS
Option Definition

-C Tell the preprocessor not to discard comments. Used with the - E
option.

-dD Tell the preprocessor to not remove macro definitions into the output,
in their proper sequence.

- Dmacr o Define macro macr o with string 1 as its definition.

- Dmacr o=def n Define macro macr o as def n. All instances of - D on the command
line are processed before any - Uoptions.

-dM Tell the preprocessor to output only a list of the macro definitions that
are in effect at the end of preprocessing. Used with the - E option.

-dN Like - dD except that the macro arguments and contents are omitted.

Only #def i ne nane is included in the output.

- f no- show col um

Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand
the column numbers, such as DejaGnu.

Print the name of each header file used, in addition to other normal
activities.

Any directories you specify with - | options before the - | - options are
searched only for the case of #i ncl ude “fil e”. They are not
searched for #i ncl ude <file>.

If additional directories are specified with - | options after the - | -,
these directories are searched for all #i ncl ude directives. (Ordinarily
all - 1 directories are used this way.)

In addition, the - | - option inhibits the use of the current directory
(where the current input file came from) as the first search directory for
#i ncl ude “file”. Thereis no way to override this effect of - | - .
With - 1. you can specify searching the directory that was current
when the compiler was invoked. That is not exactly the same as what
the preprocessor does by default, but it is often satisfactory.

- | - does not inhibit the use of the standard system directories for
header files. Thus, - | - and - nost di nc are independent.

-ldir

Add the directory di r to the head of the list of directories to be
searched for header files. This can be used to override a system
header file, substituting your own version, since these directories are
searched before the system header file directories. If you use more
than one - | option, the directories are scanned in left-to-right order.
The standard system directories come after.

-idirafter dir

Add the directory di r to the second include path. The directories on
the second include path are searched when a header file is not found
in any of the directories in the main include path (the one that - | adds
to).

-imacros file

Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated from
the file is discarded, the only effect of - i macr os fi | e is to make the
macros defined in file available for use in the main input.

Any - Dand - U options on the command line are always processed
before -i macros fil e, regardless of the order in which they are
written. All the - i ncl ude and - i macr os options are processed in the
order in which they are written.

DS51686E-page 78

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

TABLE 3-14:

PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

-include file

Process file as input before processing the regular input file. In effect,
the contents of file are compiled first. Any - Dand - U options on the
command line are always processed before -i ncl ude file,
regardless of the order in which they are written. All the - i ncl ude
and - i macr os options are processed in the order in which they are
written.

Tell the preprocessor to output a rule suitable for make describing the
dependencies of each object file. For each source file, the
preprocessor outputs one make-rule whose target is the object file
name for that source file and whose dependencies are all the

#i ncl ude header files it uses. This rule may be a single line or may
be continued with \ - new i ne ifitis long. The list of rules is printed
on standard output instead of the preprocessed C program.

- Mimplies - E (see Section 3.9.2 “Options for Controlling the Kind
of Output”).

Like - Mbut the dependency information is written to a file and
compilation continues. The file containing the dependency information
is given the same name as the source file with a . d extension.

-MF file

When used with - Mor - MM specifies a file in which to write the
dependencies. If no - MF switch is given, the preprocessor sends the
rules to the same place it would have sent preprocessed output.
When used with the driver options, - MD or - MVD, - M-, overrides the
default dependency output file.

Treat missing header files as generated files and assume they live in
the same directory as the source file. If - MGis specified, then either - M
or - MMmust also be specified. - MGis not supported with - MD or - MVD.

Like - Mbut the output mentions only the user header files included
with #i ncl ude “fi | e”. System header files included with #i ncl ude
<fil e>are omitted.

Like - MD except mention only user header files, not system header
files.

This option instructs CPP to add a phony target for each dependency
other than the main file, causing each to depend on nothing. These
dummy rules work around errors make gives if you remove header
files without updating the make-file to match.

This is typical output:

test.o: test.c test.h

test. h:

-M

Same as - M, but it quotes any characters which are special to nake.
-MQ ' $(obj pf x) foo. o' gives $$(obj pf x) foo.o0: foo.c
The default target is automatically quoted, as if it were given with - MQ.

- M target

Change the target of the rule emitted by dependency generation. By
default, CPP takes the name of the main input file, including any path,
deletes any file suffix such as . ¢, and appends the platform’s usual
object suffix. The result is the target.

An - MI option sets the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to

- M, or use multiple - MT options.

For example:

-MT ' $(obj pf x) foo. o' might give $(obj pf x) foo. 0: foo.c

© 2012 Microchip Technology Inc.

DS51686E-page 79

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-14:

PREPROCESSOR OPTIONS (CONTINUED)

Option

Definition

-nostdi nc

Do not search the standard system directories for header files. Only
the directories you have specified with - | options (and the current
directory, if appropriate) are searched. (See Section 3.9.11 “Options
for Directory Search”) for information on - | .

By using both - nost di nc and - | -, the include-file search path can
be limited to only those directories explicitly specified.

Tell the preprocessor not to generate #l i ne directives. Used with the
- E option (see Section 3.9.2 “Options for Controlling the Kind of
Output”).

-trigraphs

Support ANSI C trigraphs. The - ansi option also has this effect.

- Umacr o

Undefine macro nmacr o. - Uoptions are evaluated after all - D options,
but before any - i ncl ude and - i macr os options.

- undef

Do not predefine any nonstandard macros (including architecture
flags).

DS51686E-page 80

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.9.9 Options for Assembling

The following options control assembler operations.

TABLE 3-15: ASSEMBLY OPTIONS

Option

Definition

-\W4, option

Pass opt i on as an option to the assembler. If opt i on contains
commas, it is split into multiple options at the commas.

3.9.10 Options for Linking

If any of the options - c, - Sor - E are used, the linker is not run and object file names
should not be used as arguments.

TABLE 3-16: LINKING OPTIONS

Definition

A memory-fill option to be passed on to the linker.

Add directory di r to the list of directories to be searched for libraries
specified by the command line option - | .

Option
-fill=<options
-Ldir
-llibrary

Search the library named | i br ary when linking.

The linker searches a standard list of directories for the library, which
is actually a file named | i bl i br ary. a. The linker then uses this file
as if it had been specified precisely by name.

It makes a difference where in the command you write this option.
The linker processes libraries and object files in the order they are
specified. Thus, f 00. 0 -1z bar. o searches library z after file

f 00. o but before bar . o. If bar . o refers to functionsin | i bz. a,
those functions may not be loaded.

The directories searched include several standard system
directories, plus any that you specify with - L.

Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by
scanning through it for members which define symbols that have
been referenced but not defined yet. But if the file found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an - | option (e.g., - | nyl i b) and
specifying a file name (e.g., | i bnyl i b. a) is that - | searches
several directories, as specified.

By default the linker is directed to search:

<install-path>\lib

for libraries specified with the - | option. For a compiler installed into
the default location, this would be:

Program Fi |l es\ M crochi p\ npl ab32\ <version>\1ib

This behavior can be overridden using the environment variables.
See also the | NPUT and OPTI ONAL linker script directives.

-nodefaul tlibs

Do not use the standard system libraries when linking. Only the
libraries you specify are passed to the linker. The compiler may
generate calls to mentnp, menset and mentpy. These entries are
usually resolved by entries in the standard compiler libraries. These
entry points should be supplied through some other mechanism
when this option is specified.

-nostdlib

Do not use the standard system start-up files or libraries when
linking. No start-up files and only the libraries you specify are passed
to the linker. The compiler may generate calls to mencnp, nenset
and nencpy. These entries are usually resolved by entries in
standard compiler libraries. These entry points should be supplied
through some other mechanism when this option is specified.

© 2012 Microchip Technology Inc.

DS51686E-page 81

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-16: LINKING OPTIONS (CONTINUED)

Option Definition

-s Remove all symbol table and relocation information from the
executable.

-u synbol Pretend synbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use - u multiple times with
different symbols to force loading of additional library modules.

-W, option Pass opt i on as an option to the linker. If opt i on contains commas,

it is split into multiple options at the commas.

-Xl'i nker option

Pass opti on as an option to the linker. You can use this to supply
system-specific linker options that the compiler does not know how to
recognize.

3.9.11 Options for Directory Search

The following options specify to the compiler where to find directories and files to

search.

TABLE 3-17: DIRECTORY SEARCH OPTIONS

Option

Definition

-Bprefix

This option specifies where to find the executables, libraries,
include files and data files of the compiler itself.

The compiler driver program runs one or more of the
sub-programs xc32- cpp, xc32- as and xc32-1 d. It tries

pref i x as a prefix for each program it tries to run.

For each sub-program to be run, the compiler driver first tries the
- B prefix, if any. Lastly, the driver searches the current PATH
environment variable for the subprogram.

- B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into - L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into - i syst emoptions for the preprocessor. In this case,
the compiler appends i ncl ude to the prefix.

-specs=file

Process file after the compiler reads in the standard specs file, in
order to override the defaults that the xc32- gcc driver program
uses when determining what switches to pass to xc32- as,
xc32-1 d, etc. More than one - specs=fi | e can be specified on
the command line, and they are processed in order, from left to
right.

DS51686E-page 82

© 2012 Microchip Technology Inc.

Compiler Command Line Driver

3.9.12 Options for Code Generation Conventions

Options of the form - f f | ag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of - f f oo would be - f no- f 00. In the
table below, only one of the forms is listed (the one that is not the default).

TABLE 3-18: CODE GENERATION CONVENTION OPTIONS

Option

Definition

-fargunent-alias
-fargunent - noal i as
- fargunent -

noal i as- gl obal

Specify the possible relationships among parameters and between
parameters and global data.

-fargunent - al i as specifies that arguments (parameters) may
alias each other and may alias global storage.

-fargunent - noal i as specifies that arguments do not alias
each other, but may alias global storage.

-fargunent - noal i as- gl obal specifies that arguments do not
alias each other and do not alias global storage.

Each language automatically uses whatever option is required by
the language standard. You should not need to use these options
yourself.

-fcall-saved-reg

Treat the register named r eg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way saves and
restores the register r eqg if they use it.

It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.

A different sort of disaster results from the use of this flag for a
register in which function values are returned.

This flag should be used consistently through all modules.

-fcall-used-reg

Treat the register named r eg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register r eg.

It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.

This flag should be used consistently through all modules.

-ffixed-reg

Treat the register named r eg as a fixed register. Generated code
should never refer to it (except perhaps as a Stack Pointer, Frame
Pointer or in some other fixed role).

r eg must be the name of a register (e.g., - f f i xed- $0).

© 2012 Microchip Technology Inc.

DS51686E-page 83

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 3-18:

CODE GENERATION CONVENTION OPTIONS (CONTINUED)

Option

Definition

-finstrunent -
functions

Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site.
void __cyg_profile_func_enter

(void *this_fn, void *call_site);
void __cyg _profile_func_exit

(void *this _fn, void *call _site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.
Function instrumentation requires the use of a Frame Pointer.
Some optimization levels disable the use of the Frame Pointer.
Using - f no- omi t - f r ame- poi nt er prevents this.
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls indicates where, conceptually,
the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use ext ern inlinein
your C code, an addressable version of such functions must be
provided.
A function may be given the attribute
no_i nstrunent _functi on, in which case this instrumentation
is not done.

-fno-i dent

Ignore the #i dent directive.

- f pack-struct

Pack all structure members together without holes. Usually you
would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won’t agree with
system libraries.

-fpcc-struct-
return

Return short st r uct and uni on values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between 32-bit compiled
files and files compiled with other compilers.

Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-doubl e

By default, the compiler uses a doubl e type equivalent to f | oat .
This option makes doubl e equivalentto | ong doubl e. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enuns

Allocate to an enumtype only as many bytes as it needs for the
declared range of possible values. Specifically, the enumtype is
equivalent to the smallest integer type that has enough room.

-fverbose-asm
-fno-ver bose-asm

Put extra commentary information in the generated assembly code
to make it more readable.

- f no- ver bose- asm the default, causes the extra information to
be omitted and is useful when comparing two assembler files.

-fvolatile

Consider all memory references through pointers to be volatile.

-fvol atil e-gl obal

Consider all memory references to external and global data items
to be volatile. The use of this switch has no effect on static data.

-fvolatile-static

Consider all memory references to static data to be volatile.

DS51686E-page 84

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 4. Device-Related Features

4.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler supports a number of special features and exten-
sions to the C/C++ language which are designed to ease the task of producing
ROM-based applications. This chapter documents the special language features which
are specific to these devices.

 Device Support

» Device Header Files

« Stack

¢ Using SFRs From C Code

4.2 DEVICE SUPPORT

MPLAB XC32 C/C++ Compiler aims to support all PIC32 devices. However, new
devices in these families are frequently released. Check the readme document for a full
list of all available devices.

4.3 DEVICE HEADER FILES

There is one header file that is recommended be included into each source file you
write. The file is <xc. h> and is a generic file that will include other device-specific
header files when you build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as

#def i nes which allow the use of conventional register names from within assembly
language files.

43.1 CPO Register Definitions Header File

The CPO register definitions header file (cpOdef s. h) is a file that contains definitions
for the CPO registers and their fields. In addition, it contains macros for accessing the
CPO registers.

The CPO register definitions header file is located in the pi ¢32nx/ i ncl ude directory
of your compiler installation directory. The CPO register definitions header file is
automatically included when you include the generic device header file, xc. h.

The CPO register definitions header file was designed to work with either Assembly or
C/C++ files. The CPO register definitions header file is dependent on macros defined
within the processor generic header file).

© 2012 Microchip Technology Inc. DS51686E-page 85

MPLAB® XC32 C/C++ Compiler User’s Guide

44 STACK

The PIC32 devices use what is referred to in this user’s guide as a “software stack”.
This is the typical stack arrangement employed by most computers and is ordinary data
memory accessed by a push-and-pop type instruction and a stack pointer register. The
term “hardware stack” is used to describe the stack employed by Microchip 8-bit
devices, which is only used for storing function return addresses.

The PIC32 devices use a dedicated stack pointer register sp (register 29) for use as a
software Stack Pointer. All processor stack operations, including function calls, inter-
rupts and exceptions, use the software stack. It points to the next free location on the
stack. The stack grows downward, towards lower memory addresses.

By default, the size of the stack is 1024 bytes. The size of the stack may be changed
by specifying the size on the linker command line using the

--def sym m n_st ack_si ze linker command line option. An example of allocating
a stack of 2048 bytes using the command line is:

xc32-gcc foo.c -W, --defsym _mi n_stack_size=2048

The run-time stack grows downward from higher addresses to lower addresses. Two
working registers are used to manage the stack:

* Register 29 (sp) — This is the Stack Pointer. It points to the next free location on
the stack.

* Register 30 (f p) — This is the Frame Pointer. It points to the current function’s
frame.

No stack overflow detection is supplied.

The C/C++ run-time start-up module initializes the stack pointer during the start-up
and initialization sequence, see Section 12.3.2 “Initialize Stack Pointer and Heap”.

44.1 Configuration Bit Access

The PIC32 devices have several locations which contain the Configuration bits or
fuses. These bits specify fundamental device operation, such as the oscillator mode,
watchdog timer, programming mode and code protection. Failure to correctly set these
bits may result in code failure, or a non-running device.

The #pragma confi g directive specifies the processor-specific configuration
settings (i.e., Configuration bits) to be used by the application. Refer to the “PIC32MX
Configuration Settings” online help (found under MPLAB
IDE>Help>Topics>Language Tools) for more information. (If using the compiler from
the command line, this help file is located at the default location at:

Program Fil es/ M crochi p/ <i nstal |l -dir>/doc/hl pPl C32MXConfi gSet . chm)

Configuration settings may be specified with multiple #pr agna confi g directives.
The compiler verifies that the configuration settings specified are valid for the processor
for which it is compiling. If a given setting in the Configuration word has not been
specified in any #pr agma conf i g directive, the bits associated with that setting
default to the unprogrammed value. Configuration settings should be specified in only
a single translation unit (a C/C++ file with all of its include files after preprocessing).

For each Configuration word for which a setting is specified with the #pr agma confi g
directive, the compiler generates a read-only data section named . conf i g_addr ess,
where addr ess is the hexadecimal representation of the address of the Configuration
word. For example, if a configuration setting was specified for the Configuration word
located at address OxBFCO2FFC, a read-only data section named

. confi g_BFCO2FFC would be created.

e Syntax
« Example

DS51686E-page 86 © 2012 Microchip Technology Inc.

Device-Related Features

4411 SYNTAX

The following shows the meta syntax notation for the different forms the pragma may
take.
pragma-config-directive:
pragma config setting-list

setting-list:

setting

| setting-list, setting

setting:

setting-name = value-name
The setting-name and value-name are device specific and can be determined by
utilizing the PIC32MX Configuration Settings document.

All #pr agma conf i g directives should be placed outside of a function definition as
they do not define executable code.

4412 EXAMPLE

The following example shows how the #pr agna confi g directive might be utilized.
The example does the following:
« Enables the Watchdog Timer
 Sets the Watchdog Postscaler to 1:128
» Selects the HS Oscillator for the Primary Oscillator
#pragma config FWDTEN = ON, WDTPS = PS128
#pragma config POSCMOD = HS

int main (void)

{

© 2012 Microchip Technology Inc. DS51686E-page 87

MPLAB® XC32 C/C++ Compiler User’s Guide

4.5 USING SFRS FROM C CODE

The Special Function Registers (SFRs) are registers which control aspects of the MCU
operation or that of peripheral modules on the device. These registers are memory
mapped, which means that they appear at specific addresses in the device memory
map. With some registers, the bits within the register control independent features.

Memory-mapped SFRs are accessed by special C variables that are placed at the
addresses of the registers and use special attributes. These variables can be accessed
like any ordinary C variable so that no special syntax is required to access SFRs.

The SFR variables are predefined in header files and will be accessible once the
<xc. h> header file (see Section 4.3 “Device Header Files”) has been included into
your source code. Structures are also defined by these header files to allow access to
bits within the SFR.

The names given to the C variables, which map over the registers and bit variables, or
bit fields, within the registers are based on the names specified in the device data
sheet. The names of the structures that hold the bit fields will typically be those of the
corresponding register followed by bi t s. For example, the following shows code that
includes the generic header file, clears PORTB as a whole and sets bit 2 of PORTB
using the structure/bit field definitions.

Note: The symbols PORTB and PORTBDbiI t s refer to the same register and resolve
to the same address. Writing to one register will change the values held by
both.

#i ncl ude <xc. h>
int mai n(void)
{
PORTB = 0x00;
PORTBbits. RB2 = 1;
}

For use with assembly, the PORTB register is declared as: . ext ern PORTB.

To confirm the names that are relevant for the device you are using, check the device
specific header file that <xc. h> will include for the definitions of each variable. These
files will be located in the pi ¢32mx/ i ncl ude/ pr oc directory of the compiler and will
have a name that represents the device. There is a one-to-one correlation between
device and header file name that will be included by <xc. h>, e.g. when compiling for
a PIC32MX360F512L device, the <xc. h> header file will include

<p32nx360f 5121 . h>. Remember that you do not need to include this chip-specific
file into your source code; it is automatically included by <xc. h>.

Some of the PIC32 SFRs have associated registers that allow the bits within the SFR
to be set, cleared or toggled atomically. For example, the PORTB SFR has the write-only
registers PORTBSET, PORTBCLR and PORTBI NV associated with it. Writing a ‘1’ to a bit
location in these registers sets, clears or toggles, respectively, the corresponding bit in
the PORTB SFR. So to set bit 1 in PORTB, you can use the following code:

PORTBSET = 0x2;
or alternatively, using macros provided in the device header files:
PORTBSET = _PORTB_RB1_MASK;

The same operation can also be achieved using the peripheral library functions, for
example

nPORTBSet Bi t s(BI T_1) ;

Always ensure that you confirm the operation of peripheral modules from the device
data sheet.

DS51686E-page 88

© 2012 Microchip Technology Inc.

Device-Related Features

45.1 CPO Register Definitions
When the CPO register definitions header file is included from an Assembly file, the
CPO registers are defined as:
#define _CPO_register_nanme $regi ster_nunber, sel ect_nunber
For example, the | nt Ct | register is defined as:
#define _CPO_INTCTL $12, 1

When the CPO register definitions header file is included from a C file, the CPO registers
and selects are defined as:

#define _CPO_register_nane register_nunber
#define _CPO_register_name_SELECT sel ect _nunber

For example, the | nt Ct | register is defined as:
#define _CPO_I NTCTL 12
#define _CPO_|I NTCTL_SELECT 1

45.2 CPO Register Field Definitions

When the CPO register definitions header file is included from either an Assembly or a
C/C++ file, three #def i nes exist for each of the CPO register fields.
_CPO_register_name_fiel d_nane_POSI TI ON - the starting bit location

_CPO_register_nane_fiel d_nanme_MASK — the bits that are part of this field are
set

_CPO_register_nane_fiel d_name_LENGTH- the number of bits that this field
occupies
For example, the vector spacing field of the | nt Ct | register has the following defines:

#define _CPO_I NTCTL_VS PGS TI ON 0x00000005
#define _CPO_I NTCTL_VS_MASK 0x000003EQ
#define _CPO_INTCTL_VS LENGTH 0x00000005

453 CPO Access Macros

When the CPO register definitions header file is included from a C file, CPO access
macros are defined. Each CPO register may have up to six different access macros
defined:

_CPO_CET _register_nane () Returns the value for register, r egi st er _nane.

_CPO_SET_regi ster_name (val) |Sets the register, r egi st er _nan®, to val, and
returns void. Only defined for registers that contain a
writable field.

_CPO_XCH_regi ster_name (val) |Sets the register, r egi st er _nan®, to val, and
returns the previous register value. Only defined for
registers that contain a writable field.

_CPO_BI S_regi ster_nanme (set) |Sets the register, r egi st er _nane, to (reg |= set),
and returns the previous register value. Only defined
for registers that contain writable bit fields.

_CPO_BIC register_name (clr) |Setstheregister,r egi st er _narme, to (reg &= ~clr),
and returns the previous register value. Only defined
for registers that contain writable bit fields.

_CPO_BCS_regi ster_nane (clr, |Setsthe register, r egi st er _nane, to

set) (reg = (reg & ~clr) | set), and returns the previous
register value. Only defined for registers that contain
writable bit fields.

© 2012 Microchip Technology Inc. DS51686E-page 89

MPLAB® XC32 C/C++ Compiler User’s Guide

454 Address Translation Macros

System code may need to translate between virtual and physical addresses, as well as
between kernel segment addresses. Macros are provided to make these translations
easier and to determine the segment an address is in.

KVA_TO PA(V)

Translate a kernel virtual address to a physical address.

PA_TO _KVAO(pa)

Translate a physical address to a KSEGO virtual address.

PA TO KVAL(pa)

Translate a physical address to a KSEG1 virtual address.

KVAO_TO KVAL(v)

Translate a KSEGO virtual address to a KSEG1 virtual address.

KVAL_TO KVAO(V)

Translate a KSEGL1 virtual address to a KSEGO virtual address.

1S _KVA(vV) Evaluates to 1 if the address is a kernel segment virtual address, zero
otherwise.

I'S_KVAO(V) Evaluate to 1 if the address is a KSEGO virtual address, zero otherwise.

1S KVAL(V) Evaluate to 1 if the address is a KSEG1 virtual address, zero otherwise.

I'S_KVAO1(V) Evaluate to 1 if the address is either a KSEGO or a KSEGL1 virtual

address, zero otherwise.

DS51686E-page 90

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 5. ANSI C Sandard Issues

This compiler conforms to the ANS X3.159-1989 Standard for programming languages.
This is commonly called the C89 Standard. It is referred to as the ANSI C Standard in
this manual. Some features from the later standard C99 are also supported.

« Divergence from the ANSI C Standard

» Extensions to the ANSI C Standard

* Implementation-defined behavior

5.1 DIVERGENCE FROM THE ANSI C STANDARD

There are no divergences from the ANSI C standard.

5.2 EXTENSIONS TO THE ANSI C STANDARD

C/C++ code for the MPLAB XC32 C/C++ Compiler differs from the ANSI C standard in
these areas: keywords, statements and expressions.

5.2.1 Keyword Differences

The new keywords are part of the base GCC implementation and the discussions in the

referenced sections are based on the standard GCC documentation, tailored for the

specific syntax and semantics of the 32-bit compiler port of GCC.

« Specifying Attributes of Variables — Section 6.12 “Variable Attributes”

» Specifying Attributes of Functions — Section 10.2 “Function Attributes and
Specifiers”

* Inline Functions — Section 10.9 “Inline Functions”

 Variables in Specified Registers — Section 6.12 “Variable Attributes”

e Complex Numbers — Section 6.8 “Complex Data Types”

« Referring to a Type with t ypeof — Section 6.10 “Standard Type Qualifiers”

5.2.2 Statement Differences

The statement differences are part of the base GCC implementation, and the discus-
sions in the referenced sections are based on the standard GCC documentation,
tailored for the specific syntax and semantics of the 32-bit compiler port of GCC.

* Labels as Values — Section 8.4 “Labels as Values”

« Conditionals with Omitted Operands — Section 8.5 “Conditional Operator Oper-
ands”

« Case Ranges — Section 8.6 “Case Ranges”

5.2.3 Expression Differences

Expression differences are:
 Binary constants — Section 6.9 “Constant Types and Formats”.

© 2012 Microchip Technology Inc. DS51686E-page 91

MPLAB® XC32 C/C++ Compiler User’s Guide

5.3 IMPLEMENTATION-DEFINED BEHAVIOR

Certain features of the ANSI C standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler. The
exact behavior of the MPLAB XC32 C/C++ Compiler is detailed throughout this docu-
mentation, and is fully summarized in Appendix 18. “Implementation-Defined
Behavior”.

DS51686E-page 92

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 6. Supported Data Typesand Variables

6.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler supports a variety of data types and attributes.
These data types and variables are discussed here. For information on where variables
are stored in memory, see Chapter 7. “Memory Allocation and Access”.

« Data Representation

* Integer Data Types

* Floating-Point Data Types

 Structures and Unions

 Pointer Types

« Complex Data Types

« Constant Types and Formats

« Standard Type Qualifiers

« Compiler-Specific Qualifiers

 Variable Attributes

6.2 IDENTIFIERS

A C/C++ variable identifier (the following is also true for function identifiers) is a
sequence of letters and digits, where the underscore character “_” counts as a letter.
Identifiers cannot start with a digit. Although they may start with an underscore, such
identifiers are reserved for the compiler’s use and should not be defined by your pro-
grams. Such is not the case for assembly domain identifiers, which often begin with an
underscore

Identifiers are case sensitive, so nai n is different than Mai n.

All characters are significant in an identifier, although identifiers longer than 31 charac-
ters in length are less portable.

6.3 DATA REPRESENTATION

The compiler stores multibyte values in little-endian format. That is, the Least
Significant Byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:
Address 0x100 0x101 0x102 0x103
Data 0x78 0x56 0x34 0x12

© 2012 Microchip Technology Inc. DS51686E-page 93

MPLAB® XC32 C/C++ Compiler User’s Guide

6.4

INTEGER DATA TYPES

Integer values in the compiler are represented in 2’s complement and vary in size from
8 to 64 bits. These values are available in compiled code vial i m ts. h.

Type Bits Min Max
char,si gned char 8 -128 127
unsi gned char 8 0 255
short,si gned short 16 -32768 | 32767
unsi gned short 16 0 65535
int,signed int,long,signed | ong 32 231 2311
unsi gned int,unsigned | ong 32 0 2%2.1
| ong | ong, signed | ong | ong 64 -288 231
unsi gned | ong | ong 64 0 2641

6.4.1

Signed and Unsigned Character Types

By default, values of type plain char are signed values. This behavior is
implementation-defined by the C standard, and some environments® define a plain
C/C++ char value to be unsigned. The command line option - f unsi gned- char can
be used to set the default type to unsigned for a given translation unit.

6.4.2 limts.h

The | i mi ts. h header file defines the ranges of values which can be represented by

the integer types.

Macro name Value Description
CHAR BI T 8 The size, in bits, of the smallest non-bit field
object.
SCHAR_M N -128 The minimum value possible for an object of
type si gnhed char.
SCHAR_MAX 127 The maximum value possible for an object of
type si gned char.
UCHAR _MAX 255 The maximum value possible for an object of
type unsi gned char.
CHAR_M N -128 (or O, see The minimum value possible for an object of
Section 6.4.1 “Signed | type char.
and Unsigned
Character Types”)
CHAR_MAX 127 (or 255, see The maximum value possible for an object of
Section 6.4.1 “Signed | type char.
and Unsigned
Character Types”)
MB_LEN_ MAX 16 The maximum length of multibyte character in
any locale.
SHRT_M N -32768 The minimum value possible for an object of
type short int.
SHRT_MAX 32767 The maximum value possible for an object of
type short int.
USHRT_MAX 65535 The maximum value possible for an object of
type unsi gned short int.

1. Notably, PowerPC and ARM.

DS51686E-page 94

© 2012 Microchip Technology Inc.

Supported Data Types and Variables

Macro name Value Description

INT_MN 231 The minimum value possible for an object of
type i nt .

| NT_MAX 2311 The maximum value possible for an object of
type i nt.

Ul NT_MAX 2321 The maximum value possible for an object of
type unsi gned int.

LONG M N -281 The minimum value possible for an object of
type | ong.

LONG_MAX 2311 The maximum value possible for an object of
type | ong.

ULONG_MAX 2%2.1 The maximum value possible for an object of
type unsi gned | ong.

LLONG M N -283 The minimum value possible for an object of
type | ong | ong.

LLONG_MAX 2831 The maximum value possible for an object of
type | ong | ong.

ULLONG_MAX 2641 The maximum value possible for an object of
type unsi gned | ong | ong.

© 2012 Microchip Technology Inc.

DS51686E-page 95

MPLAB® XC32 C/C++ Compiler User’s Guide

6.5 FLOATING-POINT DATA TYPES

The compiler uses the IEEE-754 floating-point format. Detail regarding the
implementation limits is available to a translation unitin f | oat . h.

Type Bits
fl oat 32
doubl e 32
| ong doubl e 64

Variables may be declared using the f | oat , doubl e and | ong doubl e keywords,
respectively, to hold values of these types. Floating-point types are always signed and
the unsi gned keyword is illegal when specifying a floating-point type. All floating-point
values are represented in little endian format with the Least Significant Byte at the
lower address.

This format is described in Table 6-1, where:

* Sign is the sign bit which indicates if the number is positive or negative

» For 32-bit floating point values, the exponent is 8 bits which is stored as excess
127 (i.e. an exponent of O is stored as 127).

« For 64-bit floating point values, the exponent is 11 bits which is stored as excess
1023 (i.e. an exponent of O is stored as 1023).

* Mantissa is the mantissa, which is to the right of the radix point. There is an
implied bit to the left of the radix point which is always 1 except for a zero value,
where the implied bit is zero. A zero value is indicated by a zero exponent.

The value of this number for 32-bit floating point values is:
(-1)3'9" x 2(€xPONeNt-127) y 1 mantissa

and for 64-bit values

(-1)39" x 2(exponent-1023) y 1 mantissa.

Here is an example of the IEEE 754 32-bit format shown in Table 6-1. Note that the
Most Significant bit of the mantissa column (i.e. the bit to the left of the radix point) is
the implied bit, which is assumed to be 1 unless the exponent is zero (in which case
the float is zero).

TABLE 6-1: FLOATING-POINT FORMAT EXAMPLE IEEE 754

Format Number Biased exponent l.mantissa Decimal
32-bit 7DA6B69Bh | 11111011b 1.0100110101101101 |2.77000e+37
0011011b
(251) (1.302447676659) —

The example in Table 6-1 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take
the binary number to the right of the decimal point in the mantissa. Convert this to dec-
imal and divide it by 223 where 23 is the number of bits taken up by the mantissa, to
give 0.302447676659. Add 1 to this fraction. The floating-point number is then given
by:

-19x212441.302447676659

which becomes:

1x2.126764793256e+37x1.302447676659

which is approximately equal to:

2.77000e+37

DS51686E-page 96 © 2012 Microchip Technology Inc.

Supported Data Types and Variables

Binary floating-point values are sometimes misunderstood. It is important to remember
that not every floating-point value can be represented by a finite sized floating-point
number. The size of the exponent in the number dictates the range of values that the
number can hold, and the size of the mantissa relates to the spacing of each value that
can be represented exactly. Thus the 64-bit floating-point format allows for values with
a larger range of values and that can be more accurately represented.

So, for example, if you are using a 32-bit wide floating-point type, it can exactly store
the value 95000.0. However, the next highest number it can represent is (approxi-
mately) 95000.00781 and it is impossible to represent any value in between these two
in such a type as it will be rounded. This implies that C/C++ code which compares float-
ing-point type may not behave as expected. For example:

vol atile float nyFloat;

nyFl oat = 95000. 006;
i f(nyFl oat == 95000. 007) /1 value will be rounded
LATA++; /1 this line will be executed!

in which the result of the i f () expression will be true, even though it appears the two
values being compared are different.

The characteristics of the floating-point formats are summarized in Table 6-2. The sym-
bols in this table are preprocessor macros which are available after including

<f | oat . h>in your source code. Two sets of macros are available for f | oat and
doubl e types, where XXX represents FLT and DBL, respectively. So, for example,
FLT_MAX represents the maximum floating-point value of the f | oat type. DBL_MAX
represents the same values for the doubl e type. As the size and format of float-
ing-point data types are not fully specified by the ANSI Standard, these macros allow
for more portable code which can check the limits of the range of values held by the
type on this implementation.

TABLE 6-2: RANGES OF FLOATING-POINT TYPE VALUES
Symbol Meaning 32-bit Value 64-bit Value
XXX_RADI X Radix of exponent representation | 2 2
XXX_ROUNDS Rounding mode for addition 1
XXX_M N_EXP |Min. nsuch that FLT_RADIX"is |-125 -1021
a normalized float value
XXX_M N_10_E |Min. nsuch that 10" is a -37 -307
XP normalized float value
XXX_MAX_EXP |Max. n such that FLT_RADIX™! |128 1024
is a normalized float value
XXX_MAX_ 10 E |Max. nsuch that 10" is a 38 308
XP normalized float value
XXX_MANT_DI G | Number of FLT_RADIX mantissa | 24 53
digits
XXX_EPSI LON | The smallest number which 1.1920929e-07 |2.22044604925
added to 1.0 does not yield 1.0 03131le-16

© 2012 Microchip Technology Inc.

DS51686E-page 97

MPLAB® XC32 C/C++ Compiler User’s Guide

6.6 STRUCTURES AND UNIONS

MPLAB XC32 C/C++ Compiler supports st ruct and uni on types. Structures and
unions only differ in the memory offset applied to each member.

These types will be at least 1 byte wide. Bit fields are fully supported.
No padding of structure members is added.

Structures and unions may be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

6.6.1 Structure and Union Qualifiers

The MPLAB XC32 C/C++ Compiler supports the use of type qualifiers on structures.
When a qualifier is applied to a structure, all of its members will inherit this qualification.
In the following example the structure is qualified const .

const struct {

int nunber;

int *ptr;
} record = { 0x55, & };
In this case, the entire structure will be placed into the program memory and each
member will be read-only. Remember that all members are usually initialized if a struc-
ture is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const , but the structure was
not, then the structure would be positioned into RAM, but each member would be
read-only. Compare the following structure with the above.

struct {
const int nunber;
int * const ptr;
} record = { Ox55, &};

6.6.2 Bit Fields in Structures

MPLAB XC32 C/C++ Compiler fully supports bit fields in structures.

Bit fields are always allocated within 8-bit storage units, even though it is usual to use
the type unsi gned i nt in the definition. Storage units are aligned on a 32-bit bound-
ary, although this can be changed using the packed attribute.

The first bit defined will be the Least Significant bit of the word in which it will be stored.
When a bit field is declared, it is allocated within the current 8-bit unit if it will fit; other-
wise, a new byte is allocated within the structure. Bit fields can never cross the bound-
ary between 8-bit allocation units. For example, the declaration:

struct {
unsi gned lo : 1;
unsi gned dunmy : 6;
unsi gned hi @ 1;

} foo;

will produce a structure occupying 1 byte. If f oo was ultimately linked at address 10H,
the field | o will be bit 0 of address 10H; hi will be bit 7 of address 10H. The Least Sig-
nificant bit of dunmy will be bit 1 of address 10H and the Most Significant bit of durmy
will be bit 6 of address 10h.

DS51686E-page 98 © 2012 Microchip Technology Inc.

Supported Data Types and Variables

Unnamed bit fields may be declared to pad out unused space between active bits in
control registers. For example, if dunmy is never referenced, the structure above could
have been declared as:

struct {
unsi gned lo : 1;
unsi gned 1 6;
unsi gned hi @ 1;
} foo;

A structure with bit fields may be initialized by supplying a comma-separated list of ini-
tial values for each field. For example:

struct {
unsi gned lo : 1;
unsi gned md : 6;
unsi gned hi @ 1;

} foo = {1, 8, 0};

Structures with unnamed bit fields may be initialized. No initial value should be supplied
for the unnamed members, for example:

struct {
unsi gned lo : 1;
unsi gned . 6;
unsi gned hi o 1;

} foo = {1, O};
will initialize the members | o and hi correctly.

The MPLAB XC compiler supports anonymous unions. These are unions with no iden-
tifier and whose members can be accessed without referencing the enclosing union.
These unions can be used when placing inside structures. For example:

struct {
uni on {
int x;
doubl e y;
b

} aaa;

int mai n(voi d)
{
aaa.x = 99
[N

Here, the union is not named and its members accessed as if they are part of the struc-
ture. Anonymous unions are not part of any C Standard and so their use limits the por-
tability of any code.

© 2012 Microchip Technology Inc. DS51686E-page 99

MPLAB® XC32 C/C++ Compiler User’s Guide

6.7 POINTER TYPES

There are two basic pointer types supported by the MPLAB XC32 C/C++ Compiler:
data pointers and function pointers. Data pointers hold the addresses of variables
which can be indirectly read, and possible indirectly written, by the program. Function
pointers hold the address of an executable function which can be called indirectly via
the pointer.

6.7.1 Combining Type Qualifiers and Pointers

It is helpful to first review the ANSI C/C++ standard conventions for definitions of
pointer types.

Pointers can be qualified like any other C/C++ object, but care must be taken when
doing so as there are two quantities associated with pointers. The first is the actual
pointer itself, which is treated like any ordinary C/C++ variable and has memory
reserved for it. The second is the target, or targets, that the pointer references, or to
which the pointer points. The general form of a pointer definition looks like the following:

target _type & qualifiers * pointer’s _qualifiers pointer’s_nane;

Any qualifiers to the right of the * (i.e. next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.

Here are three examples of pointer definitions using the vol at i | e qualifier. The fields
in the definitions have been highlighted with spacing:

volatile int * vip ;

i nt * volatile ivp ;

volatile int * volatile vivp ;

The first example is a pointer called vi p. It contains the address of i nt objects that
are qualified vol at i | e. The pointer itself — the variable that holds the address — is
not vol ati | e; however, the objects that are accessed when the pointer is derefer-
enced are treated as being vol at i | e. In other words, the target objects accessible via
the pointer may be externally modified.

The second example is a pointer called i vp which also contains the address of i nt
objects. In this example, the pointer itself is vol at i | e, that is, the address the pointer
contains may be externally modified; however, the objects that can be accessed when
dereferencing the pointer are notvol ati | e.

The last example is of a pointer called vi vp which is itself qualified vol ati | e, and
which also holds the address of vol ati | e objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.

6.7.2 Data Pointers

Pointers in the compiler are all 32 bits in size. These can hold an address which can
reach all memory locations.

DS51686E-page 100 © 2012 Microchip Technology Inc.

Supported Data Types and Variables

6.7.3 Function Pointers

The MPLAB XC compiler fully supports pointers to functions, which allows functions to
be called indirectly. These are often used to call one of several function addresses
stored in a user-defined C/C++ array, which acts like a lookup table.

Function pointers are always 32 bits in size and hold the address of the function to be
called.

Any attempt to call a function with a function pointer containing NULL will result in an
ifetch Bus Error.

6.7.3.1 SPECIAL POINTER TARGETS

Pointers and integers are not interchangeable. Assigning an integer constant to a
pointer will generate a warning to this effect. For example:

const char * cp = 0x123; // the conpiler will flag this as bad code

There is no information in the integer constant, 0x123, relating to the type or size of the
destination. This code is also not portable and there is a very good chance of code fail-
ure if pointers are assigned integer addresses and dereferenced, particularly for PIC®
devices that have more than one memory space.

Always take the address of a C/C++ object when assigning an address to a pointer. If
there is no C/C++ object defined at the destination address, then define or declare an
object at this address which can be used for this purpose. Make sure the size of the
object matches the range of the memory locations that can be accessed.

For example, a checksum for 1000 memory locations starting at address 0xA0001000
is to be generated. A pointer is used to read this data. You may be tempted to write
code such as:

int * cp;

cp = O0xA0001000; // what resides at 0xA0001000??7?

and increment the pointer over the data. A much better solution is this:

int * cp;

int __attribute__ ((address(0xA0001000))) inputData [1000];

cp = & nputDat a;

/'l cp is incremented over inputData and used to read val ues there

In this case, the compiler can determine the size of the target and the memory space.
The array size and type indicates the size of the pointer target.

Take care when comparing (subtracting) pointers. For example:
if(cpl == cp2)

; take appropriate action
The ANSI C standard only allows pointer comparisons when the two pointer targets are
the same object. The address may extend to one element past the end of an array.
Comparisons of pointers to integer constants are even more risky, for example:
i f(cpl == 0xA0000100)

; take appropriate action
A NULL pointer is the one instance where a constant value can be assigned to a pointer
and this is handled correctly by the compiler. A NULL pointer is numerically equal to 0
(zero), but this is a special case imposed by the ANSI C standard. Comparisons with
the macro NULL are also allowed.

© 2012 Microchip Technology Inc. DS51686E-page 101

MPLAB® XC32 C/C++ Compiler User’s Guide

6.8

6.9

COMPLEX DATA TYPES

Complex data types are currently not implemented in MPLAB XC32 C/C++ Compiler.

CONSTANT TYPES AND FORMATS

A constant is used to represent a numerical value in the source code, for example 123
is a constant. Like any value, a constant must have a C/C++ type. In addition to a con-
stant’s type, the actual value can be specified in one of several formats. The format of
integral constants specifies their radix. MPLAB XC32 C supports the ANSI standard
radix specifiers as well as ones which enables binary constants to be specified in C
code.

The formats used to specify the radices are given in Table 6-3. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

TABLE 6-3: RADIX FORMATS

Radix Format Example
binary Ob number or 0B number 0b10011010
octal 0 number 0763
decimal number 129
hexadecimal 0x number or OX number 0x2F

Any integral constant will have atype of i nt,1 ong int orl ong | ong i nt, so that
the type can hold the value without overflow. Constants specified in octal or hexadeci-
mal may also be assigned a type of unsi gned i nt,unsi gned | ong int or

unsi gned | ong | ong i nt if the signed counterparts are too small to hold the value.

The default types of constants may be changed by the addition of a suffix after the dig-
its, e.g. 23U, where Uis the suffix. Table 6-4 shows the possible combination of suffixes
and the types that are considered when assigning a type. So, for example, if the suffix
| is specified and the value is a decimal constant, the compiler will assign the type

| ong i nt, if that type will hold the constant; otherwise, it will assigned | ong | ong

i nt . If the constant was specified as an octal or hexadecimal constant, then unsigned
types are also considered.

TABLE 6-4: SUFFIXES AND ASSIGNED TYPES

Suffix Decimal Octal or Hexadecimal
uorU unsi gned i nt unsi gned i nt
unsi gned | ong int unsi gned | ong int
unsi gned long long int |unsigned long |ong int
[orL [ong int I ong int
long | ong int unsi gned | ong int
long long int
unsigned long long int
uorUandl orL unsi gned | ong int unsi gned | ong int
unsi gned long long int |unsigned long |ong int
[l orLL long long int long long int
unsigned long long int
uorUand! | orLL |unsigned long long int |unsigned |long long int

Here is an example of code that may fail because the default type assigned to a con-
stant is not appropriate:

unsigned long int result;

DS51686E-page 102

© 2012 Microchip Technology Inc.

Supported Data Types and Variables

unsi gned char shifter;

int mai n(voi d)

{
shifter = 40;
result = 1 << shifter;
/1 code that uses result
}

The constant 1 will be assigned ani nt type hence the result of the shift operation will
be an i nt and the upper bits of the | ong variable, r esul t, can never be set, regard-
less of how much the constant is shifted. In this case, the value 1 shifted left 40 bits will
yield the result 0, not 0x10000000000.

The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsi gned | ong type.

result = 1UL << shifter;

Floating-point constants have doubl e type unless suffixed by f or F, in which case it
isafl oat constant. The suffixes| or L specify al ong doubl e type.

Character constants are enclosed by single quote characters, ' , for example’ a’ . A
character constant has i nt type, although this may be optimized to a char type later
in the compilation.

Multi-byte character constants are accepted by the compiler but are not supported by
the standard libraries.

String constants, or string literals, are enclosed by double quote characters “, for exam-
ple “hel I o wor | d”. The type of string constants is const char * and the character
that make up the string are stored in the program memory, as are all objects qualified
const.

To comply with the ANSI C standard, the compiler does not support the extended char-
acter set in characters or character arrays. Instead, they need to be escaped using the
backslash character, as in the following example:

const char nane[] = "Bj\370rk";

printf(“%'s Resum 351", nane); \\ prints “Bjegrk's Resung”

Assigning a string literal to a pointer to a non-const char will generate a warning from
the compiler. This code is legal, but the behavior if the pointer attempts to write to the
string will fail. For example:

char * cp= “one”; /'l “one” in ROM produces warning

const char * ccp= “two”; // “two” in ROM correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string,
for example:

char ca[]= “two”; /[l “tw” different to the above

is a special case and produces an array in data space which is initialized at start-up
with the string “t wo” (copied from program space), whereas a string constant used in
other contexts represents an unnamed const -qualified array, accessed directly in pro-
gram space.

The MPLAB XC32 C/C++ Compiler will use the same storage location and label for
strings that have identical character sequences. For example, in the code snippet
i f(strncmp(scp, “hello world”, 6) == 0)
fred = 0;
if(strcnp(scp, “hello world”) == 0)
fred++;

© 2012 Microchip Technology Inc. DS51686E-page 103

MPLAB® XC32 C/C++ Compiler User’s Guide

the two identical character string greetings will share the same memory locations. The
link-time optimization must be enabled to allow this optimization when the strings may
be located in different modules.

Two adjacent string constants (i.e. two strings separated only by white space) are con-
catenated by the compiler. Thus:

const char * cp = “hello” wor | d”;

will assign the pointer with the address of the string “hel | o wor | d “.

6.10 STANDARD TYPE QUALIFIERS

Type qualifiers provide additional information regarding how an object may be used.
The MPLAB XC32 C/C++ Compiler supports both ANSI C qualifiers and additional spe-
cial qualifiers which are useful for embedded applications and which take advantage of
the PIC MCU architecture.

6.10.1 Const Type Qualifier

The MPLAB XC32 C/C++ Compiler supports the use of the ANSI type qualifiers const
and vol ati |l e.

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const , the com-
piler will issue a warning or error.

Usually a const object must be initialized when it is declared, as it cannot be assigned
a value at any point at runtime. For example:

const int version = 3;

will define ver si on as being an i nt variable that will be placed in the program mem-
ory, will always contain the value 3, and which can never be modified by the program.

Objects qualified const are placed into the program memory unless the
- mo- enbedded- dat a option is used.

6.10.2 Volatile Type Qualifier

The vol ati | e type qualifier is used to tell the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This prevents the optimizer
from eliminating apparently redundant references to objects declared vol ati |l e
because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as
vol ati | e, and any variables which may be modified by interrupt routines should use
this qualifier as well. For example:

extern volatile unsigned int WDTCON __attribute__ ((section("sfrs")));

The vol at i | e qualifier does not guarantee that any access will be atomic, but the
compiler will try to implement this.

The code produced by the compiler to access vol at i | e objects may be different than
that to access ordinary variables, and typically the code will be longer and slower for
vol ati | e objects, so only use this qualifier if it is necessary. However failure to use
this qualifier when it is required may lead to code failure.

Another use of the vol ati | e keyword is to prevent variables from being removed if
they are not used in the C/C++ source. If a non-vol at i | e variable is never used, or
used in a way that has no effect on the program’s function, then it may be removed
before code is generated by the compiler.

DS51686E-page 104

© 2012 Microchip Technology Inc.

Supported Data Types and Variables

A C/C++ statement that consists only of avol at i | e variable’s name will produce code
that reads the variable’s memory location and discards the result. For example the
entire statement:

PORTB;

will produce assembly code the reads PORTB, but does nothing with this value. This is
useful for some peripheral registers that require reading to reset the state of interrupt
flags. Normally such a statement is not encoded as it has no effect.

6.11 COMPILER-SPECIFIC QUALIFIERS

There are no non-standard qualifiers implemented in MPLAB XC32 C/C++ Compiler.
Attributes are used to control variables and functions.

6.12 VARIABLE ATTRIBUTES

The compiler keyword at t ri but e allows you to specify special attributes of variables
or structure fields. This keyword is followed by an attribute specification inside double
parentheses.

To specify multiple attributes, separate them by commas within the double
parentheses, for example:

attribute ((aligned (16), packed)).

Note: Itis important to use variable attributes consistently throughout a project.
For example, if a variable is defined in file Awith the al i gned attribute, and
declared ext er n in file B without al i gned, then a link error may result.

address (addr)

Specify an absolute virtual address for the variable. This attribute can be used in
conjunction with a section attribute. For data variables, the address is typically in the
range [0XxA0000000,0xA00FFFFC], as defined in the linker script as the
‘ksegl_data_mem’ region. This attribute can be used to start a group of variables at a
specific address:

int foo _attribute_ ((section(“nysection”), address(0xA0001000)));
int bar __attribute_ ((section(“nysection”)));
int baz __attribute_ ((section(“nysection”)));

Keep in mind that the compiler performs no error checking on the specified address.
The section will be located at the specified address regardless of the memory-region
ranges listed in the linker script or the actual ranges on the target device. This
application code is responsible for ensuring that the address is valid for the target
device and application.

Also, be aware that variables attributed with an absolute address are not accessed via
GP-relative addressing. This means that they may be more expensive to access than
non-address attributed variables.

In addition, to make effective use of absolute sections and the new best-fit allocator,
standard program-memory and data-memory sections should not be mapped in the
linker script. The built-in linker script does not map most standard sections such as the
.text,.data,.bss,or.ranfunc section. By not mapping these sections in the
linker script, we allow these sections to be allocated using the best-fit allocator rather
than the sequential allocator. Sections that are unmapped in the linker script can flow
around absolute sections whereas sections that are linker-script mapped are grouped
together and allocated sequentially, potentially causing conflicts with absolute sections.

© 2012 Microchip Technology Inc. DS51686E-page 105

MPLAB® XC32 C/C++ Compiler User’s Guide

Finally, note that “small” data and bss (. sdat a, . sbss, etc.) sections are still mapped
in the built-in default linker script. This is because “small” data variables must be
grouped together so that they are within range of the more efficient GP-relative
addressing mode. To avoid conflict with these linker-script mapped sections, choose
high addresses for your absolute-address variables.

Note: In almost all cases, you will want to combine the address attribute with the
space attribute to indicate code or data.

aligned (n)
The attributed variable will be aligned on the next n byte boundary.

The al i gned attribute can also be used on a structure member. Such a member will
be aligned to the indicated boundary within the structure.

If the alignment value n is omitted, the alignment of the variable is set 8 (the largest
alignment value for a basic data type).

Note that the al i gned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.

cl eanup (function)

Indicate a function to call when the attributed automatic function scope variable goes
out of scope.

The indicated function should take a single parameter, a pointer to a type compatible
with the attributed variable, and have voi d return type.

deprecat ed
deprecated (nsQ)

When a variable specified as depr ecat ed is used, a warning is generated. The
optional msg argument, which must be a string, will be printed in the warning, if present.

packed

The attributed variable or structure member will have the smallest possible alignment.
That is, no alignment padding storage will be allocated for the declaration. Used in
combination with the al i gned attribute, packed can be used to set an arbitrary
alignment restriction greater or lesser than the default alignment for the type of the
variable or structure member.

section (“section-nane”)

Place the variable into the named section.

For example,

unsigned int dan __attribute__ ((section (“.quixote")))
Variable dan will be placed in section . qui xot e.

The - f dat a- secti ons command line option has no effect on variables defined with
a sect i on attribute unless uni que_sect i on is also specified.

DS51686E-page 106 © 2012 Microchip Technology Inc.

Supported Data Types and Variables

space (space)

The space attribute can be used to direct the compiler to allocate a variable in
specific memory spaces.

uni que_section

Place the variable in a uniquely named section, justasiif - f dat a- sect i ons had been
specified. If the variable also has a sect i on attribute, use that section name as the
prefix for generating the unique section nhame.

For example,

int tin __attribute__ ((section (“.ofcatfood”), unique_section)
Variable t i n will be placed in section . of cat f ood.

unused

Indicate to the compiler that the variable may not be used. The compiler will not issue
a warning for this variable if it is not used.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol indicates that if a global version of the same symbol is available, that version
should be used instead.

When weak is applied to a reference to an external symbol, the symbol is not required
for linking. For example:

extern int __attribute__((
int foo() {

if (&) return s;

return 0; /* possibly sone other value */

}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise ‘0’ is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.

_weak__)) s;

© 2012 Microchip Technology Inc. DS51686E-page 107

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 108 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 7. Memory Allocation and Access

7.1 INTRODUCTION

There are two broad groups of RAM-based variables: auto/parameter variables, which
are allocated to some form of stack, and global/static variables, which are positioned
freely throughout the data memory space. The memory allocation of these two groups
is discussed separately in the following sections.

« Address Spaces

 Variables in Data Memory

» Auto Variable Allocation and Access

 Variables in Program Memory

 Variables in Registers

« Dynamic Memory Allocation

e Memory Models

7.2 ADDRESS SPACES

Unlike the 8- and 16-bit PIC devices, the PIC32 has a unified programming model.
PIC32 devices provide a single 32-bit wide address space for all code, data, peripher-
als and Configuration bits.

Memory regions within this single address space are designated for different purposes;
for example, as memory for instruction code or memory for data. Internally the device
uses separate buses? to access the instructions and data in these regions, thus allow-
ing for parallel access. The terms program memory and data memory, which are used
on the 8- and 16-bit PIC devices, are still relevant on PIC32 devices, but the smaller
parts implement these in different address spaces.

All addresses used by the CPU within the device are virtual addresses. These are
mapped to physical addresses by the system control processor (CPO).

1.The device can be considered a Harvard architecture in terms of its internal bus arrangement.

© 2012 Microchip Technology Inc. DS51686E-page 109

MPLAB® XC32 C/C++ Compiler User’s Guide

7.3 VARIABLES IN DATA MEMORY

Most variables are ultimately positioned into the data memory. The exceptions are
non-aut o variables which are qualified as const , which are placed in the program
memory space, see Section 6.10.1 “Const Type Qualifier”.

Due to the fundamentally different way in which aut o variables and non-aut o vari-
ables are allocated memory, they are discussed separately. To use the C/C++ language
terminology, these two groups of variables are those with automatic storage duration
and those with permanent storage duration, respectively.

Note: Theterms “local” and “global” are commonly used to describe variables, but
are not ones defined by the language standard. The term “local variable” is
often taken to mean a variable which has scope inside a function, and
“global variable” is one which has scope throughout the entire program.
However, the C/C++ language has three common scopes: block, file (i.e.
internal linkage) and program (i.e. external linkage), so using only two
terms to describe these can be confusing. For example, a st at i ¢ variable
defined outside a function has scope only in that file, so it is not globally
accessible, but it can be accessed by more than one function inside that
file, so it is not local to any one function either. In terms of memory alloca-
tion, variables are allocated space based on whether it is an aut o or not,
hence the grouping in the following sections.

7.3.1 Non-auto Variable Allocation

Non-aut o variables (those with permanent storage duration) are located by the com-
piler into any of the available data banks. This is done in a two-stage process: placing
each variable into an appropriate section and later linking that section into data mem-
ory.

The compiler considers three categories of non-aut o variable, which all relate to the
value the variable should contain by the time the program begins. The following sec-
tions are used for the categories described.

. pbss These sections are used to store variables which use the per si st ent attri-
bute, whose values should not be altered by the runtime start-up code. They
are not cleared or otherwise modified at start-up.

. bss These sections (also .sbss) contain any uninitialized variables, which are not
assigned a value when they are defined, or variables which should be
cleared by the runtime start-up code.

. dat a These sections (also .sdata) contain the RAM image of any initialized vari-
ables, which are assigned a non-zero initial value when they are defined and
which must have a value copied to them by the runtime start-up code.

Note that the data section used to hold initialized variables is the section that holds the
RAM variables themselves. There is a corresponding section (called . di ni t) that is
placed into program memory (so it is non-volatile) and which is used to hold the initial
values that are copied to the RAM variables by the runtime start-up code.

7.3.2 Static Variables

All st at i ¢ variables have permanent storage duration, even those defined inside a
function which are “local static” variables. Local st at i ¢ variables only have scope in
the function or block in which they are defined, but unlike aut o variables, their memory
is reserved for the entire duration of the program. Thus, they are allocated memory like
other non-aut o variables. Static variables may be accessed by other functions via
pointers since they have permanent duration.

DS51686E-page 110

© 2012 Microchip Technology Inc.

Memory Allocation and Access

Variables which are st at i ¢ are guaranteed to retain their value between calls to a
function, unless explicitly modified via a pointer.

Variables which are st at i ¢ and which are initialized only have their initial value
assigned once during the program'’s execution. Thus, they may be preferable over ini-
tialized aut o objects which are assigned a value every time the block they are defined
in begins execution. Any initialized static variables are initialized in the same way as
other non-aut o initialized objects by the runtime start-up code, see

Section 3.5.2 “Peripheral Library Functions”. Static variables are located in the
same sections as their non-st at i ¢ counterparts.

7.3.3 Non-auto Variable Size Limits

Arrays of any type (including arrays of aggregate types) are fully supported by the com-
piler. So too are the structure and union aggregate types, see Section 6.6 “ Structures
and Unions”. There are no theoretical limits as to how large these objects can be
made.

7.34 Changing the Default Non-auto Variable Allocation

There are several ways in which non-aut o variables can be located in locations other
than the default.

Variables can be placed in other device memory spaces by the use of qualifiers. For
example if you wish to place variables in the program memory space, then the const
specifier should be used (see Section 6.10.1 “Const Type Qualifier”).

If you wish to prevent all variables from using one or more data memory locations so
that these locations can be used for some other purpose, you are best defining a vari-
able (or array) using the address attribute so that it consumes the memory space, see
Section 6.12 “Variable Attributes”.

If only a few non-aut o variables are to be located at specific addresses in data space
memory, then the variables can be located using the address attribute. This attribute is
described in Section 6.12 “Variable Attributes”.

7.3.5 Data Memory Allocation Macros

Macros are provided for many commonly used attributes in order to enhance user code

readability.

__section__(s) Apply the sect i on attribute with section name s.

__uni que_section__ Apply the uni que_sect i on attribute.

__ranfunc__ Locate the attributed function in the RAM function code
section.

__longranfunc__ Locate the attributed function in the RAM function code
section and apply the | ongcal | attribute.

__longcall __ Apply the | ongcal | attribute.

__ISR(v,ipl) Apply the i nt er r upt attribute with priority level i pl

and the vect or attribute with vector number v.

__ ISR AT _VECTOR(v, ipl) Apply the i nt er r upt attribute with priority level i pl
and the at _vect or attribute with vector number v.
__I'SR_SINGLE__ Specifies a function as an Interrupt Service Routine in
single-vector mode. This places a jump at the
single-vector location to the interrupt handler.

I SR_SI NGLE_AT_VECTOR _ | Places the entire single-vector interrupt handler at the

vector 0 location. When used, ensure that the vector
spacing is set to accommodate the size of the handler.

© 2012 Microchip Technology Inc. DS51686E-page 111

MPLAB® XC32 C/C++ Compiler User’s Guide

7.4 AUTO VARIABLE ALLOCATION AND ACCESS

This section discusses allocation of aut o variables (those with automatic storage dura-
tion). This also includes function parameter variables, which behave like aut o vari-
ables, as well as temporary variables defined by the compiler.

The aut o (short for automatic) variables are the default type of local variable. Unless
explicitly declared to be st ati c, a local variable will be made aut 0. The aut o
keyword may be used if desired.

The aut o variables, as their name suggests, automatically come into existence when
a function is executed, then disappear once the function returns. Since they are not in
existence for the entire duration of the program, there is the possibility to reclaim mem-
ory they use when the variables are not in existence and allocate it to other variables

in the program.

The PIC32’s software stack is used to store all aut o variables. Functions are reentrant
and each instance of the function has its own area of memory on the stack for its auto
and parameter variables, as described below. See Section 4.4 “Stack” and

Section 12.3.2 “Initialize Stack Pointer and Heap” for more information on the stack.

The compiler dedicates General Purpose Register 29 as the software Stack Pointer. All
processor stack operations, including function call, interrupts and exceptions use the
software stack. The stack grows downward from high addresses to low addresses.

By default, the size of the stack is 1024 bytes. The size of the stack may be changed
by specifying the size on the linker command line using the

--def sym mi n_st ack_si ze linker command line option. An example of allocating
a stack of 2048 bytes using the command line is:

xc32-gcc foo.c -W, --defsym _mn_stack_size=2048

The run-time stack grows downward from higher addresses to lower addresses (see
Figure 7-1). The compiler uses two working registers to manage the stack:

* Register 29 (sp) — This is the Stack Pointer. It points to the next free location on
the stack.

* Register 30 (f p) — This is the Frame Pointer. It points to the current function’s
frame. Each function, if required, creates a new frame from which automatic and
temporary variables are allocated. Compiler optimization may eliminate Stack
Pointer references via the Frame Pointer to equivalent references via the Stack
Pointer. This optimization allows the Frame Pointer to be used as a General
Purpose Register.

DS51686E-page 112 © 2012 Microchip Technology Inc.

Memory Allocation and Access

FIGURE 7-1: STACK FRAME

Stack grows
toward
lower
addresses

| |
| Space for more |
I arguments if I
: necessary :

Caller Space for argument 4

Space for argument 3

Space for argument 2

Space for argument 1

FP—»

Local variables and v
temporary values

Callee Register save area

Space for arguments
used in function calls

SP_—»

The the standard qualifiers const and vol ati | e may both be used with aut o vari-
ables and these do not affect how they are positioned in memory. This implies that a
local const -qualified object is still an aut o object and, as such, will be allocated mem-
ory on the stack in the data memory, not in the program memory like with non-aut o
const objects.

7.4.1 Local Variable Size Limits

There is no theoretical maximum size for auto variables.

7.5 VARIABLES IN PROGRAM MEMORY

The only variables that are placed into program memory are those that are not aut o
and which have been qualified const . If the - mo- enbedded- dat a option is used,
then even const objects are placed in RAM rather than the program memory. Any
aut o variables qualified const are placed on the stack along with other aut o vari-
ables.

Any const -qualified (aut o or non-aut o) variable will always be read-only and any
attempt to write to these in your source code will result in an error being issued by the
compiler.

A const object is usually defined with initial values, as the program cannot write to
these objects at runtime. However this is not a requirement. An uninitialized const
object is allocated space in the bss section, along with other uninitialized RAM vari-
ables, but is still read-only.

const char |Qype ="A; [/ initialized const object
const char buffer[10]; /] 1 just reserve nenory in RAM

© 2012 Microchip Technology Inc. DS51686E-page 113

MPLAB® XC32 C/C++ Compiler User’s Guide

75.1 Size Limitations of const Variables

There is no theoretical maximum size for const variables.

7.5.2 Changing the Default Allocation

If you only intend to prevent all variables from using one or more program memory loca-
tions so that you can use those locations for some other purpose, you are best reserv-
ing the memory using the memory adjust options.

If only a few non-auto const variables are to be located at specific addresses in
program space memory, then the variables should use the address attribute to locate
them at the desired location. This attribute is described in Section 6.12 “Variable
Attributes”.

7.6 VARIABLES IN REGISTERS

Allocating variables to registers, rather than to a memory location, can make code more
efficient. With MPLAB XC32 C/C++ Compiler, variables may be allocated to registers
as part of code optimizations. For optimization levels 1 and higher, the values assigned
to variables may cached in a register. During this time, the memory location associated
with the variable may not hold a valid value.

The r egi st er keyword may be used to indicate your preference for the variable to be
allocated a register, but this is just a recommendation and may not be honored. The
specific register may be indicated as well, but this is not recommended as your register
choice may conflict with the needs of the compiler. For example:

regi ster unsigned int foo __asm _("at");

will attempt to allocate foo to the at register. As indicated in Section 10.6 “Function
Parameters”, parameters may be passed to a function via a register.

7.7 DYNAMIC MEMORY ALLOCATION

The run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, cal | oc, mal | oc andr eal | oc along with the C++ new operator. Most C++
applications will require a heap.

If you do not use any of these functions, then you do not need to allocate a heap. By
default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library function that
uses one of these functions, then a heap must be created. A heap is created by
specifying its size on the linker command line using the - - def sym m n_heap_si ze
linker command line option. An example of allocating a heap of 512 bytes using the
command line is:

xc32-gcc foo.c -W, --def sym _mi n_heap_si ze=512

An example of allocating a heap of 0XxFOOO bytes using the xc32-g++ driver is:
xc32-g++ vector.cpp -W, --defsym _min_heap_si ze=0xF000

The linker allocates the heap immediately before the stack.

7.8 MEMORY MODELS

MPLAB XC32 C/C++ Compiler does not use fixed memory models to alter allocation of
variables to memory.

DS51686E-page 114 © 2012 Microchip Technology Inc.

Memory Allocation and Access

The - Goption (see Section 3.9.1 “Options Specific to PIC32MX Devices”), which
controls the gp-relative addressing threshold, is similar to the
small-data/large-data/scalar-data memory models offered by the Microchip MPLAB
XC16 compiler. The value specified with this option indicates the maximum size of
objects that will be allocated to the small data sections, e.g. sbss, sdat a, etc.

© 2012 Microchip Technology Inc. DS51686E-page 115

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 116 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 8. Operatorsand Statements

8.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler supports all ANSI operators. The exact results of
some of these are implementation defined. Implementation-defined behavior is fully
documented in Appendix 18. “Implementation-Defined Behavior”. The following
sections illustrate code operations that are often misunderstood, as well as additional
operations that the compiler is capable of performing.

* Integral Promotion

» Type References

* Labels as Values

» Conditional Operator Operands
« Case Ranges

8.2 INTEGRAL PROMOTION

When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they do have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code behavior to what is
sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion and is part of Standard C behavior. The MPLAB XC32
C/C++ Compiler performs these integral promotions where required, and there are no
options that can control or disable this operation. If you are not aware that the type has
changed, the results of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, si gned or

unsi gned varieties of char, short i nt or bit field types to either si gned i nt or
unsi gned i nt . If the result of the conversion can be represented by an si gned i nt,
then that is the destination type, otherwise the conversion is to unsi gned i nt.

Consider the following example:

unsi gned char count, a=0, b=50;
if(a- b < 10)

count ++;
The unsi gned char resultofa - b is 206 (which is not less than 10), but both a and
b are converted to si gned i nt via integral promotion before the subtraction takes
place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the i f () statement is executed.

If the result of the subtraction is to be an unsi gned quantity, then apply a cast. For
example:

if((unsigned int)(a - b) < 10)
count ++;

The comparison is then done using unsi gned i nt, in this case, and the body of the
i f () would not be executed.

© 2012 Microchip Technology Inc. DS51686E-page 117

MPLAB® XC32 C/C++ Compiler User’s Guide

Another problem that frequently occurs is with the bitwise compliment operator, ~. This
operator toggles each bit within a value. Consider the following code:

unsi gned char count, c;
c = 0x55;
if(~c == O0xAA)

count ++;
If ¢ contains the value Ox55, it often assumed that ~c will produce OxAA, however the
result is OXFFFFFFAA and so the comparison in the above example would fail. The
compiler may be able to issue a mismatched comparison error to this effect in some
circumstances. Again, a cast could be used to change this behavior.

The consequence of integral promotion as illustrated above is that operations are not
performed with char -type operands, but with i nt -type operands. However there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char ori nt . In these cases, the MPLAB XC32 C/C++ Compiler
will not perform the integral promotion so as to increase the code efficiency. Consider
the following example:

unsi gned char a, b, c;

a=>b+c;

Strictly speaking, this statement requires that the values of b and ¢ should be promoted
tounsi gned i nt, the addition performed, the result of the addition cast to the type of
a, and then the assignment can take place. Even if the result of the unsi gned i nt
addition of the promoted values of b and ¢ was different to the result of the unsi gned
char addition of these values without promotion, after the unsi gned i nt result was
converted back to unsi gned char, the final result would be the same. If an 8-bit addi-
tion is more efficient than a 32-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsi gned i nt, then integral promotion
would have to be performed to comply with the ANSI C standard.

8.3 TYPE REFERENCES

Another way to refer to the type of an expression is with the t ypeof keyword. This is
a non-standard extension to the language. Using this feature reduces your code
portability.

The syntax for using this keyword looks like si zeof , but the construct acts
semantically like a type name defined with t ypedef .

There are two ways of writing the argument to t ypeof : with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of
the functions.

Here is an example with at ypenane as the argument:
typeof (int *)
Here the type described is a pointer to i nt .

If you are writing a header file that must work when included in ANSI C programs, write
__typeof __ instead of t ypeof.

At ypeof construct can be used anywhere at ypedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of si zeof ort ypeof.
» This declares y with the type of what x points to:

typeof (*x) vy;
e This declares y as an array of such values:

typeof (*x) y[4];

DS51686E-page 118 © 2012 Microchip Technology Inc.

Operators and Statements

e This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) v;
It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using t ypeof , and why it might be a useful way
to write, let’s rewrite it with these macros:

#define pointer(T) typeof (T *)
#define array(T, N typeof (T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) vy;
Thus, array (pointer (char), 4) isthe type of arrays of four pointers to char .

8.4 LABELS AS VALUES

You can get the address of a label defined in the current function (or a containing
function) with the unary operator ‘&&'. This is a non-standard extension to the language.
Using this feature reduces your code portability.

The value returned has type voi d *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

void *ptr;

pt r = &&f 00;

To use these values, you need to be able to jump to one. This is done with the
computed goto statement, got o * exp;. For example:

goto *ptr;

Any expression of type voi d * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&f oo, &&bar, &&hack };
Then you can select a label with indexing, like this:
goto *array[i];

Note: This does not check whether the subscript is in bounds. (Array indexing in
C never does.)

Such an array of label values serves a purpose much like that of the swi t ch
statement. The swi t ch statement is cleaner and therefore preferable to an array.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for fast dispatching.

This mechanism can be misused to jump to code in a different function. The compiler
cannot prevent this from happening, so care must be taken to ensure that target
addresses are valid for the current function.

© 2012 Microchip Technology Inc. DS51686E-page 119

MPLAB® XC32 C/C++ Compiler User’s Guide

8.5 CONDITIONAL OPERATOR OPERANDS

The middle operand in a conditional expression may be omitted. Then if the first
operand is nonzero, its value is the value of the conditional expression. This is a
non-standard extension to the language. Using this feature reduces your code
portability.

Therefore, the expression:

X ?:y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to:

X ? Xy

In this simple case, the ability to omit the middle operand is not especially useful. When
it becomes useful is when the first operand does, or may (if it is a macro argument),
contain a side effect. Then repeating the operand in the middle would perform the side
effect twice. Omitting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

8.6 CASE RANGES

You can specify a range of consecutive values in a single case label, like this:
case low ... high:

This has the same effect as the proper number of individual case labels, one for each
integer value from | owto hi gh, inclusive. This is a non-standard extension to the lan-
guage. Using this feature reduces your code portability.

This feature is especially useful for ranges of ASCII character codes:

case 'A ... 'Z:

Be careful: Write spaces around the ..., otherwise it may be parsed incorrectly when
you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

DS51686E-page 120

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 9. Register Usage

9.1 INTRODUCTION

This chapter examines registers used by the compiler to generate assembly from
C/C++ source code.

* Register Usage
* Register Conventions

9.2 REGISTER USAGE

The assembly generated from C/C++ source code by the compiler will use certain reg-
isters that are present on the PIC MCU device. The compiler assumes that nothing
other than code it generates can alter the contents of these registers, but an extended
assembly language format can be used to indicate to the compiler registers used in
assembly code so that code can be adjusted accordingly.

9.3 REGISTER CONVENTIONS

The 32 general purpose registers contained in the PIC32 are shown in Table 9-1. Some
of these registers are assigned a dedicated task by the compiler. The name used in
assembly code and the usage is indicated.

TABLE 9-1: REGISTER CONVENTIONS

Register Software Use
Number Name
$0 zero Always 0 when read.
$1 at Assembler temporary variable.
$2-$3 v0-v1l Return value from functions.
$4-$7 a0-a3 Used for passing arguments to functions.
$8-$15 t0-t7 Temporary registers used by compiler for expression evaluation.
Values not saved across function calls.
$16-$23 s0-s7 Temporary registers whose values are saved across function
calls.
$24-$25 t8-t9 Temporary registers used by compiler for expression evaluation.
Values not saved across function calls.
$26-$27 kO- k1 Reserved for interrupt/trap handler.
$28 ap Global Pointer.
$29 sp Stack Pointer.
$30 fp or s8 |Frame Pointer if needed. Additional temporary saved register if
not.
$31 ra Return address for functions.

© 2012 Microchip Technology Inc. DS51686E-page 121

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 122 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 10. Functions

The following sections describe how function definitions are written, and specifically
how they can be customized to suit your application. The conventions used for param-
eters and return values, as well as the assembly call sequences are also discussed.
» Writing Functions

« Function Attributes and Specifiers

« Allocation of Function Code

¢ Changing the Default Function Allocation

« Function Size Limits

« Function Parameters

* Function Return Values

* Calling Functions

« Inline Functions

10.1 WRITING FUNCTIONS

Functions may be written in the usual way in accordance with the C/C++ language.

The only specifier that has any effect on function is st at i c. Interrupt functions are
defined with the use of the interrupt attribute, see Section 10.2 “Function Attributes
and Specifiers”.

A function defined using the st at i ¢ specifier only affects the scope of the function, i.e.
limits the places in the source code where the function may be called. Functions that
are st at i ¢ may only be directly called from code in the file in which the function is
defined. The equivalent symbol used in assembly code to represent the function may
change if the function is st at i ¢, see Section 7.3.2 “ Static Variables”. This specifier
does not change the way the function is encoded.

10.2 FUNCTION ATTRIBUTES AND SPECIFIERS

10.2.1 Function Attributes

addr ess(addr)

The address attribute specifies an absolute virtual address for the function. Be sure to
specify the address attribute using an appropriate virtual address for the target device.
The address is typically in the range [0x9D000000,0x9DOFFFFC], as defined in the
linker script as the ‘kseg0_program_mem’ memory region. For example,

__attribute__((address(0x9D008000))) void bar (void);

The compiler performs no error checking on the address. The section containing the
function will be located at the specified address regardless of the memory-regions
specified in the linker script or the actual memory ranges on the target device. The
application code must ensure that the address is valid for the target device.

© 2012 Microchip Technology Inc. DS51686E-page 123

MPLAB® XC32 C/C++ Compiler User’s Guide

To make effective use of absolute sections and the new best-fit allocator, standard
program-memory and data-memory sections should not be mapped in the linker script.
The built-in linker script does not map most standard sections such as the . t ext ,

. dat a, . bss, or. ranf unc sections. By not mapping these sections in the linker
script, we allow these sections to be allocated using the best-fit allocator rather than
the sequential allocator. Sections that are unmapped in the linker script can flow around
absolute sections, whereas sections that are linker-script mapped are grouped
together and allocated sequentially, potentially causing conflicts with absolute sections.

alias (“symnbol ")
Indicates that the function is an alias for another symbol. For example:

void foo (void) { /* stuff */ }
__attribute__ ((alias(“fo0”))) void bar (void);

Symbol bar is considered to be an alias for the symbol f 0o.

al ways_i nli ne

If the function is declared i nl i ne, always inline the function, even if no optimization
level was specified.

at _vect or

Place the body of the function at the indicated exception vector address.
See Chapter 11. “Interrupts” and Section 11.5 “Exception Handlers”.

const

If a pure function determines its return value exclusively from its parameters (i.e., does
not examine any global variables), it may be declared const , allowing for even more
aggressive optimization. Note that a function which de-references a pointer argument
is not const since the pointer de-reference uses a value which is not a parameter,
even though the pointer itself is a parameter.

deprecat ed
deprecated (nsg)

When a function specified as depr ecat ed is used, a warning is generated. The
optional msg argument, which must be a string, will be printed in the warning if present.
The depr ecat ed attribute may also be used for variables and types.

far

Always invoke the function by first loading its address into a register and then using the
contents of that register. This allows calling a function located beyond the 28-bit
addressing range of the direct CALL instruction.

format (type, format_index, first_to_check)

The f or mat attribute indicates that the function takes a pri nt f, scanf,strfti nme,
or st r f non style format string and arguments and that the compiler should type check
those arguments against the format string, just as it does for the standard library
functions.

Thet ype parameterisoneofprintf,scanf,strfti meorstrfnon (optionally with
surrounding double underscores, e.g., __printf___) and determines how the format
string will be interpreted.

Thef or mat _i ndex parameter specifies which function parameter is the format string.
Function parameters are numbered from the left-most parameter, starting from 1.

DS51686E-page 124 © 2012 Microchip Technology Inc.

Functions

The first_to_check parameter specifies which parameter is the first to check
against the format string. If f i r st _t o_check is zero, type checking is not performed,
and the compiler only checks the format string for consistency (e.g., vf pri nt f).

format _arg (index)

Thef or mat _ar g attribute specifies that a function manipulates apri nt f style format
string and that the compiler should check the format string for consistency. The function
attribute which is a format string is identified by i ndex.

interrupt (priority)

Generate prologue and epilogue code for the function as an interrupt handler function.
See Chapter 11. “Interrupts”. The argument specifies the interrupt priority using the
symbols ipl to ip7 to represent the 7 levels of priority.

| ongcal |
Functionally equivalent to f ar.

mal | oc

Any non-Null Pointer return value from the indicated function will not alias any other
pointer which is live at the point when the function returns. This allows the compiler to
improve optimization.

n psl1l6
Generate code for the function in the MIPS16 instruction set.

naked
Generate no prologue or epilogue code for the function.

near

Always invoke the function with an absolute CALL instruction, even when the
-m ong- cal | s command line option is specified.

noi nl i ne
The function will never be considered for inlining.

nom ps16

Always generate code for the function in the MIPS32® instruction set, even when
compiling the translation unit with the - m ps16 command line option.

nonnul I (index, ...)

Indicate to the compiler that one or more pointer arguments to the function must be
non-null. If the compiler determines that a Null Pointer is passed as a value to a
non-null argument, and the - Whonnul | command line option was specified, a warning
diagnostic is issued.

If no arguments are given to the nonnul | attribute, all pointer arguments of the
function are marked as non-null.

© 2012 Microchip Technology Inc. DS51686E-page 125

MPLAB® XC32 C/C++ Compiler User’s Guide

noreturn

Indicate to the compiler that the function will never return. In some situations, this can
allow the compiler to generate more efficient code in the calling function since
optimizations can be performed without regard to behavior if the function ever did
return. Functions declared as nor et ur n should always have a return type of voi d.

pur e

If a function has no side effects other than its return value, and the return value is
dependent only on parameters and/or (nonvolatile) global variables, the compiler can
perform more aggressive optimizations around invocations of that function. Such
functions can be indicated with the pur e attribute.

ranf unc

Treat the function as if it was in data memory. Allocate the function at the highest
appropriately aligned address for executable code. Note that due to r anf unc
alignment and placement requirements, the address attribute should not be used with
the r anf unc attribute. The presence of the r anf unc section causes the linker to emit
the symbols necessary for the crt0.S start-up code to initialize the bus matrix
appropriately for executing code out of data memory. Use this attribute along with the
far/l ongcal | attribute and the sect i on attribute. For example:

__attribute__((ranfunc,section(“.ranfunc”), far, uni que_section))
unsi gned i nt nyranfunct (void_
{ /* code */ }

A macro in the sys/attribs.h header file makes the r anf unc attribute simple to use:
#i ncl ude <sys/attribs. h>
__longranfunc__ unsigned int nyranfunct (void)
{ /* code */ }
section(“nane”)
Place the function into the named section.
For example:
void __attribute__ ((section (“.wilma”))) baz () {return;}
Function baz will be placed in section . wi | na.

The-ffunction-secti ons command line option has no effect on functions defined
with a sect i on attribute.

uni que_section

Place the function in a uniquely named section, as if - f f unct i on- secti ons had
been specified. If the function also has a sect i on attribute, use that section name as
the prefix for generating the unique section name.

For example:

void __attribute__ ((section (“.fred”), unique_section) foo (void)
{return;}

Function f oo will be placed in section . f r ed. f 00.

unused

Indicate to the compiler that the function may not be used. The compiler will not issue
a warning for this function if it is not used.

DS51686E-page 126 © 2012 Microchip Technology Inc.

Functions

used

Indicate to the compiler that the function is always used and code must be generated
for the function even if the compiler cannot see a reference to the function. For
example, if inline assembly is the only reference to a static function.

vect or

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 11. “Interrupts” and Section 11.5 “Exception Handlers”.

war n_unused_resul t

A warning will be issued if the return value of the indicated function is unused by a
caller.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead. For example, this is useful when a library function is
implemented such that it can be overridden by a user written function.

10.3 ALLOCATION OF FUNCTION CODE

Code associated with C/C++ functions is normally always placed in the program Flash
memory of the target device.

Functions may be located in and executed from RAM rather than Flash by using the
__ranfunc__ and __| ongr anfunc__ macros.

Functions specified as a RAM function will be copied to RAM by the start-up code and
all calls to those functions will reference the RAM location. Functions located in RAM
will be in a different 512MB memory segment than functions located in program
memory, so the | ongcal | attribute should be applied to any RAM function, which will
be called from a function not in RAM. The __I ongr anf unc__ macro will apply the

| ongcal | attribute as well as place the function in RAM?.

#i ncl ude <sys/attribs. h>
/* function ‘foo’ will be placed in RAM */
void _ranfunc__ foo (void)

{
}

/* function ‘bar’ will be placed in RAM and wi |l be invoked
using the full 32 bit address */
void _ longranfunc__ bar (void)

{
}

10.4 CHANGING THE DEFAULT FUNCTION ALLOCATION

The assembly code associated with a C/C++ function can be placed at an absolute
address. This can be accomplished by using the address attribute and specifying the
virtual address of the function, see Section 6.12 “Variable Attributes”.

Functions can also be placed at specific positions by placing them in a user-defined
section and then linking this section at an appropriate address, see
Section 6.12 “Variable Attributes”.

1. Specifying __| ongr anf unc__is functionally equivalent to specifying both __ranf unc___ and
I ongcal | __.

© 2012 Microchip Technology Inc. DS51686E-page 127

MPLAB® XC32 C/C++ Compiler User’s Guide

10.5 FUNCTION SIZE LIMITS

There are no theoretical limits as to how large functions can be made.

10.6 FUNCTION PARAMETERS

MPLAB XC uses a fixed convention to pass arguments to a function. The method used
to pass the arguments depends on the size and number of arguments involved.

Note: The names “argument” and “parameter” are often used interchangeably,
but typically an argument is the actual value that is passed to the function
and a parameter is the variable defined by the function to store the argu-
ment.

The Stack Pointer is always aligned on an 8-byte boundary.

 Allinteger types smaller than a 32-bit integer are first converted to a 32-bit value.
The first four 32 bits of arguments are passed via registers a0-a3 (see Table 10-1
for how many registers are required for each data type).

« Although some arguments may be passed in registers, space is still allocated on
the stack for all arguments to be passed to a function (see Figure 10-1). Applica-
tion code should not assume that the current argument value is on the stack, even
when space is allocated.

* When calling a function:

- Registers a0-a3 are used for passing arguments to functions. Values in these
registers are not preserved across function calls.

- Registerst 0-t 7 and t 8-t 9 are caller saved registers. The calling function
must push these values onto the stack for the registers’ values to be saved.

- Registers s0-s7 are called saved registers. The function being called must
save any of these registers it modifies.

- Register s8 is a saved register if the optimizer eliminates its use as the Frame
Pointer. s8 is a reserved register otherwise.

- Register r a contains the return address of a function call.

TABLE 10-1: REGISTERS REQUIRED
Data Type Number of Registers Required

char

short

int

| ong

I ong | ong
f | oat

doubl e

N|(R|R|IN|R|RP|RP|F~

| ong doubl e

structure Up to 4, depending on the size of the struct.

DS51686E-page 128 © 2012 Microchip Technology Inc.

Functions

FIGURE 10-1: PASSING ARGUMENTS
Example 1:
int add (int, int)
a= add (5, 10);
SP+4 undefined a0 5
Sp undefined al 10
Example 2:
void foo (long double, |ong double)
call= foo (10.5, 20.1);
SP+12 undefined a0 10.5
SP +8 al
SP +4 a2
undefined 20.1
SP a3
Example 3:
voi d calculate (I ong double, |ong double, int)
cal culate (50.3, 100.0, .10);
.10
SP + 16
SP +12
undefined a0 50.3
SP + 8 al
SP+4 a2
undefined 100.0
SP a3

© 2012 Microchip Technology Inc.

DS51686E-page 129

MPLAB® XC32 C/C++ Compiler User’s Guide

10.7 FUNCTION RETURN VALUES

Function return values are returned in registers.

If a function needs to return an actual structure or union — not a pointer to such an
object — the called function copies this object to an area of memory that is reserved by
the caller. The caller passes the address of this memory area in register $4 when the
function is called. The function also returns a pointer to the returned object in register
v0. Having the caller supply the return object’s space allows re-entrance.

10.8 CALLING FUNCTIONS

By default, functions are called using the direct form of the call (j al) instruction. This
allows calls to destinations within a 256 MB segment. This operation can be changed
through the use of attributes applied to functions or command-line options so that a lon-
ger, but unrestricted, call is made.

The - m ong- cal | s option, see Section 3.9.1 “Options Specific to PIC32MX
Devices”, forces a register form of the call to be employed by default. Generated code
is longer, but calls are not limited in terms of the destination address.

The attributes | ongcal | or f ar can be used with a function definition to always
enforce the longer call sequence for that function. The near attribute can be used with
afunction so that calls to it use the shorter direct call, even if the - M ong- cal | s option
is in force.

10.9 INLINE FUNCTIONS

By declaring a function i nl i ne, you can direct the compiler to integrate that function’s
code into the code for its callers. This usually makes execution faster by eliminating the
function-call overhead. In addition, if any of the actual argument values are constant,
their known values may permit simplifications at compile time, so that not all of the
inline function’s code needs to be included. The effect on code size is less predictable.
Machine code may be larger or smaller with inline functions, depending on the
particular case.

Note: Function inlining will only take place when the function’s definition is visible
(not just the prototype). In order to have a function inlined into more than
one source file, the function definition may be placed into a header file that
is included by each of the source files.

To declare a function inline, use the i nl i ne keyword in its declaration, like this:
inline int
inc (int *a)
{
(*a) ++

}

(If you are using the - t r adi ti onal option or the - ansi option, write __inline__
instead of i nl i ne.) You can also make all “simple enough” functions inline with the
command-line option - f i nl i ne- functi ons. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way, based on an
estimate of the function’s size.

Note: The i nl i ne keyword will only be recognized with - fi nl i ne or
optimizations enabled.

DS51686E-page 130 © 2012 Microchip Technology Inc.

Functions

Certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of var ar gs, use of al | oca, use of variable-sized data,
use of computed got o and use of nonlocal got 0. Using the command-line option

- W nl i ne will warn when a function marked i nl i ne could not be substituted, and will
give the reason for the failure.

In compiler syntax, the i nl i ne keyword does not affect the linkage of the function.

When a function is both i nl i ne and st at i c, if all calls to the function are integrated
into the caller and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not actually output
assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons
(in particular, calls that precede the function’s definition cannot be integrated and
neither can recursive calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also be compiled
as usual if the program refers to its address, because that can’'t be inlined. The compiler
will only eliminate i nl i ne functions if they are declared to be st at i ¢ and if the func-
tion definition precedes all uses of the function.

When an i nl i ne function is not st at i ¢, then the compiler must assume that there
may be calls from other source files. Since a global symbol can be defined only once
in any program, the function must not be defined in the other source files, so the calls
therein cannot be integrated. Therefore, a non-st at i ¢ inline function is always
compiled on its own in the usual fashion.

If you specify both i nl i ne and ext er n in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you
refer to its address explicitly. Such an address becomes an external reference, as if you
had only declared the function and had not defined it.

This combination of i nl i ne and ext er n has a similar effect to a macro. Put a function
definition in a header file with these keywords and put another copy of the definition
(lackingi nl i ne and ext er n) in alibrary file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

© 2012 Microchip Technology Inc. DS51686E-page 131

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 132 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 11. Interrupts

11.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended,
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.

PIC32MX devices support multiple interrupts, from both internal and external sources.
The devices allow high-priority interrupts to override any lower priority interrupts that
may be in progress.

The compiler provides full support for interrupt processing in C/C++ or inline assembly
code. This chapter presents an overview of interrupt processing.

* Interrupt Operation

« Writing an Interrupt Service Routine

» Associating a Handler Function with an Exception Vector

» Exception Handlers

« Interrupt Service Routine Context Switching

* Latency

* Nesting Interrupts

< Enabling/Disabling Interrupts

* ISR Considerations

11.2 INTERRUPT OPERATION

The compiler incorporates features allowing interrupts to be fully handled from C/C++
code. Interrupt functions are often called interrupt handlers or Interrupt Service Rou-
tines (ISRs).

Each interrupt source typically has a control bit in an SFR which can disable that inter-
rupt source. Check your device data sheet for full information how your device handles
interrupts.

Interrupt code is the name given to any code that executes as a result of an interrupt
occurring. Interrupt code completes at the point where the corresponding return from
interrupt instruction is executed. This contrasts with main-line code, which, for a free-
standing application, is usually the main part of the program that executes after reset.

© 2012 Microchip Technology Inc. DS51686E-page 133

MPLAB® XC32 C/C++ Compiler User’s Guide

11.3 WRITING AN INTERRUPT SERVICE ROUTINE

An interrupt handler function is different to an ordinary function in that it handles the
context save and restore to ensure that upon return from interrupt, the program context
is maintained.A different code sequence is used to return from these functions as well.

Several attributes can be used to ensure that the compiler generates the correct code
for an ISR. Macros are provided so that this is easier to accomplish, see the following
sections.

There are several actions that the compiler needs to take to generate an interrupt ser-
vice routine. The compiler has to be told to use an alternate form of return code. The

function also needs to be linked to the interrupt vector. Only the mip32 instruction set

can be used in ISRs, so the compiler must be told to generate code using this instruc-
tion set, even if the option to generate mip16 instructions has been used.

An interrupt function must be declared as type voi d and may not have parameters.
This is the only function prototype that makes sense for an interrupt function since they
are never directly called in the source code.

Interrupt functions must not be called directly from C/C++ code (due to the different
return instruction that is used), but they themselves may call other functions, both
user-defined and library functions, but be aware that this may use additional registers
which will need to be saved and restored by the context switch code.

A function is marked as an interrupt handler function (also known as an Interrupt
Service Routine or ISR) via either the interrupt attribute or the interrupt pragma?. While
each method is functionally equivalent to the other, the interrupt attribute is more
commonly used and therefore the recommended method. The interrupt is specified as
handling interrupts of a specific priority level or for operating in single vector mode.

11.3.1 Interrupt Attribute

_attribute__((interrupt([IPLn[SRS| SOFT| AUTQ]1)))
Where n is in the range of 0..7, inclusive.

Use the interrupt attribute to indicate that the specified function is an interrupt handler.
The compiler generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present. The generated code preserves context
by either using a shadow register set (SRS) or using generated software instructions
(SOFT) to push context onto the stack. See Example 11-1 for an interrupt attribute.

EXAMPLE 11-1: INTERRUPT ATTRIBUTE

void __attribute__((interrupt(lIPL7SRS))) banbam (void);

Many PIC32 devices allow us to specify, via configuration-bit settings, which interrupt
priority level will use the shadow register set (e.g., #pr agma confi g
FSRSSEL=PRIORITY_7). Refer to the device data sheet to determine if your PIC32
target device supports this feature. This means we must specify which context-saving
mechanism to use for each interrupt handler. The compiler will generate interrupt
function prologue and epilogue code utilizing shadow register context saving for the

I PLnSRS Interrupt Priority Level (IPL) specifier. It will use software context saving for
the | PLnSOFT IPL specifier.

Note: Application code is responsible for applying the correct value to the
matching handler routine.

1. Note that pre-processor macros are not expanded in pragma directives.

DS51686E-page 134 © 2012 Microchip Technology Inc.

Interrupts

The compiler also supports an | PLnAUTOIPL specifier that uses the run-time value in
SRSCTL to determine whether it should use software or SRS context-saving code. The
compiler defaults to using | PLnAUTOwhen the IPL specifier is omitted from the

i nterrupt () attribute.

For devices that do not support a shadow register set for interrupt context saving, use
IPLNSOFT for all interrupt handlers.

Note: SRS has the shortest latency and SOFT has a longer latency due to
registers saved on the stack. AUTOadds a few cycles to test if SRS or SOFT
should be used.

11.3.2 Interrupt Pragma

Note: The interrupt pragma is provided only for compatibility when porting code
from other compilers. The interrupt function attribute is the preferred and
more common way to write an interrupt service routine.

pragma interrupt function-nanme |PLn[AUTQ SOFT| SRS] [vector
[@vector-nunmber [, vector-nunber-list]]
pragma interrupt function-nane single [vector [@ O

Where n is in the range of 0..7, inclusive.
The | PLn [AUTQ SOFT| SRS] IPL specifier may be all uppercase or all lowercase.

The function definition for a handler function indicated by an interrupt pragma must
follow in the same translation unit as the pragma itself.

The i nt errupt attribute will also indicate that a function definition is an interrupt
handler. It is functionally equivalent to the interrupt pragma.

For example, the definitions of f oo below both indicate that it is an interrupt handler
function for an interrupt of priority 4 that uses software context saving.

#pragma i nterrupt foo | PLASOFT
voi d foo (void)

is functionally equivalent to
void __attribute__ ((interrupt(lIPL4SOFT))) foo (void)

11.3.3 ISR Macros

The <sys/ attri bs. h> header file provides macros intended to simplify the
application of attributes to interrupt functions. There are also vector macros defined in
the processor header files. (See the appropriate header file in the compiler’s

/ pi ¢32nx/ i ncl ude/ pr oc directory.)

e __ISR(V, IPL)
e _ISR_AT VECTOR(v, IPL)
¢ Interrupt-Vector Macros

11.3.3.1 __ISR(V, IPL)

Usethe | SR(v, | PL) macro to assign the vector-number location and associate it
with the specified IPL. This will place a jump to the interrupt handler at the associated
vector location. This macro also applies the noni ps16 attribute since PIC32MX
devices require that interrupt handlers must use the MIPS32 instruction set.

© 2012 Microchip Technology Inc. DS51686E-page 135

MPLAB® XC32 C/C++ Compiler User’s Guide

EXAMPLE 11-2: CORE TIMER VECTOR, IPL2SOFT

#i ncl ude <xc. h>
#i ncl ude <sys/attribs. h>
void __| SR(_CORE_TI MER_VECTOR, | PL2SOFT) CoreTi mer Handl er (voi d);

Example 11-2 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places a dispatch function at the
associated vector location. To reach this function, the core timer interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of two. The
compiler generates software context-saving code for this handler function.

EXAMPLE 11-3: CORE SOFTWARE 0 VECTOR, IPL3SRS

#i ncl ude <xc. h>

#i ncl ude <sys/attribs. h>

void _ | SR(_CORE_SOFTWARE_0_VECTOR, | PL3SRS)
Cor eSof t war el nt OHandl er (voi d);

Example 11-3 creates an interrupt handler function for the core software interrupt O that
has an interrupt priority level of three. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of three. The
device configuration fuses must assign Shadow Register Set 1 to interrupt priority level
three. The compiler generates code that assumes that register context will be saved in
SRS1.

EXAMPLE 11-4: CORE SOFTWARE 1 VECTOR, IPLOAUTO

#i ncl ude <xc. h>

#i ncl ude <sys/attribs. h>

void _ | SR(_CORE_SOFTWARE_1 VECTCOR, | PLOAUTO)
Cor eSof t war el nt 1Handl er (voi d);

Example 11-4 creates an interrupt handler function for the core software interrupt 1 that
has an interrupt priority level of zero. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt 1 flag and
enable bits must be set, and the interrupt priority should be set to a level of zero. The
compiler generates code that determines at run time whether software context saving
is required.

EXAMPLE 11-5: CORE SOFTWARE 1 VECTOR, DEFAULT

#i ncl ude <xc. h>
#i ncl ude <sys/attribs. h>
void _ | SR(_CORE SOFTWARE_ 1 VECTOR) _Cor eSof t war el nt 1Handl er (voi d) ;

Example 11-5 is functionally equivalent to Example 3. Because the IPL specifier is
omitted, the compiler assumes | PLOAUTO.

11.3.3.2 __ISR_AT_VECTOR(Y, IPL)

Usethe | SR AT VECTOR(v, |PL) to place the entire interrupt handler at the
vector location and associate it with the software-assigned interrupt priority. Application
code is responsible for making sure that the vector spacing is set to accommodate the
size of the handler. This macro also applies the nomips16 attribute since ISR functions
are required to be MIPS32.

DS51686E-page 136 © 2012 Microchip Technology Inc.

Interrupts

EXAMPLE 11-6: CORE TIMER VECTOR, IPL2SOFT

#i ncl ude <xc. h>

#i ncl ude <sys/attribs. h>

void __ | SR AT_VECTOR(_CORE TI MER VECTCR, | PL2SOFT)
Cor eTi ner Handl er (voi d) ;

Example 11-6 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places the entire interrupt handler at the
vector location. It does not use a dispatch function. To reach this function, the core timer
interrupt flag and enable bits must be set, and the interrupt priority should be set to a
level of two. The compiler generates software context-saving code for this handler
function.

11.3.3.3 INTERRUPT-VECTOR MACROS

Each processor-support header file provides a macro for each interrupt-vector number
(for example, / pi ¢32nx/ i ncl ude/ proc/ p32nmx360f 512| . h. See the appropriate
header file in the compiler install directory). When used in conjunction with the
__I'SR() macro provided by the sys\ attri bs. h header file, these macros help
make an Interrupt Service Routine easier to write and maintain.

EXAMPLE 11-7: INTERRUPT-VECTOR WITH HANDLER

#i ncl ude <xc. h>
#i ncl ude <sys/attribs. h>
void ISR (_TIMER 1 VECTOR, |PL7SRS) Ti ner1Handl er (void);

Example 11-7 creates an interrupt handler function for the Timer 1 interrupt that has an
interrupt priority level of seven. The compiler places a dispatch function at the vector
location associated with macro _TI MER 1 VECTOR as defined in the device-specific
header file. To reach this function, the Timer 1 interrupt flag and enable bits must be
set, and the interrupt priority should be set to a level of seven. For devices that allow
assignment of shadow registers to specific IPL values, the device Configuration bit
settings must assign Shadow Register Set 1 to interrupt priority level seven. The
compiler generates code that assumes that register context will be saved in SRS1.

Example 11-8 uses the peripheral library provided with the compiler to set up Timer 1
for an interrupt using priority level 7. The code is written to toggle pin RDO.

© 2012 Microchip Technology Inc. DS51686E-page 137

MPLAB® XC32 C/C++ Compiler User’s Guide

EXAMPLE 11-8: FULL TIMER 1 EXAMPLE WITH PERIPHERAL LIBRARY

/* Blink an LED on the PI C32MX Ethernet Starter Kit using the
* Pl C32MX795F512L target device.
*/

#i ncl ude <xc. h>

#i ncl ude <plib. h>

#i ncl ude <sys/attribs. h>

/] Configuration Bit settings using the config pragna

/1 SYSCLK = 80 MHz (8MHz Crystal/ FPLLID V * FPLLMJL / FPLLODI V)

/1 PBCLK = 10 MHz

/1 Primary Osc w PLL (XT+, HS+, EC+PLL)

/1 WOT OFF

/]l Gther options are “do not care”

11

#pragma config FPLLMJUL=MJL_20, FPLLIDIV=DIV_2, FPLLODI V=DIV_1, FWDTEN=CFF
#pragma config POSCMOD=HS, FNOSC=PRI PLL, FPBDI V=Dl V_8

/] Calculate the PRL (period) at conpile tine

#defi ne SYS_FREQ (80000000L)

#define PB DV 8

#defi ne PRESCALE 256

#defi ne TOGGLES_PER_SEC 1

#define T1_TICK (SYS_FREQ PB_DI V/ PRESCALE/ TOGGLES_PER_SEC)

i nt mai n(voi d)

{
/1 STEP 1
/1 Configure the device for maxi mum perfornmance but do not change the PBDV
/'l Gven the options, this function will change the flash wait states, RAM
/] wait state and enable prefetch cache but will not change the PBD V.
/1 The PBDIV value is already set via the config pragma FPBDI V option above.
SYSTEMConf i g(SYS_FREQ, SYS_CFG WAI T_STATES | SYS_CFG PCACHE) ;
11
/] STEP 2. configure Tinmer 1 using internal clock, 1:256 prescale
OpenTinmer1(T1_ON | T1_SOURCE INT | T1_PS 1 256, T1_TICK);
/] set up the timer interrupt with a priority of 7
ConfigintTimer1(T1_INT_ON | T1_INT_PRIOR 7);
/1 enable multi-vector interrupts
I NTEnabl eSyst emMul ti Vect oredl nt ();
/] configure PORTDbits. RDO = out put
nPORTDSet Pi nsDi gi tal Qut (BI T_0);
whi l e(1);

}

11

/] STEP 3. configure the Tiner 1 interrupt handler

/] Determ ne shadowregi ster or software-stack context saving at
/] runtime by using the I PL7AUTO priority specifier.

/1 Note that the n value in | PLnNAUTO _nust_ match the priority
/] of the timerl interrupt source configured above.

#i fdef __cpl usplus
/] For C linkage when conpiling for C++
extern "C' {

#endif /* __cplusplus */

DS51686E-page 138 © 2012 Microchip Technology Inc.

Interrupts

void _ISR(_TIMER 1 VECTOR, |PL7AUTO Ti ner 1Handl er (voi d)

{

}

/] clear the interrupt flag

nT1C ear I nt Fl ag();

things to do

in this case, toggle the LED
nmPORTDToggl eBi t s(BI T_0) ;

#i fdef __cpl usplus

#endi f

11.4 ASSOCIATING A HANDLER FUNCTION WITH AN EXCEPTION VECTOR

For PIC32MX devices, there are 64 exception vectors, numbered 0..63 inclusive. Each
interrupt source is mapped to an exception vector as specified in the device data sheet.
By default, four words of space are reserved at each vector address for a dispatch to
the handler function for that exception source.

An interrupt handler function can be associated with an interrupt vector either as the
target of a dispatch function located at the exception vector address, or as being
located directly at the exception vector address. A single handler function can be the
target of multiple dispatch functions.

The association of a handler function to one or more exception vector addresses is
specified via a vector attribute on the function declaration. For compatibility purposes,
you may also associate a handler function to a vector address using a clause of the
interrupt pragma, a separate vector pragma, or a vector attribute on the function
declaration.

11.4.1 Vector Attribute

A handler function can be associated with one or more exception vector addresses via
an attribute. The at _vect or attribute indicates that the handler function should itself
be placed at the exception vector address. The vect or attribute indicates that a dis-
patch function should be created at the exception vector address(es) which will transfer
control to the handler function.

For example, the following declaration specifies that function f oo will be created as an
interrupt handler function of priority four. f oo will be located at the address of exception
vector 54.

void __attribute_ ((interrupt(lPL4SOFT))) _ attribute_
((at_vector(54))) foo (void)

The following declaration specifies that function f oo will be created as an interrupt
handler function of priority four. Define dispatch functions targeting f oo at exception
vector addresses 52 and 53.

void __attribute__ ((interrupt(IPL4SCFT))) _ attribute
((vector (53, 52))) foo (void)

Handler functions that are linked directly to the vector will be executed faster. Although
the vector spacing can be adjusted, there is limited space between vectors and linking
a substantial handler function directly at a vector may cause it to overlap the higher vec-
tor locations, preventing their use. In such situations, using a dispatch function is a
safer option.

© 2012 Microchip Technology Inc. DS51686E-page 139

MPLAB® XC32 C/C++ Compiler User’s Guide

11.4.2 Interrupt Pragma Clause

Note: The interrupt pragma and its vector clause are provided only for compatibil-
ity when porting code from other compilers. The vector function attribute is
the preferred way to associate a handler function to an exception vector
address.

The interrupt pragma has an optional vect or clause following the priority specifier.

pragma interrupt function-nanme |PL-specifier [vector
[@vector-nunmber [, vector-nunber-list]]

A dispatch function targeting the specified handler function will be created at the
exception vector address for the specified vector numbers. If the first vector number is
specified with a preceding “@” symbol, the handler function itself will be located there
directly.

For example, the following pragma specifies that function f oo will be created as an
interrupt handler function of priority four. f oo will be located at the address of exception
vector 54. A dispatch function targeting f oo will be created at exception vector address
34.

#pragma interrupt foo | PL4AUTO vector @4, 34

The following pragma specifies that function bar will be created as an interrupt handler
function of priority five. bar will be located in general purpose program memory (.text
section). A dispatch function targeting bar will be created at exception vector address
23.

#pragma i nterrupt bar | PL5SOFT vector 23

11.4.3 Vector Pragma

Note: The vector pragma is provided only for compatibility when porting code
from other compilers. The vector function attribute is the preferred way to
associate a handler function to an exception vector address.

The vect or pragma creates one or more dispatch functions targeting the indicated
function. For target functions specified with the i nt er r upt pragma, this functions as
if the vector clause had been used. The target function of a vect or pragma can be
any function, including external functions implemented in assembly or by other means.

pragma vector function-nane vector vector-nunber [,
vect or - nunber-1i st]

The following pragma defines a dispatch function targeting f oo at exception vector
address 54.

#pragma vector foo 54

DS51686E-page 140 © 2012 Microchip Technology Inc.

Interrupts

11.5 EXCEPTION HANDLERS

The PIC32MX devices also have two exception vectors for non-interrupt exceptions.
These exceptions are grouped into bootstrap exceptions and general exceptions.

11.5.1 Bootstrap Exception

A reset exception is any exception which occurs while bootstrap code is running
(St at usggy=1). All reset exceptions are vectored to 0xBFC00380.

At this location, the 32-bit toolchain places a branch instruction targeting a function
named _boot st rap_excepti on_handl er () . In the standard library, a default
weak version of this function is provided which merely goes into an infinite loop. If the
user application provides an implementation of

_boot strap_excepti on_handl er (), that implementation will be used instead.

11.5.2 General Exception

A general exception is any non-interrupt exception which occurs during program
execution outside of bootstrap code (St at usgg,=0). General exceptions are vectored
to offset 0x180 from EBase.

At this location, the 32-bit toolchain places a branch instruction targeting a function
named _gener al _excepti on_cont ext (). The provided implementation of this
function saves context, calls an application handler function, restores context and
performs a return from the exception instruction. The context saved is the hi and | o
registers and all General Purpose Registers except s0- s8, which are defined to be
preserved by all called functions and so are not necessary to actively save here again.
The values of the Cause and St at us registers are passed to the application handler
function (_gener al _excepti on_handl er ()). If the user application provides an
implementation of _gener al _excepti on_cont ext (), that implementation will be
used instead.

voi d _general _exception_handl er (unsigned cause, unsigned status);

A weak default implementation of _gener al _excepti on_handl er () is provided in
the standard library which merely goes into an infinite loop. If the user application
provides an implementation of _gener al _excepti on_handl er (), that
implementation will be used instead.

11.6 INTERRUPT SERVICE ROUTINE CONTEXT SWITCHING

The standard calling convention for C/C++ functions will already preserve zer o,
s0-s7,gp, sp, and f p. kO and k1 are used by the compiler to access and preserve
non-GPR context, but are always accessed atomically (i.e., in sequences with global
interrupts disabled), so they need not be preserved actively. A handler function will
actively preserve the a0- a3,t 0-t 9, v0, v1 and r a registers in addition to the
standard registers.

An interrupt handler function will also actively save and restore processor status
registers that are utilized by the handler function. Specifically, the EPC, SR, hi and | o
registers are preserved as context.

Handler functions may use a shadow register set to preserve the General Purpose
Registers, enabling lower latency entry into the application code of the handler
function. On some devices, the shadow register set is assigned to an interrupt priority
level (IPL) using the device Configuration bit settings (e.g., #pr agma confi g
FSRSSEL=PRI ORI TY_6). While on other devices, the shadow register set may be hard
wired to IPL7. Consult the target device’s data sheet for more information on the
shadow register set.

© 2012 Microchip Technology Inc. DS51686E-page 141

MPLAB® XC32 C/C++ Compiler User’s Guide

11.6.1 Context Restoration

Any objects saved by software are automatically restored by software before the inter-
rupt function returns. The order of restoration is the reverse to that used when context
is saved.

11.7 LATENCY

There are two elements that affect the number of cycles between the time the interrupt
source occurs and the execution of the first instruction of your ISR code. These are:

* Processor Servicing of Interrupt — The amount of time it takes the processor to
recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value, refer to the processor data sheet for the specific processor
and interrupt source being used.

* ISR Code — The compiler saves the registers that were used by the ISR. This
includes the TODO registers. Moreover, if the ISR calls an ordinary function, then
the compiler will save all the working registers, even if they are not all used explic-
itly in the ISR itself. This must be done, because the compiler cannot know, in
general, which resources are used by the called function.

11.8 NESTING INTERRUPTS

Interrupts may be nested. The interrupt priority scheme implemented in the PIC32
architecture allows you to specify which interrupt sources may be interruptible by
others. See your device data sheet for explicit details on interrupt operation.

11.9 ENABLING/DISABLING INTERRUPTS

Macros are available in the PIC32 peripheral library to control aspects of interrupt
operation. See the Microchip PIC32MX Peripheral Library documentation for more
information.

11.10 ISR CONSIDERATIONS

There are few issues arising with interrupt functions.

As with all compilers, limiting the number of registers used by the interrupt function, or
any functions called by the interrupt function, may result in less context switch code
being generated and executed by the compiler, see Section 11.7 “Latency”. Keeping
interrupt functions small and simple will help you achieve this.

DS51686E-page 142 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 12. Main, Runtime Sart-up and Reset

12.1 INTRODUCTION

When creating C/C++ code, there are elements that are required to ensure proper pro-
gram operation: a mai n function must be present; start-up code will be needed to ini-
tialize and clear variables and setup registers and the processor; and reset conditions
will need to be handled.

» The Main Function

¢ Runtime Start-up Code

¢ The On Reset Routine

12.2 THE MAIN FUNCTION

The identifier mai n is special. It must be used as the name of a function that will be the
first function to execute in a program. You must always have one and only one function
called mai n in your programs. Code associated with mai n, however, is not the first
code to execute after reset. Additional code provided by the compiler and known as the
runtime start-up code is executed first and is responsible for transferring control to the
mai n() function.

12.3 RUNTIME START-UP CODE

A C/C++ program requires certain objects to be initialized and the processor to be in a
particular state before it can begin execution of its function mai n() . It is the job of
the runtime start-up code to perform these tasks. The runtime start-up code is exe-
cuted before mai n() , butif you require any special initialization to be performed imme-
diately after reset, you should use on reset feature described in Section 12.4 “The On
Reset Routine”

The PIC32MX start-up code must perform the following:

1. Jump to NMI Handler if an NMI Occurred
Initialize Stack Pointer and Heap
Initialize Global Pointer

Initialize or Clear Variables and RAM Functions Using the Data-Initialization
Template

Initialize Bus Matrix Registers
Call “On Bootstrap” Procedure
Change Location of Exception Vectors

For C++, call the C++ initialization code to invoke all constructors for file-scope
static storage objects

9. Call Main
The following provisions are made regarding the run-time model:

HownN

© N oo

» Kernel mode only
* KSEG1 only

¢ RAM functions are attributed with __ranfunc__ or __| ongranfunc__,
(defined in sys/ attri bs. h) meaning that all RAM functions end up in
the .r anf unc section and the function is r anf unc attributed.

© 2012 Microchip Technology Inc. DS51686E-page 143

MPLAB® XC32 C/C++ Compiler User’s Guide

12.3.1 Jump to NMI Handler if an NMI Occurred

If an NMI caused entry to the Reset vector, a jump to an NMI handler procedure
(_nm _handl er) occurs. A weak version of the NMI handler procedure is provided
that performs an ERET. The _nm _handl er function must be attributed with

nom psl6 [e.g., _attribute__ ((nom psl6))] since the start-up code jumps to
this function.

12.3.2 Initialize Stack Pointer and Heap

The Stack Pointer (sp) register must be initialized in the start-up code. To enable the
start-up code to initialize the sp register, the linker script must initialize a variable which
points to the end of KSEG1 data memory?. This variable is named _st ack. The user
can change the minimum amount of stack space allocated by providing the command
line option - - def sym _ni n_st ack_si ze=Nto the linker. _ni n_stack_si ze is
provided by the linker script with a default value of 1024.

On a similar note, the user may wish to utilize a heap with their application. While the
start-up code does not need to initialize the heap, the standard C libraries (sbr k) must
be made aware of the heap location and its size. The linker script creates a variable to
identify the beginning of the heap. The location of the heap is the end of the utilized
KSEG1 data memory. This variable is named _heap. The user can change the
minimum amount of heap space allocated by providing the command line option
--def sym _m n_heap_si ze=Mto the linker. _ni n_heap_si ze is provided by the
linker script with a default value of 0. If the heap is used when the heap size is set to
zero, the behavior is the same as when the heap usage exceeds the minimum heap
size. Namely, it overflows into the space allocated for the stack.

The heap and the stack use the unallocated KSEG1 data memory, with the heap
starting from a low address in KSEG1 data memory, and growing upwards towards the
stack while the stack starts at a higher address in KSEG1 data memory and grows
downwards towards the heap. The linker attempt to allocate the heap and stack
together in the largest gap of memory available in the KSEG1 data memory region. If
enough space is not available based on the minimum amount of heap size and stack
size requested, the linker issues an error.

1. The end of data memory is different based on whether RAM functions exist. If RAM functions exist, then
part of the DRM must be configured for the kernel program to contain the RAM functions, and the Stack
Pointer is located one word prior to the beginning of the DRM kernel program boundary address. If RAM
functions do not exist, then the Stack Pointer is located at the true end of DRM.

DS51686E-page 144

© 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

FIGURE 12-1: STACK AND HEAP LAYOUT
hY
.data
.app_excpt -got
text .sdata
rodata .I!tf:i
.sdataz lit4
sbss2 .sbss
.data (image) heap bss
.got [||T.\z1_r;r*} . heap
.sdata (image) |
Jlit8 (image) | _min_heap_size
Jitd (image) |
ramfunc (image) } PFM
reset
.boot_excpt L BFM _min_stack_size
| stack .stack
S —_—
Program Flash Memory Data RAM Memory
FIGURE 12-2: STACK AND HEAP LAYOUT WITH RAM FUNCTIONS
.data
.app_excpt -got
text | .sdata
.rodata '”m
.sdata2 Jitd
shss? .sbss
.data (image) heap -bss
.got [|m.age] —_— .heap
sdata (image)
it8 (image) | _min_heap_size
Jit4 (image)
.ramfunc (image) :> PFM
| _min_stack_size
stack .stack
_—
| ramfunc
.z'. ________________
reset
.boot_excpt \. BFM Potentially unused
Program Flash Memory Data RAM Memory

© 2012 Microchip Technology Inc. DS51686E-page 145

MPLAB® XC32 C/C++ Compiler User’s Guide

12.3.3 Initialize Global Pointer

The compiler toolchain supports Global Pointer (gp) relative addressing. Loads and
stores to data residing within 32KB of either side of the address stored in the gp register
can be performed in a single instruction using the gp register as the base register.
Without the Global Pointer, loading data from a static memory area takes two
instructions — one to load the Most Significant bits of the 32-bit constant address
computed by the compiler/linker and one to do the data load.

To utilize gp-relative addressing, the compiler and assembler must group all of the
“small” variables and constants into one of the following sections:

o . lit4. «lit8

e . sdat a. * sbss

e .sdata.* * sbss. *

e .gnu.linkonce.s.* e . gnu. linkonce. sb. *

The linker must then group all of the above input sections together. This grouping is
handled by the default linker script. The run-time start-up code must initialize the gp
register to point to the “middle” of this output section. To enable the start-up code to
initialize the gp register, the linker script must initialize a variable which is 32 KB from
the start of the output section containing the “small” variables and constants. This
variable is named _gp (to match core linker scripts). Besides being initialized in the
standard GPR set, the Global Pointer must also be initialized in the register shadow set.

FIGURE 12-3: GLOBAL POINTER LOCATION
datz
_______ o
0x8000 .sdata
Jdit8
T" it
.sbss
heap
min_heap_size
» PFM
min_stack_size
tack
Jsramfunc
reset
boot_excpt > BEM Potentially unused
Program Flash Memory Data RAM Memory

DS51686E-page 146 © 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

12.3.4 Initialize or Clear Variables and RAM Functions Using the
Data-Initialization Template

Those non-aut o objects which are not initialized must be cleared before execution of
the program begins. This task is also performed by the runtime start-up code.

Uninitialized variables are those which are not aut o objects and which are not
assigned a value in their definition, for example out put in the following example:

i nt output;

int main(void) ({

Such uninitialized objects will only require space to be reserved in RAM where they will
reside and be accessed during program execution (runtime).

There are two uninitialized data sections—. sbss and . bss. The . sbss section is a
data segment containing uninitialized variables less than or equal to n bytes where n
is determined by the - Gnh command line option. The . bss section is a data segment
containing uninitialized variables not included in . sbss.

Another task of the runtime start-up code is to ensure that any initialized variables con-
tain their initial value before the program begins execution. Initialized variables are
those which are not aut o objects and which are assigned an initial value in their defi-
nition, for example i nput in the following example:

int input = 88;

int main(void) {

Such initialized objects have two components: their initial value (0x0088 in the above
example) stored in program memory (i.e. placed in the HEX file), and space for the
variable reserved in RAM, which will reside and be accessed during program execution
(runtime).

The runtime start-up code will copy all the blocks of initial values from program memory
to RAM so the variables will contain the correct values before mai n is executed.

Since aut o objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is possible that the
initial value of an aut o object may change on each instance of the function and so the
initial values cannot be stored in program memory and copied. As a result, initialized
aut o objects are not considered by the runtime start-up code, but are instead initialized
by assembly code in each function output.

Note: Initialized aut o variables can impact code performance, particularly if the
objects are large in size. Consider using global or st at i ¢ objects instead.

Variables whose contents should be preserved over a reset, or even power off, should
be qualified with the per si st ent attribute, see Section 6.10 “Standard Type Qual-
ifiers”. Such variables are linked at a different area of memory and are not altered by
the runtime start-up code in any way.

Four initialized data sections exist:.. sdata, . data,.lit4,and.|it8. The.sdata
section is a data segment containing initialized variables less than or equal to n bytes
where n is determined by the - Gh command line option. The . dat a section is a data
segment containing initialized variables not included in . sdat a. The . I it 4 and

. I'i t 8 sections contain constants, which the assembler stores in memory rather than
in the instruction stream.

© 2012 Microchip Technology Inc. DS51686E-page 147

MPLAB® XC32 C/C++ Compiler User’s Guide

In order to clear or initialize these sections, the linker creates a data-initialization
template, which is loaded into an output section named . di ni t . The linker creates
this special . di ni t section, allocated in program memory, to hold the template for
the run-time initialization of data. The C/C++ start-up module, cr t 0. o, interprets this
template and copies initial data values into initialized data sections. This includes
sections containing r anf unc attributed functions. Other data sections (such as . bss)
are cleared before the mai n() function is called. The persistent data section (. pbss)
is not affected. When the application’s main program takes control, all variables and
RAM functions in data memory have been initialized.

The data initialization template contains one record for each output section in data
memory. The template is terminated by a null instruction word. The format of a data
initialization record is:

/* data init record */
struct data_record {

char *dst; /* destination address */
unsi gned int |en; /* length in bytes */
unsigned int format; /* format code */
char dat[O0]; /* variable-length data */

b

The first element of the record is a pointer to the section in data memory. The second
and third elements are the section length and format code, respectively. The last
element is an optional array of data bytes. For bss-type sections, no data bytes are
required.

Currently supported format codes are:
¢ 0 — Fill the output section with zeros
* 1 — Copy each byte of data from the data array

12.3.5 Initialize Bus Matrix Registers

The bus matrix registers (BMXDKPBA, BMXDUDBA, BMXDUPBA) should be initialized by
the start-up code if any RAM functions exist; otherwise, these registers should not be
modified. To determine whether any RAM functions exist in the application, the linker
provides a variable that contains the length of the . r anf unc section®. This variable is
named _r anf unc_I engt h. In addition, the linker provides a 2K-aligned variable
required for the boundary register (BMXDKPBA). The variable is named
_bnxdkpba_addr ess. The default linker script also provides two variables that
contain the address of the bus matrix registers. These variables are named
_bnmxdkpba_addr ess, _bnxdudba_addr ess, and _bnxdupba_addr ess. The
following calculations are used to calculate these addresses:

LENGTH(${ DATA_MEMORY_LQOCATI ON}) ;
LENGTH(${ DATA_MEMORY_LOCATI ON}) ;

The linker ensures that RAM functions are aligned to a 2K alignment boundary as is
required by the BMXDKPBA register.

_bmxdudba_addr ess
_bmxdupba_addr ess

1. All functions attributed with __ranfunc__ or __l ongranfunc__ are placed in the
. ranf unc section.

DS51686E-page 148 © 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

FIGURE 12-4: BUS MATRIX INITIALIZATION

.data
.got
sdata
Jit8
Jitd
SDSS

.heap

min |'.l.‘i||] sSiZze

» PFM

. _min_stack_size

.ramfunc } _ramfunc_length
Jeset

boot_excpt . BEM Potentially unused

_ramfunc_begin

Program Flash Memory Data RAM Memory

12.3.5.1 INITIALIZE CPO REGISTERS

The CPO registers are initialized in the following order:

Count register
Conpar e register
EBase register
IntCt1 register
Cause register
St at us register

o0k whE

12.3.5.2 HARDWARE ENABLE REGISTER (HWREna — CPO REGISTER 7,
SELECT 0)

This register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction. Privileged software may determine which of the
hardware registers are accessible by the RDHWR instruction. In doing so, a register may
be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to
provide direct access to the Count register, access to the register may be individually
disabled, and the return value can be virtualized by the operating system.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.3 BAD VIRTUAL ADDRESS REGISTER (BadVAddr — CPO REGISTER 8,
SELECT 0)

This register is a read-only register that captures the most recent virtual address that
caused an Address Error exception (AdEL or AJES).

No initialization is performed on this register in the PIC32MX start-up code.

© 2012 Microchip Technology Inc. DS51686E-page 149

MPLAB® XC32 C/C++ Compiler User’s Guide

12.3.5.4 COUNT REGISTER (Count — CP0O REGISTER 9, SELECT 0)

This register acts as a timer, incrementing at a constant rate, whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
The counter increments every other clock if the DC bit in the Cause register is ‘0". The
Count register can be written for functional or diagnostic purposes, including at Reset
or to synchronize processors. By writing the Count py,bit in the Debug register, it is
possible to control whether the Count register continues incrementing while the
processor is in Debug mode.

This register is cleared in the PIC32MX start-up code.
12.3.5.5 COMPARE REGISTER (Conpar e — CP0 REGISTER 11, SELECT 0)

This register acts in conjunction with the Count register to implement a timer and timer
interrupt function. The timer interrupt is an output of the core. The Conpar e register
maintains a stable value and does not change on its own. When the value of the Count
register equals the value of the Conpar e register, the SI _Ti ner | nt pin is asserted.
This pin remains asserted until the Conpar e register is written. The SI _Ti mer | nt pin
can be fed back into the core on one of the interrupt pins to generate an interrupt. For
diagnostic purposes, the Conpar e register is a read/write register. In normal use,
however, the Conpar e register is write-only. Writing a value to the Conpar e register,
as a side effect, clears the timer interrupt.

This register is set to OXFFFFFFFF in the PIC32MX start-up code.

12.3.5.6 STATUS REGISTER (St at us — CP0 REGISTER 12, SELECT 0)

This register is a read/write register that contains the operating mode, Interrupt
Enabling, and the diagnostic states of the processor. Fields of this register combine to
create operating modes for the processor.

The following settings are initialized by the PIC32MX start-up code

(Ob000000000Xx0xXx0?00000000000000000):

» Access to Coprocessor 0 not allowed in User mode (CU0 = 0)

« User mode uses configured endianess (RE = 0)

* No change to exception vectors location (BEV = no change)

* No change to flag bits that indicate reason for entry to the Reset exception vector
(SR, NM = no change)

« Interrupt masks are cleared to disable any pending interrupt requests (I M7. . | M2
=0, IM..IM = 0)

« Interrupt priority level is 0 (I PL = 0)

« Base mode is Kernel mode (UM = 0)

e Error levelis normal (ERL = 0)

« Exception level is normal (EXL = 0)

* Interrupts are disabled (I E = 0)

12.3.5.7 INTERRUPT CONTROL REGISTER (I nt Ct1 — CPO REGISTER 12,
SELECT 1)

This register controls the expanded interrupt capability added in Release 2 of the
Architecture, including vectored interrupts and support for an external interrupt
controller.

This register contains the vector spacing for interrupt handling. The vector spacing
portion of this register (bits 9..5) is initialized with the value of the _vect or _spaci ng
symbol by the PIC32MX start-up code. All other bits are set to ‘1'.

DS51686E-page 150 © 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

12.3.5.8 SHADOW REGISTER CONTROL REGISTER (SRSCt | — CPO REGISTER
12, SELECT 2)

This register controls the operation of the GPR shadow sets in the processor.
No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.9 SHADOW REGISTER MAP REGISTER (SRSMap — CP0O REGISTER 12,
SELECT 3)

This register contains eight 4-bit fields that provide the mapping from a vector number
to the shadow set number to use when servicing such an interrupt. The values from this
register are not used for a non-interrupt exception, or a non-vectored interrupt
(Cause;y = OorintCtlyg = 0).Insuch cases, the shadow set number comes from
SRSCt | ESS. If SRSCt | HSS is zero, the results of a software read or write of this
register are UNPREDICTABLE. The operation of the processor is UNDEFINED if a
value is written to any field in this register that is greater than the value of SRSCt | HSS.
The SRSMap register contains the shadow register set numbers for vector numbers
7..0. The same shadow set number can be established for multiple interrupt vectors,
creating a many-to-one mapping from a vector to a single shadow register set number.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.10 CAUSE REGISTER (Cause — CP0 REGISTER 13, SELECT 0)

This register primarily describes the cause of the most recent exception. In addition,
fields also control software interrupt requests and the vector through which interrupts
are dispatched. With the exception of the DC, | V, and | P1. . | PO fields, all fields in the
Cause register are read-only. Release 2 of the Architecture added optional support for
an External Interrupt Controller (EIC) interrupt mode, in which | P7. . | P2 are
interpreted as the Requested Interrupt Priority Level (RI PL).

The following settings are initialized by the PIC32MX start-up code:

« Enable counting of Count register (DC = no change)
« Use the special exception vector (16#200) (1 V = 1)
« Disable software interrupt requests (I P1. . 1 PO = 0)

12.3.5.11 EXCEPTION PROGRAM COUNTER (EPC— CP0O REGISTER 14, SELECT
0)

This register is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are
significant and must be writable. For synchronous (precise) exceptions, the EPC
contains one of the following:

« The virtual address of the instruction that was the direct cause of the exception

« The virtual address of the immediately preceding branch or jump instruction, when
the exception causing instruction is a branch delay slot and the Br anch Del ay
bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit
in the St at us register is set; however, the register can still be written via the MTCO
instruction.

No initialization is performed on this register in the PIC32MX start-up code.

© 2012 Microchip Technology Inc. DS51686E-page 151

MPLAB® XC32 C/C++ Compiler User’s Guide

12.3.5.12 PROCESSOR IDENTIFICATION REGISTER (PRI d — CPO REGISTER 15,
SELECT 0)

This register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the
processor.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.13 EXCEPTION BASE REGISTER (EBase — CPO REGISTER 15, SELECT 1)

This register is a read/write register containing the base address of the exception
vectors used when St at usgg, equals 0, and a read-only CPU number value that may
be used by software to distinguish different processors in a multi-processor system.
The EBase register provides the ability for software to identify the specific processor
within a multi-processor system, and allows the exception vectors for each processor
to be different, especially in systems composed of heterogeneous processors. Bits
31..12 of the EBase register are concatenated with zeros to form the base of the
exception vectors when St at usggy is 0. The exception vector base address comes
from fixed defaults when St at usggy is 1, or for any EJTAG Debug exception. The reset
state of bits 31..12 of the EBase register initialize the exception base register to
16#80000000, providing backward compatibility with Release 1 implementations. Bits
31..30 of the EBase register are fixed with the value 2#10 to force the exception base
address to be in KSEGO or KSEG1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with
St at usggy equal 1. The operation of the processor is UNDEFINED if the Exception
Base field is written with a different value when St at usggy is 0.

Combining bits 31..30 with the Exception Base field allows the base address of the
exception vectors to be placed at any 4K byte page boundary. If vectored interrupts are
used, a vector offset greater than 4K byte can be generated. In this case, bit 12 of the
Exception Base field must be zero. The operation of the processor is UNDEFINED if
software writes bit 12 of the Exception Base field with a 1 and enables the use of a
vectored interrupt whose offset is greater than 4K bytes from the exception base
address.

This register is initialized with the value of the _ebase_addr ess symbol by the
PIC32MX start-up code. _ebase_addr ess is provided by the linker script with a
default value of the start of KSEG1 program memory. The user can change this value
by providing the command line option - —def sym _ebase_addr ess=Ato the linker.

12.3.5.13.1 Config Register (Conf i g — CPO Register 16, Select 0)

This register specifies various configuration and capabilities information. Most of the
fields in the Conf i g register are initialized by hardware during the Reset exception
process, or are constant.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.13.2 Configl Register (Confi g1 — CPO Register 16, Select 1)

This register is an adjunct to the Conf i g register and encodes additional information
about the capabilities present on the core. All fields in the Conf i g1 register are
read-only.

No initialization is performed on this register in the PIC32MX start-up code.

DS51686E-page 152

© 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

12.3.5.13.3 Config2 Register (Conf i g2 — CPO Register 16, Select 2)

This register is an adjunct to the Conf i g register and is reserved to encode additional
capabilities information. Conf i g2 is allocated for showing the configuration of level 2/3
caches. These fields are reset to 0 because L2/L3 caches are not supported on the
core. All fields in the Conf i g2 register are read-only.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.13.4 Config3 Register (Conf i g3 — CPO Register 16, Select 3)

This register encodes additional capabilities. All fields in the Conf i g3 register are
read-only.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.14 DEBUG REGISTER (Debug — CP0 REGISTER 23, SELECT 0)

This register is used to control the debug exception and provide information about the
cause of the debug exception, and when re-entering at the debug exception vector due
to a normal exception in Debug mode. The read-only information bits are updated
every time the debug exception is taken, or when a normal exception is taken when
already in Debug mode. Only the DMbit and the EJTAG,,, field are valid when read
from non-Debug mode. The values of all other bits and fields are UNPREDICTABLE.
Operation of the processor is UNDEFINED if the Debug register is written from
non-Debug mode.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.15 TRACE CONTROL REGISTER (Tr aceCont r ol — CPO REGISTER 23,
SELECT 1)

This register provides control and status information. The Tr aceCont r ol register is
only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.16 TRACE CONTROL 2 REGISTER (Tr aceCont r ol 2 — CPO REGISTER 23,
SELECT 2)

This register provides additional control and status information. The Tr aceCont r ol 2
register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.17 USER TRACE DATA REGISTER (User Tr aceDat a — CPO REGISTER 23,
SELECT 3)

When this register is written to, a trace record is written indicating a type 1 or type 2
user format. This type is based on the UT bit in the TraceCont r ol register. This
register cannot be written in consecutive cycles. The trace output data is
UNPREDICTABLE if this register is written in consecutive cycles. The

User Tr aceDat a register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.18 TRACEBPC REGISTER (Tr aceBPC— CP0 REGISTER 23, SELECT 4)

This register is used to control start and stop of tracing using an EJTAG hardware
breakpoint. The hardware breakpoint would then be set as a triggered source and
optionally also as a Debug exception breakpoint. The Tr aceBPC register is only
implemented if both the hardware breakpoints and the EJTAG Trace cap are present.

No initialization is performed on this register in the PIC32MX start-up code.

© 2012 Microchip Technology Inc. DS51686E-page 153

MPLAB® XC32 C/C++ Compiler User’s Guide

12.3.5.19 DEBUG2 REGISTER (Debug2 — CP0 REGISTER 23, SELECT 5)

This register holds additional information about complex breakpoint exceptions. The
Debug? register is only implemented if complex hardware breakpoints are present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.20 DEBUG EXCEPTION PROGRAM COUNTER (DEPC — CP0O REGISTER
24, SELECT 0)

This register is a read/write register that contains the address at which processing
resumes after a debug exception or Debug mode exception has been serviced. For
synchronous (precise) debug and Debug mode exceptions, the DEPC contains either:

« The virtual address of the instruction that was the direct cause of the debug
exception, or

« The virtual address of the immediately preceding branch or jump instruction, when
the debug exception causing instruction is in a branch delay slot, and the Debug
Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC
contains the virtual address of the instruction where execution should resume after the
debug handler code is executed.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.21 ERROR EXCEPTION PROGRAM COUNTER (Er r or EPC—- CPO
REGISTER 30, SELECT 0)

This register is a read/write register, similar to the EPCregister, except that it is used on
error exceptions. All bits of the Er r or EPC are significant and must be writable. It is also
used to store the program counter on Reset, Soft Reset, and Non-Maskable Interrupt
(NMI) exceptions. The Er r or EPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address can be:

« The virtual address of the instruction that caused the exception, or

« The virtual address of the immediately preceding branch or jump instruction when
the error causing instruction is a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the
Er r or EPC register.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.22 DEBUG EXCEPTION SAVE REGISTER (DeSave — CPO REGISTER 31,
SELECT 0)

This register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then
used to save the rest of the context to a pre-determined memory area (such as in the
EJTAG Probe). This register allows the safe debugging of exception handlers and other
types of code where the existence of a valid stack for context saving cannot be
assumed.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.6 Call “On Bootstrap” Procedure

A procedure is called after initializing the CPO registers. This procedure allows users to
perform actions during bootstrap (i.e., while St at usBEV is set) and before entering into
the main routine. An empty weak version of this procedure (_on_boot st rap) is
provided with the start-up code. This procedure may be used for performing hardware
initialization and/or for initializing the environment required by an RTOS.

DS51686E-page 154

© 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

12.3.7 Change Location of Exception Vectors

Immediately before executing any application code, the St at usBEV is cleared to
change the location of the exception vectors from the bootstrap location to the normal
location.

12.3.8 Call the C++ initialization code

Invoke all constructors for C++ file-scope static-storage objects. The startup code must
call the constructors last because the low-level initialization must be done before exe-
cuting application code.

12.3.9 Call Main

The last thing that the start-up code performs is a call to the main routine. If the user
returns from main, the start-up code goes into an infinite loop.

12.3.10 Symbols Required by Start-up Code and C/C++ Library

This section details the symbols that are required by the start-up code and C/C++
library. Currently the default linker script defines these symbols. If an application
provides a custom linker script, the user must ensure that all of the following symbols
are provided in order for the start-up code and C library to function:

Symbol Name Description

_bnxdkpba_address The address to place into the BMXDKPBA register if
ranfunc| engt h is greater than 0.

_bmxdudba_addr ess The address to place into the BMXDUDBA register if
ranfunc| engt h is greater than 0.

_bnxdupba_addr ess The address to place into the BMXDUPBA register if
ranfunc| engt h is greater than 0.

_ebase_address The location of EBASE.

_end The end of data allocation.

_ap Points to the “middle” of the small variables region.

By convention this is 0x8000 bytes from the first
location used for small variables.

_heap The starting location of the heap in DRM.

_ranfunc_begin The starting location of the RAM functions. This
should be located at a 2K boundary as it is used to
initialize the BMXDKPBA register.

_ranfunc_length The length of the . r anf unc section.

_stack The starting location of the stack in DRM.
Remember that the stack grows from the bottom of
data memory so this symbol should point to the
bottom of the section allocated for the stack.

_vector_spacing The initialization value for the vector spacing field in
the | nt Ct | register.

© 2012 Microchip Technology Inc. DS51686E-page 155

MPLAB® XC32 C/C++ Compiler User’s Guide

FIGURE 12-5:

12.3.11 Exceptions

In addition, two weak general exception handlers are provided that can be overridden
by the application — one to handle exceptions when St at usBEV is 1

(_boot st rap_excepti on_handl er), and one to handle exceptions when

St at usBEVis 0 (_gener al _excepti on_handl er). Both the weak Reset exception
handler and the weak general exception handler provided with the start-up code enters
an infinite loop. The start-up code arranges for a jump to the reset exception handler to
be located at 0xBFC00380, and a jump to the general exception handler to be located

at EBASE + 0x180.
Both handlers must be attributed with the nomni ps16 [e.g.,

__attribute

((noni ps16))], since the start-up code jumps to these functions.

EXCEPTIONS

ebase address

nnsn—{_

0xBFC00380

E——

.app_excpt
Atext

.boot_excpt

Program Flash Memory

.data

stack

- _min_heap_size

Data RAM Memory

DS51686E-page 156

© 2012 Microchip Technology Inc.

Main, Runtime Start-up and Reset

12.4 THE ON RESET ROUTINE

Some hardware configurations require special initialization, often within the first few
instruction cycles after reset. To achieve this, there is a hook provided via the on reset
routine.

This routine is called after initializing a minimum ‘C’ context. An empty weak version of
this procedure (_on_r eset) is provided with the start-up code. A stub for this routine
can be found in pi ¢32-11i bs/ i bc/ st ubs in the installation directory of your
compiler.

Special consideration needs to be taken by the user if this procedure is written in ‘C’.
Most importantly, statically allocated variables are not initialized (with either the speci-
fied initializer or a zero as required for uninitialized variables).The stack pointer has
been initialized when this routine is called.

12.4.1 Clearing Objects

The runtime start-up code will clear all memory locations occupied by uninitialized
variables so they will contain zero before mai n() is executed.

Variables whose contents should be preserved over a reset should use the

persi st ent attribute, see Section 6.10 “ Standard Type Qualifiers” for more infor-
mation. Such variables are linked in a different area of memory and are not altered by
the runtime start-up code in any way.

© 2012 Microchip Technology Inc. DS51686E-page 157

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 158 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 13. Library Routines

13.1 USING LIBRARY ROUTINES

Library functions or routines (and any associated variables) will be automatically linked
into a program once they have been referenced in your source code. The use of a func-
tion from one library file will not include any other functions from that library. Only used
library functions will be linked into the program output and consume memory.

Your program will require declarations for any functions or symbols used from libraries.
These are contained in the standard C header (. h) files. Header files are not library
files and the two files types should not be confused. Library files contain precompiled
code, typically functions and variable definitions; the header files provide declarations
(as opposed to definitions) for functions, variables and types in the library files, as well
as other preprocessor macros.

#i ncl ude <mat h. h> /1 declare function prototype for sqgrt

i nt mai n(voi d)

{

doubl e i;

Il sqgrt referenced; sqrt will be linked in fromlibrary file
i = sqrt(23.5);
}

© 2012 Microchip Technology Inc. DS51686E-page 159

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 160 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 14. Mixing C/C++ and Assembly L anguage

14.1 INTRODUCTION

Assembly language code can be mixed with C/C++ code using two different tech-
nigues: writing assembly code and placing it into a separate assembler module, or
including it as in-line assembly in a C/C++ module.This section describes how to use
assembly language and C/C++ modules together. It gives examples of using C/C++
variables and functions in assembly code, and examples of using assembly language
variables and functions in C/C++.

The more assembly code a project contains, the more difficult and time consuming its
maintenance will be. As the project is developed, the compiler may work in different
ways as some optimizations look at the entire program. The assembly code is more
likely to fail if the compiler is updated due to differences in the way the updated compiler
may work. These factors do not affect code written in C/C++

Note: If assembly must be added, it is preferable to write this as self-contained
routine in a separate assembly module rather than in-lining it in C code.

* Using Inline Assembly Language
» Predefined Assembly Macros

14.2 USING INLINE ASSEMBLY LANGUAGE

Within a C/C++ function, the asmstatement may be used to insert a line of assembly
language code into the assembly language that the compiler generates. Inline
assembly has two forms: simple and extended.

In the simple form, the assembler instruction is written using the syntax:
asm ("instruction");

where i nst ruct i on is a valid assembly-language construct. If you are writing inline
assembly in ANSI C programs, write __asm__ instead of asm

Note: Only a single string can be passed to the simple form of inline
assembly.

In an extended assembler instruction using asm the operands of the instruction are
specified using C/C++ expressions. The extended syntax is:

asm("tenplate"” [: ["constraint"(output-operand) [, ...]]
[: ["constraint"(input-operand) [, ...]]
["clobber" [, .
1

1)
You must specify an assembler instruction t enpl at e, plus an operand const r ai nt
string for each operand. The t enpl at e specifies the instruction mnemonic, and
optionally placeholders for the operands. The const r ai nt strings specify operand
constraints, for example, that an operand must be in a register (the usual case), or that
an operand must be an immediate value.

© 2012 Microchip Technology Inc. DS51686E-page 161

MPLAB® XC32 C/C++ Compiler User’s Guide

Constraint letters and modifiers supported by the compiler are listed in Table 14-1

through Tabl

e 14-4.

TABLE 14-1: REGISTER CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER
Letter Constraint
c A register suitable for use in an indirect jump
d An address register. This is equivalentto @ode{ r } unless generating MIPS16
code
ka Registers that can be used as the target of multiply-accumulate instructions
| The @ode{| 0} register. Use this register to store values that are no bigger
than a word
X The concatenated @ ode{ hi } and @ ode{| o} registers. Use this register to
store double-word values
TABLE 14-2: INTEGER CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER
Letter Constraint
| A signed 32-bit constant (for arithmetic instructions)
J Integer zero
K An unsigned 32-bit constant (for logic instructions)
L A signed 32-bit constant in which the lower 32 bits are zero. Such constants can
be loaded using @ode{ | ui }
M A constant that cannot be loaded using @ode{ | ui }, @ode{ addi u}or
@ode{ori}
N A constant in the range -65535 to -1 (inclusive)
O A signed 15-bit constant
P A constant in the range 1 to 65535 (inclusive)
TABLE 14-3: GENERAL CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER
Letter Constraint
R An address that can be used in a non-macro load or store.
TABLE 14-4: CONSTRAINT MODIFIERS SUPPORTED BY THE COMPILER
Letter Constraint
= Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data
+ Means that this operand is both read and written by the instruction
& Means that this operand is an ear | ycl obber operand, which is modified
before the instruction is finished using the input operands. Therefore, this
operand may not lie in a register that is used as an input operand or as part of
any memory address
d Second register for operand number n, i.e., %n..
q Fourth register for operand number n, i.e., %gn..
t Third register for operand number n, i.e., % n..
Examples:

« Insert Bit Field
« Multiple Assembler Instructions

DS51686E-page 162

© 2012 Microchip Technology Inc.

Mixing C/C++ and Assembly Language

Insert Bit Field

This example demonstrates how to use the | NS instruction to insert a bit field into a
32-bit wide variable. This function-like macro uses inline assembly to emit the | NS
instruction, which is not commonly generated from C/C++ code.

/* MPS32r2 insert bits */

#define _ins(tgt,val, pos,sz) __extension__({ \
unsigned int _t = (tgt), __v = (val); \
asm ("ins %,%1, %2, ¥%3" /* template */ \

"4d" (__t) /* out put *[A\
"dJd" (_v), "I" (pos), "I" (sz)); [/* input *[A\
t; \

b

Here __ v, pos, and sz are input operands. The __ v operand is constrained to be of
type 'd’' (an address register) or 'J' (integer zero). The pos and sz operands are con-
strained to be of type 'I' (a signed 32-bit constant).

The __t output operand is constrained to be of type 'd' (an address register). The '+'
modifier means that this operand is both read and written by the instruction and so the
operand is both an input and an output.

The following example shows this macro in use.

unsigned int result;
voi d exanple (void)

{
unsigned int insertval = 0x12;
result = OXAAAAAAAAU;
result = _ins(result, insertval, 4, 8);
/* result is now OxAAAAAL2A */
}
For this example, the compiler may generate assembly code similar to the following.
l'i $2,-1431699456 # Oxaaaa0000
ori $2, $2, Oxaaaa # Oxaaaa0000 | Oxaaaa
Ii $3, 18 # 0x12
ins $2,%$3,4,8 # inline assenbly
| ui $3, %hi (result) # assign the result back
j $31 # return

sw $2,% o(result) ($3)

Multiple Assembler Instructions

This example demonstrates how to use the WEBH and ROTR instructions together for a
byte swap. The WEBH instruction is a 32-bit byte swap within each of the two halfwords.
The ROTRinstruction is a rotate right by immediate. This function-like macro uses inline
assembly to create a “byte-swap word” using instructions that are not commonly gen-
erated from C/C++ code.

The following shows the definition of the function-like macro, _bswapw.

/* M PS32r2 byte-swap word */
#define _bswapw(x) __extension__({
unsigned int _ X = (x), __V;
__asm_ ("wsbh 90, %;\n\t"
"rotr 99,16" /* tenplate */
"=d" (_v) [/* output */
"d" (__x)) [/* input*/ ;

— - - - -

})

© 2012 Microchip Technology Inc. DS51686E-page 163

MPLAB® XC32 C/C++ Compiler User’s Guide

Here __ x is the C expression for the input operand. The operand is constrained to be
of type 'd’, which denotes an address register.

The C expression __v is the output operand. This operand is also constrained to be of
type 'd'. The '=" means that this operand is write-only for this instruction: the previous
value is discarded and replaced by output data.

The function-like macro is shown in the following example assigning to r esul t the
content of val ue, swapped.

unsigned int result;
int exanpl e (void)

{
unsi gned int value = 0x12345678u;
result = _bswapw val ue);
/* result == 0x78563412 */
}
The compiler may generate assembly code similar to the following for this example:
i $2, 305397760 # 0x12340000
addi u$2, $2, 22136 # 0x12340000 + 0x5678
wsbh $2, $2; # Frominline asm
rotr $2,16 # Frominline asm
lui $2, %i (result) # assign back to result
j $31 # return

sw3, % o(result) ($2)

14.2.1 Equivalent Assembly Symbols

C/C++ symbols can be accessed directly with no modification in extended assembly
code.

14.3 PREDEFINED ASSEMBLY MACROS

Several predefined macros are available once you include <xc.h>. The exact operation
of these macros is dependent on the instruction set employed. Table 14-5 shows
general purpose predefined macros and their operation.

TABLE 14-5: PREDEFINED MACROS

Macro Description
_nop() Insert a No Operation instruction
_ehb() Insert Execution Hazard Barrier instruction
_sync() Insert Synchronize Shared Memory instruction
_wait() Insert instruction to enter Standby mode
_nfcO(rn, sel) See <xc. h> file
_mcO(rn, sel, v) See <xc. h> file
_mxcO(rn, sel, v) See <xc. h> file

_bccO(rn, sel, clr) |Forthe CPO register specified by r n and sel , clear bits
corresponding to those bits in ¢l r which are non-zero

_bscO(rn, sel, set) |Forthe CPO register specified by r n and sel , clear bits
corresponding to those bits in ¢l r which are non-zero

_bcscO(rn, sel, clr, |Forthe CPO register specified by r n and sel , clear bits
set) corresponding to those bits in ¢l r which are non-zero, and
set bits corresponding to those bits in set which are non-zero
for the CPO register specified by r n and sel , clear bits corre-
sponding to those bits in cl r which are non-zero, and set bits
corresponding to those bits in set which are non-zero

DS51686E-page 164 © 2012 Microchip Technology Inc.

Mixing C/C++ and Assembly Language

TABLE 14-5: PREDEFINED MACROS
Macro Description
_clz(x) Count leading zeroes in X
_ctz(x) Count trailing zeroes in x
_clo(x) Count leading ones in x
_dcl z(x) Simulate 64-bit count leading zeroes in x
_dcl o(x) Simulate 64-bit count leading ones in x
_dctz(x Simulate 64-bit count trailing zeroes in x
_wsbh(x) See <xc. h> file
_bswapw(x) See <xc. h> file
_ins(tgt,val, pos, sz) |See <xc. h> file
_ext(x, pos, sz) See <xc. h> file
_jr_hb() See <xc. h> file
_wrpgpr(regno, val) |See<xc. h>file
_rdpgpr (regno) See <xc. h> file
_get _byt e(addr, Return the least significant byte of addr
errp)
_get _hal f (addr, Return the least significant 16-bit word of addr
errp)
_get _wor d(addr, Return the least significant 32-bit word of addr
errp)
_get _dwor d(addr, Return the least significant 64-bit of addr
errp)
_put _byte(addr, v) Write the least significant byte of addr with v
_put _hal f (addr, v) Write the least significant 16-bit word of addr with v
_put _word(addr, v) Write the least significant 32-bit word of addr with v
_put _dword(addr, v) |Writethe least significant 64-bit word of addr with v

© 2012 Microchip Technology Inc.

DS51686E-page 165

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 166 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 15. Optimizations

15.1 INTRODUCTION

Different MPLAB XC32 C/C++ Compiler editions support different levels of optimiza-
tion. Some editions are free to download and others must be purchased. Visit
http://www.microchip.com/MPLABXCcompilers for more information on C and C++
licenses.

The compiler editions are:

Edition Cost Description

Professional (PRO) Yes |Implemented with the highest optimizations and
performance levels.

Standard (STD) Yes |Implemented with ample optimizations levels and high
performance levels.

Free No |Implemented with the most code optimizations
restrictions.

Evaluation (EVAL) No |PRO edition enabled for 60 days and then reverts to
Free edition.

Setting Optimization Levels

Different optimizations may be set ranging from no optimization to full optimization,
depending on your compiler edition. When debugging code, you may wish to not
optimize your code to ensure expected program flow.

For details on compiler options used to set optimizations, see Section 3.9.7 “Options
for Controlling Optimization”.

© 2012 Microchip Technology Inc. DS51686E-page 167

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 168 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 16. Preprocessing

16.1 INTRODUCTION

All C/C++ source files are preprocessed before compilation. Assembly source files that
use the .S extension (upper case) are also preprocessed. A large humber of options
control the operation of the preprocessor and preprocessed code, see

Section 3.9.8 “Options for Controlling the Preprocessor”.

e C/C++ Language Comments

* Preprocessor Directives

« Pragma Directives

* Predefined Macros

16.2 C/C++ LANGUAGE COMMENTS

A C/C++ comment is ignored by the compiler and can be used to provide information
to someone reading the source code. They should be used freely.

Comments may be added by enclosing the desired characters within / * and */ . The
comment can run over multiple lines, but comments cannot be nested. Comments can
be placed anywhere in C/C++ code, even in the middle of expressions, but cannot be
placed in character constants or string literals.

Since comments cannot be nested, it may be desirable to use the #i f preprocessor
directive to comment out code that already contains comments, for example:
#if 0

result =read(); /* TODG Jim check this function is right */
#endi f

Single-line, C++ style comments may also be specified. Any characters following / / to
the end of the line are taken to be a comment and will be ignored by the compiler, as
shown below:

result =read(); // TODG Jim check this function is right

16.3 PREPROCESSOR DIRECTIVES

MPLAB XC32 C/C++ Compiler accepts all the standard preprocessor directives, which
are listed in Table 16-1.

TABLE 16-1: PREPROCESSOR DIRECTIVES

Directive Meaning Example
Preprocessor null directive, do nothing |
#assert Generate error if condition false #assert SIZE > 10
#def i ne |Define preprocessor macro #define SIZE 5

#defi ne FLAG

#define add(a, b) ((a)+(hb))
#el i f Short for #el se #i f see #ifdef

#el se Conditionally include source lines see #if

© 2012 Microchip Technology Inc. DS51686E-page 169

MPLAB® XC32 C/C++ Compiler User’s Guide

TABLE 16-1: PREPROCESSOR DIRECTIVES (CONTINUED)

Directive Meaning Example
#endi f Terminate conditional source inclusion |see #i f
#error Generate an error message #error Size too big
#if Include source lines if constant #if SIZE < 10
expression true c = process(10)
#el se
skip();
#endi f
#i f def Include source lines if preprocessor #i f def FLAG
symbol defined do_| oop();
#elif SIZE ==
ski p_l oop();
#endi f
#i f ndef |Include source lines if preprocessor #i f ndef FLAG
symbol not defined jump();
#endi f
#i ncl ude |Include text file into source #i ncl ude <stdi o. h>
#i ncl ude "project.h"
#1 i ne Specify line number and filename for |#| i ne 3 fi nal
listing
#nn (Where nn is a number) short for #20
#1 i ne nn
#pragma | Compiler specific options Ref er to Section 16.4 “Pragma
Directives”
#undef Undefines preprocessor symbol #undef FLAG
#war ni ng | Generate a warning message #war ni ng Length not set

Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments. If two expressions are being
concatenated, consider using two macros in case either expression requires
substitution itself, so for example,

#def i ne pastel(a,b) a##b
#def i ne past e(a, b) past el(a, b)

lets you use the past e macro to concatenate two expressions that themselves may
require further expansion. The replacement token is rescanned for more macro identi-
fiers, but remember that once a particular macro identifier has been expanded, it will
not be expanded again if it appears after concatenation.

The type and conversion of numeric values in the preprocessor domain is the same as
in the C domain. Preprocessor values do not have a type, but acquire one as soon as
they are converted by the preprocessor. Expressions may overflow their allocated type
in the same way that C expressions may overflow.

Overflow may be avoided by using a constant suffix. For example, an L after the num-
ber indicates it should be interpreted as a long once converted.

So for example:

#defi ne MAX 100000* 100000

and

#defi ne MAX 100000* 100000L

(note the L suffix) will define the values 0x540be400 and 0x2540be400, respectively.

DS51686E-page 170 © 2012 Microchip Technology Inc.

Preprocessing

16.4 PRAGMA DIRECTIVES

There are certain compile-time directives that can be used to modify the behavior of the
compiler. These are implemented through the use of the ANSI standard #pr agrma
facility. Any pragma which is not understood by the compiler will be ignored.

The format of a pragma is:
#pragma keyword options

where keywor d is one of a set of keywords, some of which are followed by certain
opt i ons. A description of the keywords is given below.

#pragma i nterrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the
function will perform more extensive context preservation. Note that the i nt er r upt
attribute (rather than this pragma) is the recommended mechanism for marking a
function as an interrupt handler. The interrupt pragma is provided for compatibility with
other compilers. See Chapter 11. “Interrupts” and Section 11.5 “Exception
Handlers”.

#pragma vect or

Generate a branch instruction at the indicated exception vector which targets the
function. Note that the vector attribute (rather than this pragma) is the recommended
mechanism for generating an exception/interrupt vector. See Chapter 11. “Interrupts”
and Section 11.5 “Exception Handlers”.

#pragma config

The #pragma config directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. See Section 11.3.2 “Interrupt
Pragma”.

© 2012 Microchip Technology Inc. DS51686E-page 171

MPLAB® XC32 C/C++ Compiler User’s Guide

16.5 PREDEFINED MACROS

These predefined macros are available for use with the compiler:

e 32-Bit C/C++ Compiler Macros

« SDE Compatibility Macros

16.5.1 32-Bit C/C++ Compiler Macros

The compiler defines a number of macros, most with the prefix “_MCHP_,” which
characterize the various target specific options, the target processor and other aspects

of the host environment.C/C++

_MCHP_SZI NT

32 or 64, depending on command line options
to set the size of an integer (- m nt 32
- m nt 64)

_MCHP_SZLONG 32 or 64, depending on command line options
to set the size of an integer (- mM ong32
-m ong64)
_MCHP_SZPTR 32 always since all pointers are 32 bits
__nchp_no_f I oat Defined if - o- f | oat specified
__NO FLOAT Defined if - mo- f | oat specified
__PIC _ The translation unit is being compiled for
__pic__ position independent code
__PIC32MX Always defined
__PIrc3zmX__

__PI C32_FEATURE_SET _

The compiler predefines a macro based on
the features available for the selected device.
These macros are intended to be used when
writing code to take advantage of features
available on newer devices while maintaining
compatibility with older devices.

Examples: PIC32MX795F512L would use

__PIC32_FEATURE_SET __ == 795,
and PIC32MX340F128H would use
__PIC32_FEATURE_SET__ == 340

Pl C32MX

Defined if - ansi is not specified

__LANGUAGE_ASSEMBLY
__LANGUAGE_ASSEMBLY__
_LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files)

LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files) and - ansi is not
specified

__LANGUAGE_C Defined if compiling a C file
__LANGUAGE_C _

_LANGUACE_C

LANGUAGE_C Defined if compiling a C file and - ansi is not

specified

__LANGUAGE_C PLUS_PLUS

Defined if compiling a C++ file

__cplusplus

_LANGUAGE_C PLUS PLUS

__EXCEPTI ONS Defined if X++ exceptions are enabled
__GXX_RTTI Defined if runtime type information is enabled

DS51686E-page 172

© 2012 Microchip Technology Inc.

Preprocessing

__processor__

Where “processor” is the capitalized argument
to the - npr ocessor option. e.g.,

- nprocessor =32nx12f 3456 will define
_ 32MX12F3456_

__XC

Always defined to indicate this is a Microchip
XC compiler

__XC32

Always defined to indicate this the XC32
compiler

__VERSION__

The __VERSI ON__ macro expands to a
string constant describing the compiler in use.
Do not rely on its contents having any
particular form, but it should contain at least
the release number. Use the
___XC32_VERSI ON macro for a numeric
version number

__XC32_VERSI ON or
__C32_VERSI ON__

The C compiler defines the constant
__XC32_VERSI ON, giving a numeric value
to the version identifier. This macro can be
used to construct applications that take
advantage of new compiler features while still
remaining backward compatible with older
versions. The value is based upon the major
and minor version numbers of the current
release. For example, release version 1.03
will have a __ XC32_VERSI ON definition of
1030. This macro can be used, in conjunction
with standard preprocessor comparison
statements, to conditionally include/exclude
various code constructs

© 2012 Microchip Technology Inc.

DS51686E-page 173

MPLAB® XC32 C/C++ Compiler User’s Guide

16.5.2 SDE Compatibility Macros

The MIPS® SDE (Software Development Environment) defines a number of macros,
most with the prefix “_MIPS_,” which characterize various target specific options, some
determined by command line options (e.g., - m nt 64). Where applicable, these
macros will be defined by the compiler in order to ease porting applications and

middleware from the SDE to the compiler.

M PS_SZI NT

32 or 64, depending on command line options
to set the size of an integer (- m nt 32
-m nt 64)

_M PS_ARCH_PI C32MX
_M PS_TUNE_PI C32MX
_R3000

__R3000

__R3000__
__mps_soft_fl oat
__M PSEL

__ MPSEL__

_M PSEL

_M PS_SZLONG 32 or 64, depending on command line options
to set the size of an integer (- M ong32
- ong64)
_MPS_SZPTR 32 always since all pointers are 32 bits
__mps_no_float Defined if - o- f | oat specified
_mps__ Always defined
_mps

R3000
M PSEL

Defined if - ansi is not specified

_mps_fpr

Defined as 32

__mipsl6

Defined if - m ps16 specified

__Mm ps

Defined as 32

__mps_isa_rev

Defined as 2

MPS| SA

Defined as_M PS_| SA_ M PS32

DS51686E-page 174

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Chapter 17. Linking Programs

17.1 INTRODUCTION

The compiler will automatically invoke the linker unless the compiler has been
requested to stop after producing an intermediate file.

Linker scripts are used to specify the available memory regions and where sections
should be positioned in those regions.

The linker creates a map file which details the memory assigned to sections. The map
file is the best place to look for memory information.

* Replacing Library Symbols
¢ Linker-Defined Symbols
* Default Linker Script

17.2 REPLACING LIBRARY SYMBOLS

Unlike with the Microchip MPLAB XC8 compiler, not all library functions can be
replaced with user-defined routines using MPLAB XC32 C/C++ Compiler. Only weak
library functions (see Section 6.12 “Variable Attributes”) can be replaced in this way.
For those that are weak, any function you write in your code will replace an identically
named function in the library files.

17.3 LINKER-DEFINED SYMBOLS

The 32-bit linker defines several symbols that may be used in your C code develop-
ment. Please see the “MPLAB® Assembler, Linker and Utilities for PIC32 MCUs User’s
Guide”(DS51833) for more information.

The linker defines the symbols _r anf unc_begi n and _bmxdkpba_addr ess, which
represent the starting address in RAM where ram functions will be accessed, and the
corresponding address in the program memory from which the functions will be copied.
They are used by the default runtime start-up code to initialize the bus matrix if ram
functions exist in the project, see Section 10.3 “Allocation of Function Code”.

The linker also defines the symbol _st ack, which is used by the runtime start-up code
to initialize the stack pointer. This symbol represents the starting address for the
software stack.

All the above symbols are rarely required for more programs, but may assist you if you
are writing your own runtime start-up code.

© 2012 Microchip Technology Inc. DS51686E-page 175

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4 DEFAULT LINKER SCRIPT

The default linker script is located in the
<install-directory>/pic32nmx/lib/ldscripts/elf32pi c32nk. x file.
When compiling with the xc32-gcc or xc32-g++ compilation driver, the linker uses this
file as the default linker script. The driver passes the path to the default linker script
using the - T linker option.

The default linker script contains the following categories of information:

e Output Format and Entry Points
« Default Values for Minimum Stack and Heap Sizes
* Processor Definitions Include File

- Inclusion of Processor-Specific Object File(s)

- OPTIONAL Inclusion of Processor-Specific Peripheral Libraries
Base Exception Vector Address and Vector Spacing Symbols
Memory Address Equates
Memory Regions
Configuration Words Input/Output Section Map
 Input/Output Section Map

Note: All addresses specified in the linker scripts should be specified as virtual
addresses, not physical addresses.

17.4.1 Output Format and Entry Points

The first several lines of the default linker script define the output format and the entry
point for the application. Copies of the default linker scripts are provided in
programfiles/.../<install-dir>/pic32m/Ilib/ldscripts.

OUTPUT_FORMAT("el f32-tradlittlem ps")
OUTPUT_ARCH(pi ¢32nx)
ENTRY(_reset)

The QUTPUT_FORMAT line selects the object file format for the output file. The output
object file format generated by the 32-bit language tools is a traditional, little-endian,
MIPS, ELF32 format.

The OQUTPUT_ARCH line selects the specific machine architecture for the output file.
The output files generated by the 32-bit language tools contain information that
identifies the file was generated for the PIC32MX architecture.

The ENTRY line selects the entry point of the application. This is the symbol identifying
the location of the first instruction to execute. The 32-bit language tools begins
execution at the instruction identified by the _r eset label.

DS51686E-page 176 © 2012 Microchip Technology Inc.

Linking Programs

17.4.2 Default Values for Minimum Stack and Heap Sizes

The next section of the default linker script provides default values for the minimum
stack and heap sizes.

Provide for a mninum stack and heap size

- _min_stack_size - represents the nininum space that nust
be made avail able for the stack. Can
be overridden fromthe comrand |ine
using the linker's --defsym option.

- _mn_heap_size - represents the m ni num space that nust
be made avail able for the heap. Can
be overridden fromthe comrand |ine

* using the linker's --defsym option.

EXTERN (_mi n_stack_size _mi n_heap_si ze)
PROVI DE(_m n_stack_si ze = 0x400) ;
PROVI DE(_m n_heap_si ze = 0) ;

The EXTERN line ensures that the rest of the linker script has access to the default
valuesof _m n_stack_si zeand_m n_heap_si ze assuming that the user does not
override these values using the linker’s - - def symcommand line option.

The two PROVI DE lines ensure that a default value is provided for both
_min_stack_sizeand_m n_heap_si ze. The default value for the minimum stack
size is 1024 bytes (0x400). The default value for the minimum heap size is 0 bytes.

17.4.3 Processor Definitions Include File

The next line in the default linker script pulls in information specific to the processor.

I NCLUDE procdefs.|d

The file pr ocdef s. | d is included in the linker script at this point. The file is searched
for in the current directory and in any directory specified with the - L command line
option. The compiler shell ensures that the correct directory is passed to the linker with
the - L command line option based on the processor selected with the - npr ocessor
command line option.

The processor definitions linker script contains the following pieces of information:

« Inclusion of Processor-Specific Object File(s)

« Base Exception Vector Address and Vector Spacing Symbols
* Memory Address Equates

* Memory Regions

« Configuration Words Input/Output Section Map

17.4.3.1 INCLUSION OF PROCESSOR-SPECIFIC OBJECT FILE(S)

This section of the processor definitions linker script ensures that the
processor-specific object file(s) get included in the link.

/****'k'k*'k***'k*'k*'k*'k**

* Processor-specific object file. Contains SFR definitions.

**/
I NPUT(“ processor.o0")

The | NPUT line specifies that pr ocessor . o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the - L command line option).

© 2012 Microchip Technology Inc. DS51686E-page 177

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4.3.2 OPTIONAL INCLUSION OF PROCESSOR-SPECIFIC PERIPHERAL
LIBRARIES

This section of the processor definitions linker script ensures that the
processor-specific peripheral libraries get included, but only if the files exist.

/*******'k*'k*'k*'k***'k***

* Processor-specific peripheral libraries are optional

***l

OPTI ONAL("1 i bnthp_peri pheral . a")
OPTI ONAL("1i bnthp_peri pheral _32MX795F512L. a")

The OPTIONAL lines specify that | i bnrchp_peri pheral . a and

I'i bnechp_peri pheral _32MX795F512L. a should be included in the link as if the
files were named on the command line. The linker attempts to find these files in the cur-
rent directory. If they are not found in the current directory, the linker searches through
the library search paths. If they are not found in the library search paths, the link pro-
cess continues without error. The linker will error only when a symbol from the periph-
eral library is required but not found elsewhere.

17.4.3.3 BASE EXCEPTION VECTOR ADDRESS AND VECTOR SPACING
SYMBOLS

This section of the processor definitions linker script defines values for the base
exception vector address and vector spacing.

/**

* For interrupt vector handling

*****'k*'k*'k*'k***'k*'k**/

_vector_spaci ng= 0x00000001;
_ebase_address= 0x9FC01000;

The first line defines a value of 1 for _vect or _spaci ng. The available memory for
exceptions only supports a vector spacing of 1. The second line defines the location of
the base exception vector address (EBASE).

On some devices, the base exception vector address is located in the KSEGO boot
segment. On other devices, the size of the KSEGO boot segment is not sufficient for
the vector table, so the base exception vector address is located in the KSEGO program
segment. In general, devices with at least 12 KB in the KSEGO boot segment use the
boot flash for the exception vector table. Devices with less than 12 KB in the KSEGO
boot segment use the KSEGO program segment for the exception vector table. Be sure
to check the pr ocdef s. | d include file for the default address for your target device.

DS51686E-page 178 © 2012 Microchip Technology Inc.

Linking Programs

17.4.3.4 MEMORY ADDRESS EQUATES

This section of the processor definitions linker script provides information about certain
memory addresses required by the default linker script.

/****'k'k*'k***'k*'k*'k*'k**

* Menory Address Equates

****'k'k*'k*'k*'k***'k*'k**/

_RESET_ADDR = 0xBFC00000;
_BEV_EXCPT_ADDR = OxBFC00380;
_DBG_EXCPT_ADDR = OxBFC00480;
_DBG_CODE_ADDR = OxBFC02000;

_GEN_EXCPT_ADDR
The _RESET_ADDR defines the processor’s Reset address. This is the virtual begin
address of the IFM boot section in Kernel mode.

The _BEV_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and St at usggy = 1.

The _DBG_EXCPT_ADDR defines the address that the processor jumps to when a
debug exception is encountered.

The _DBG_CODE_ADDR defines the address that is the start address of the debug
executive. Note that this address may vary depending on the size of the KSEQ) boot
segment on your target device.

The _GEN_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and St at usggy = 0.

_ebase_address + 0x180;

17.4.3.5 MEMORY REGIONS

This section of the processor definitions linker script provides information about the
memory regions that are available on the device.
/**

* Menory Regions

*

* Menory regions without attributes cannot be used for

* orphaned sections. Only sections specifically assigned to

* these regions can be allocated into these regions.

**/

MEMORY

{
kseg0_program nem (rx) ORI G N = 0x9D000000, LENGTH = 0x8000
kseg0_boot _nem ORI G N = 0x9FC00490, LENGTH = 0x970
exception_nmem ORI G N = Ox9FC01000, LENGTH = 0x1000
ksegl boot nem ORI G N = 0xBFC00000, LENGTH = 0x490
debug_exec_nmem ORI G N = OxBFC02000, LENGTH = OxFFO
config3 ORI G N = 0xBFCO2FFO, LENGTH = 0x4
config2 ORI G N = 0xBFCO2FF4, LENGTH = 0x4
configl ORI G N = OxBFCO2FF8, LENGIH = 0x4
configo ORI G N = 0xBFCO2FFC, LENGTH = 0x4
ksegl_data_nmem (w x) ORI G N = 0xA0000000, LENGTH = 0x2000
sfrs ORI G N = 0xBF800000, LENGTH = 0x10000

}

Eleven memory regions are defined with an associated start address and length:

1. Program memory region (ksegO_pr ogr am _nem for application code

o~ v

Boot memory regions (kseg0_boot _nmemand ksegl_boot _nenj
Exception memory region (excepti on_nenj

Debug executive memory region (debug_exec_nem
Configuration memory regions (conf i g3, confi g2, confi gl, and confi g0)

© 2012 Microchip Technology Inc.

DS51686E-page 179

MPLAB® XC32 C/C++ Compiler User’s Guide

6. Data memory region (ksegl_dat a_nemn)
7. SFR memory region (sfrs)

The default linker script uses these names to locate sections into the correct regions.
Sections which are non-standard become orphaned sections. The attributes of the
memory regions are used to locate these orphaned sections. The attributes (r x)
specify that read-only sections or executable sections can be located into the program
memory regions. Similarly, the attributes (WM x) specify that sections that are not
read-only and not executable can be located in the data memory region. Since no
attributes are specified for the boot memory region, the configuration memory regions,
or the SFR memory region, only specified sections may be located in these regions
(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

17.4.3.6 CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

The last section in the processor definitions linker script is the input/output section map
for Configuration Words. This section map is additive to the Input/Output Section Map
found in the default linker script (see Section 17.4.4 “Input/Output Section Map”). It
defines how input sections for Configuration Words are mapped to output sections for
Configuration Words. Note that input sections are portions of an application that are
defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section. All output sections
are specified within a SECTI ONS command in the linker script.

For each Configuration Word that exists on the specific processor, a distinct output
section named . conf i g_addr ess exists where address is the location of the
Configuration Word in memory. Each of these sections contains the data created by the
#pragma confi g directive (see Section 16.4 “Pragma Directives”) for that
Configuration Word. Each section is assigned to their respective memory region

(confi gn).
SECTI ONS
{

.confi g_BFCO2FFO : ({
*(. confi g_BFCO2FFO)

} > config3

.confi g_BFCO2FF4 : ({
*(.confi g _BFCO2FF4)

} > config2

.confi g_BFCO2FF8 : ({
*(. confi g_BFCO2FF8)

} > configl

.confi g_BFQO2FFC : ({
*(.confi g _BFCO2FFC)

} > configO

DS51686E-page 180 © 2012 Microchip Technology Inc.

Linking Programs

17.4.4 Input/Output Section Map

The last section in the default linker script is the input/output section map. The section
map is the heart of the linker script. It defines how input sections are mapped to output
sections. Note that input sections are portions of an application that are defined in
source code, while output sections are created by the linker. Generally, several input
sections may be combined into a single output section. All output sections are specified
within a SECTI ONS command in the linker script.

The following output sections may be created by the linker:

e .reset Section

» .bev_excpt Section
« .dbg_excpt Section
« .dbg_code Section
e .app_excpt Section
e .vector_0 .. .vector_63 Sections
« .start-up Section

* .text Section

« .rodata Sectionn

» .sdata2 Section

e .shss2 Section

» .dbg_data Section
 .data Section
 .got Section

« .sdata Section

« lit8 Section

« lit4 Section

« .sbss Section
 .bss Section
 .heap Section

« .stack Section

« .ramfunc Section

« Stack Location

« Debug Sections

17.441 .RESET SECTION

This section contains the code that is executed when the processor performs a Reset.
This section is located at the Reset address (_RESET_ADDR), as specified in the
processor definitions linker script and is assigned to the boot memory region

(ksegl _boot nem. The.reset output section also contains the C start-up code
from the . reset . st ar t up input section.

.reset _RESET_ADDR :
{
KEEP(*(.reset))
KEEP(*(.reset.startup))
} > ksegl_boot _mem

© 2012 Microchip Technology Inc. DS51686E-page 181

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4.4.2 .BEV_EXCPT SECTION

This section contains the handler for exceptions that occur when St at usggy = 1. This
section is located at the BEV exception address (_ BEV_EXCPT_ADDR) as specified in
the processor definitions linker script and is assigned to the boot memory region
(ksegl boot nem.
. bev_excpt _BEV_EXCPT_ADDR :
{

(*(. bev_handl er))
} > ksegl_boot_nmem

17.4.4.3 .DBG_EXCPT SECTION

This section reserves space for the debug exception vector. This section is only
allocated if the symbol _ DEBUGGER has been defined. (This symbol is defined if the

- ndebugger command line option is specified to the shell.) This section is located at
the debug exception address (_DBG_EXCPT_ADDR) as specified in the processor
definitions linker script and is assigned to the boot memory region

(ksegl_boot _mem). The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.

. dbg_excpt _DBG_EXCPT_ADDR (NOLOAD)

{
+= (DEFI NED (_DEBUGGER) ? 0x8 : 0x0);
} > ksegl_boot_nem

17.4.4.4 .DBG_CODE SECTION

This section reserves space for the debug exception handler. This section is only
allocated if the symbol _ DEBUGGER has been defined. (This symbol is defined if the

- ndebugger command line option is specified to the shell.) This section is located at
the debug code address (_DBG_CODE_ADDR) as specified in the processor definitions
linker script and is assigned to the debug executive memory region
(debug_exec_mem. The section is marked as NOLOAD because it is only intended to
ensure that application code cannot be placed at locations reserved for the debug
executive.

.dbg_code _DBG_CODE_ADDR (NOLOAD)

{
+= (DEFI NED (_DEBUGGER) ? OXFFO : 0x0);

} > debug_exec_nmem

17.445 .APP_EXCPT SECTION

This section contains the handler for exceptions that occur when St at usggy = 0. This
section is located at the general exception address (_ GEN_EXCPT_ADDR) as specified
in the processor definitions linker script and is assigned to the exception memory
region (excepti on_nen).

.app_excpt _GEN_EXCPT_ADDR :

{
KEEP(* (. gen_handl er))
} > exception_nmem

DS51686E-page 182 © 2012 Microchip Technology Inc.

Linking Programs

17446 .VECTOR_O.. .VECTOR_63 SECTIONS

These sections contain the handler for each of the interrupt vectors. These sections are
located at the correct vectored addresses using the formula:

_ebase_address + 0x200 + (_vector_spacing << 5) * n
where n is the respective vector number.

Each of the sections is followed by an assert that ensures the code located at the vector
does not exceed the vector spacing specified.

.vector_n _ebase_address + 0x200 + (_vector_spacing << 5) * n :

{
KEEP(* (. vector_n))

} > exception_nmem
ASSERT (SI ZEOF(.vector_n) < (_vector_spacing << 5), "function at
exception vector n too |arge")

17.4.4.7 .START-UP SECTION

In XC32, the C and C++ startup code is located in the . r eset section. We maintain
the . st ar t up output section in the default linker script for backwards compatibility
purposes only.

.startup ORI G N(kseg0_boot _nmem

{
*(.startup)
} > ksegO_boot _nmem

17.4.48 .TEXT SECTION

The standard executable code sections are no longer mapped to the . t ext output
section. However, a few special executable sections are still mapped here as shown
below. This section is assigned to the program memory region

(kseg0_pr ogram nem and has a fill value of NOP (0) .

The built-in linker script no longer maps standard . t ext executable code input
sections. By not mapping these sections in the linker script, we allow these sections to
be allocated using the best-fit allocator rather than the sequential allocator. Sections
that are unmapped in the linker script, can flow around absolute sections specified in
code whereas sections that are linker-script mapped are grouped together and
allocated sequentially, potentially causing conflicts with absolute sections (using the
address function attribute).

.text ORI A N(ksegO_program nmem
{
(.stub .gnu.linkonce.t.)
KEEP (*(.text.*personality*))
* (. gnu. war ni ng)
(.m psl6.fn.)
(.mpsl6.call.)
} > ksegO_program nmem =0

© 2012 Microchip Technology Inc. DS51686E-page 183

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4.49 C++ INITIALIZATION SECTIONS

Thesections.init,.preinit_array,.init_array,.fini_array,.ctors,and
. dt or s are all used for the construction and destruction of file-scope static-storage
C++ objects.

/* d obal - nanespace object initialization */
.init
{
KEEP (*crti.o(.init))
KEEP (*crtbegin.o(.init))
KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.0 *crtn.o).init))
KEEP (*crtend.o(.init))
KEEP (*crtn.o(.init))
= ALIGN(4) ;
} >ksegO_program nmem
Lfini
{
KEEP (*(.fini))
= ALIGN(4) ;
} >ksegO_program mem
.preinit_array
{
PROVIDE HI DDEN (__preinit_array_start = .);
KEEP (*(.preinit_array))
PROVI DE_HI DDEN (__preinit_array_end = .);
= ALIGN(4) ;
} >ksegO_program nmem
.init_array
{
PROVIDE_HI DDEN (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
PROVIDE H DDEN (__init_array_end = .)
= ALI GN(4) ;
} >ksegO_program nmem
.fini _array
{
PROVI DE_HI DDEN (__fini _array_start = .);
KEEP (*(SORT(.fini_array.*)))
KEEP (*(.fini_array))
PROVIDE_H DDEN (_ fini_array_end = .)
= ALIGN(4) ;
} >ksegO_program mem
.ctors
{
/* XC32 uses crtbegin.o to find the start of
t he constructors, so we nmake sure it is
first. Because this is a wildcard, it
doesn't matter if the user does not
actually l'ink against crtbegin.o; the
linker won't look for a file to match a
wi ldcard. The wildcard also neans that it
doesn't matter which directory crtbegin.o
isin. */
KEEP (*crtbegin.o(.ctors))
KEEP (*crtbegin?.o(.ctors))
/* We don't want to include the .ctor section from
the crtend.o file until after the sorted ctors
The .ctor section fromthe crtend file contains the
end of ctors marker and it nust be | ast */

DS51686E-page 184 © 2012 Microchip Technology Inc.

Linking Programs

KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.0) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
= ALIGN(4) ;
} >ksegO_program mem
.dtors
{
KEEP (*crtbegin.o(.dtors))
KEEP (*crtbegi n?.0(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.0) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
= ALIGN(4) ;
} >ksegO_program nem

Note: The order of the input sections within each output section is significant.

17.4.4.10 .RODATA SECTION

Standard read-only sections are not mapped in the linker script. A few special read-only
sections are still mapped in the linker script, but most sections are unmapped, allowing
them to be handled by the best fit allocator. This section is assigned to the program
memory region (ksegO_pr ogr am_nen).

.rodata

{

(.gnu.linkonce.r.)
*(.rodatal)
} > ksegO_program nmem

17.4.4.11 .SDATA2 SECTION

This section collects the small initialized constant global and static data from all of the
application’s input files. Because of the constant nature of the data, this section is also
a read-only section. This section is assigned to the program memory region
(ksegO_program nmem.

/*

* Small initialized constant global and static data can be
* placed in the .sdata2 section. This is different from

* _.sdata, which contains small initialized non-constant

* gl obal and static data.

*/

. sdat a2

{

(.sdata2 .sdata2. .gnu.linkonce.s2. *)
} > ksegO_program nem

© 2012 Microchip Technology Inc. DS51686E-page 185

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4.4.12 .SBSS2 SECTION

This section collects the small uninitialized constant global and static data from all of
the application’s input files. Because of the constant nature of the data, this section is
also a read-only section. This section is assigned to the program memory region
(ksegO0_pr ogram nem.
/*

* Uninitialized constant gl obal and static data (i.e.,

* variables which will always be zero). Again, this is

* different from.sbss, which contains small non-initialized,

* non-constant global and static data.

*/
. Sbss2

{

(.sbss2 .sbss2. .gnu.linkonce.sb2.*)
} > ksegO_program nem

17.4.4.13 .DBG_DATA SECTION

This section reserves space for the data required by the debug exception handler. This
section is only allocated if the symbol _ DEBUGGER has been defined. (This symbol is
defined if the - mdebugger command line option is specified to the shell.) This section
is assigned to the data memory region (ksegl_dat a_mem). The section is marked as
NOLOAD as it is only intended to ensure that application data cannot be placed at
locations reserved for the debug executive.

.dbg_data (NOLQAD)

{
+= (DEFI NED (_DEBUGGER) ? 0x200 : 0x0);
} > ksegl _data_nem

17.4.4.14 .DATA SECTION

The linker generates a data-initialization template that the C start-up code uses to
initialize variables.

17.4.4.15 .GOT SECTION

This section collects the global offset table from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nem with a load address
located in the program memory region (kseg0_pr ogr am _nem). A symbol is defined
to represent the location of the Global Pointer (_gp).

_gp = ALIGN(16) + Ox7FFO ;

. got :

{
*(.got.plt) *(.got)
} > ksegl_data_nmem AT> ksegO_program nmem

DS51686E-page 186 © 2012 Microchip Technology Inc.

Linking Programs

17.4.4.16 .SDATA SECTION

This section collects the small initialized data from all of the application’s input files.
This section is assigned to the data memory region (ksegl_dat a_nen) with a load
address located in the program memory region (ksegO0_pr ogr am _nemnj. Symbols are
defined to represent the virtual begin (_sdat a_begi n) and end (_sdat a_end)
addresses of this section.

/*
* W want the small data sections together, so
* single-instruction offsets can access themall, and

* initialized data all before uninitialized, so
* we can shorten the on-di sk segnent size.

*/

.sdata

{
_sdata_begin = . ;
(.sdata .sdata. .gnu.linkonce.s.*)
_sdata_end = . ;

} > ksegl_data_nem AT> ksegO_program nem

17.4.4.17 .LIT8 SECTION

This section collects the 8-byte constants which the assembler decides to store in
memory rather than in the instruction stream from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nen) with aload address
located in the program memory region (kseg0_pr ogr am nem.

.1it8 :

{
*(.1it8)
} > ksegl_data_nmem AT> ksegO_program nmem

17.4.4.18 .LIT4 SECTION

This section collects the 4-byte constants which the assembler decides to store in
memory rather than in the instruction stream from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nem with a load address
located in the program memory region (kseg0_pr ogr am _nem). A symbol is defined
to represent the virtual end address of the initialized data (_dat a_end).

lita
{
*(Llitd)
} > ksegl_data_nem AT> ksegO_program nmem
_data_end = . ;

© 2012 Microchip Technology Inc. DS51686E-page 187

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4.4.19 .SBSS SECTION

This section collects the small uninitialized data from all of the application’s input files.
This section is assigned to the data memory region (ksegl_dat a_nem). A symbol is
defined to represent the virtual begin address of uninitialized data (_bss_begi n).
Symbols are also defined to represent the virtual begin (_sbss_begi n) and end
(_sbss_end) addresses of this section.

_bss_begin = . ;
. sbss
{
_shss_begin = . ;

*(. dynsbss)
(.sbss .shss. .gnu.linkonce.sb.*)
*(. sconmon)
_sbss_end = . ;
} > ksegl_data_nem

17.4.4.20 .BSS SECTION

This section collects the uninitialized data from all of the application’s input files. This
section is assigned to the data memory region (ksegl_dat a_nem). A symbol is
defined to represent the virtual end address of uninitialized data (_bss_end). A symbol
is also to represent the virtual end address of data memory (_end).

. bss

{
*(. dynbss)
(.bss .bss. .gnu.linkonce.b.*)

* (COMVON)

* Align here to ensure that the .bss section occupies
space up to _end. Align after .bss to ensure correct
alignnent even if the .bss section disappears because
there are no input sections.
/
= ALIGN(32 / 8) ;
} > ksegl _data_nem

= ALIGN(32 / 8) ;
_end = . ;
bss end = . ;

17.4.4.21 .HEAP SECTION

The linker now dynamically reserves an area of memory for the heap. The .heap
section is no longer mapped in the linker script. The linker finds the largest unused gap
of memory after all other sections are allocated and uses that gap for both the heap and
the stack. The minimum amount of space reserved for the heap is determined by the
symbol _m n_heap_si ze.

17.4.4.22 .STACK SECTION

The linker now dynamically reserves an area of memory for the stack. The . st ack
section is no longer mapped in the linker script. The linker finds the largest unused gap
of memory after all other sections are allocated and uses that gap for both the heap and
the stack. The minimum amount of space reserved for the stack is determined by the
symbol _mi n_stack_si ze.

DS51686E-page 188 © 2012 Microchip Technology Inc.

Linking Programs

17.4.4.23 .RAMFUNC SECTION

The linker now dynamically collects the ‘ramfunc’ attributed and “. r anf unc” named
sections and allocates them sequentially in an appropriate range of memory. The first
ramfunc attributed function is placed at the highest appropriately aligned address.

The presence of a ramfunc section causes the linker to emit the symbols necessary for
the crt0.S start-up code to initialize the PIC32 bus matrix appropriately.
/*

* RAM functions go at the end of our stack and heap all ocation.

* Alignment of 2K required by the boundary register (BMXDKPBA).

RAM functions are now al | ocated by the |inker. The |inker generates
_ranfunc_begi n and _bnxdkpba_address synmbol s depending on the
I ocation of RAM functi ons.

/

* 00X X X X

_brmxdudba_address = LENGTH(ksegl data_nem ;
_bmxdupba_address = LENGTH(ksegl_data_nem ;

17.4.4.24 STACK LOCATION

A symbol is defined to represent the location of the Stack Pointer (_st ack). As
described previously, the heap and the stack are now allocated to the largest available
gap of memory after other sections have been allocated.

For PIC32 devices with more than 64K of data memory, GP relative addressing mode
should not be used. To avoid conflict of using GP-relative addressing to the linker gen-

erated symbols, allocate the symbols in section “_| i nker gener at ed”: ext ern
unsigned int _ _attribute__((section(”“_linkergenerated”)))
_splim

© 2012 Microchip Technology Inc. DS51686E-page 189

MPLAB® XC32 C/C++ Compiler User’s Guide

17.4.4.25 DEBUG SECTIONS

The debug sections contain DWARF2 debugging information. They are not loaded into
program Flash.

[* Stabs debuggi ng sections. */
.stab 0 : *(.stab) }
.stabstr 0 : *(.stabstr) }
. stab. excl 0 : *(.stab.excl) }
.stab.exclstr 0 : *(.stab.exclstr) }
.stab. i ndex 0 : *(.stab.index) }
.stab.indexstr O : *(.stab.indexstr) }
. coment 0: { *(.coment) }
/* DWARF debug sections.
Synbol s in the DWARF debuggi ng sections are relative to the
begi nni ng
of the section so we begin themat 0. */
/[* DWARF 1 */
. debug 0: { *(.debug) }
.line 0: { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnanes) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
. debug_pubnanes 0 : { *(.debug_pubnanes) }
/* DWARF 2 */

Pt Rt N W W W

.debug_info 0: { *(.debug_info .gnu.linkonce.w.*) }
. debug_abbr ev 0 : { *(.debug_abbrev) }

. debug_l i ne 0: { *(.debug_line) }

. debug_frame 0: { *(.debug_frame) }

. debug_str 0: { *(.debug_str) }

. debug_I oc 0: { *(.debug_loc) }

.debug_macinfo 0 : { *(.debug_nmcinfo) }

/* SA/MPS DMRF 2 extensions */

. debug_weaknanmes 0 : { *(.debug_weaknanes) }

.debug_funcnanmes 0 : { *(.debug_funcnanes) }

.debug_typenanmes 0 : { *(.debug_typenanes) }

.debug_varnames 0 : { *(.debug_varnanes) }

. debug_pubtypes 0 : { *(.debug_pubtypes) }

. debug_r anges 0 : { *(.debug_ranges) }

/DISCARD) : { *(.rel.dyn) }

.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }

/DI SCARD) : { *(.note.GNU stack) }

/DI SCARD) : { *(.note.G\U stack) *(.gnu_debuglink) *(.gnu.lto_%*)
*(.discard) }

DS51686E-page 190 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Appendix 18. Implementation-Defined Behavior

18.1 INTRODUCTION

This chapter discusses the choices for implementation defined behavior in compiler.

18.2 HIGHLIGHTS

Items discussed in this chapter are:

¢ Overview

 Translation

« Environment

« |ldentifiers

e Characters

* Integers

¢ Floating-Point

* Arrays and Pointers

e Hints

« Structures, Unions, Enumerations, and Bit fields
e Qualifiers

» Declarators

» Statements

» Pre-Processing Directives
* Library Functions
 Architecture

18.3 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for the compiler, and the corresponding section number from
the ISO/IEC 9899:1999 standard.

© 2012 Microchip Technology Inc. DS51686E-page 191

MPLAB® XC32 C/C++ Compiler User’s Guide

18.4 TRANSLATION

ISO Standard:

Implementation:

ISO Standard:

Implementation:

18.5 ENVIRONMENT

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“How a diagnostic is identified (3.10, 5.1.1.3).”
All output to st der r is a diagnostic.

“Whether each nonempty sequence of white-space characters other
than new-line is retained or replaced by one space character in transla-
tion phase 3 (5.1.1.2).”

Each sequence of whitespace is replaced by a single character.

“The name and type of the function called at program start-up in a free-
standing environment (5.1.2.1).”

int main(voi d);

“The effect of program termination in a freestanding environment
(5.1.2.1).”

An infinite loop (branch to self) instruction will be executed.

“An alternative manner in which the mai n function may be defined
(5.1.2.2.1).”

int nain (void);
“The values given to the strings pointed to by the ar gv argument to
main (5.1.2.2.1).”

No arguments are passed to mai n. Reference to ar gc or ar gv is
undefined.

“What constitutes an interactive device (5.1.2.3).”
Application defined.

“Signals for which the equivalent of si gnal (sig, SIG IGN); is
executed at program start-up (7.14.1.1).”

Signals are application defined.

“The form of the status returned to the host environment to indicate
unsuccessful termination when the SI GABRT signal is raised and not
caught (7.20.4.1).”

The host environment is application defined.

“The forms of the status returned to the host environment by the exi t
function to report successful and unsuccessful termination (7.20.4.3).”

The host environment is application defined.

“The status returned to the host environment by the exi t function if
the value of its argument is other than zero, EXI T_SUCCESS, or
EXI T_FAI LURE (7.20.4.3).

The host environment is application defined.

“The set of environment names and the method for altering the environ-
ment list used by the get env function (7.20.4.4).”

The host environment is application defined.

“The manner of execution of the string by the system function
(7.20.4.5).”

The host environment is application defined.

DS51686E-page 192

© 2012 Microchip Technology Inc.

Implementation-Defined Behavior

IDENTIFIERS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

18.7 CHARACTERS

ISO Standard:

Implementation:

ISO Standard:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“Which additional multibyte characters may appear in identifiers and
their correspondence to universal character names (6.4.2).”

No.

“The number of significant initial characters in an identifier (5.2.4.1,
6.4.2).”

All characters are significant.

“The number of bits in a byte (C90 3.4, C99 3.6).”
8.

“The values of the members of the execution character set (C90 and
C995.2.1)"

“The unique value of the member of the execution character set pro-
duced for each of the standard alphabetic escape sequences (C90 and
C995.2.2)."

The execution character set is ASCII.

“The value of a char object into which has been stored any character
other than a member of the basic execution character set (C90 6.1.2.5,
C99 6.2.5).”

The value of the char object is the 8-bit binary representation of the
character in the source character set. That is, no translation is done.

“Which of signed char or unsigned char has the same range, represen-
tation, and behavior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99
6.2.5,C996.3.1.1)."

By default, signed char is functionally equivalent to plain char. The
options - f unsi gned- char and - f si gned- char can be used to
change the default.

“The mapping of members of the source character set (in character
constants and string literals) to members of the execution character set
(C906.1.3.4,C99 6.4.4.4, C90 and C99 5.1.1.2)."

The binary representation of the source character set is preserved to
the execution character set.

“The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not
map to a single-byte execution character (C90 6.1.3.4, C99 6.4.4.4).”

The compiler determines the value for a multi-character character con-
stant one character at a time. The previous value is shifted left by eight,
and the bit pattern of the next character is masked in. The final result is
of type i nt . If the result is larger than can be represented by ani nt , a
warning diagnostic is issued and the value truncated to i nt size.

“The value of a wide character constant containing more than one mul-
tibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set
(C906.1.3.4,C99 6.4.4.4).”

See previous.

“The current locale used to convert a wide character constant consist-
ing of a single multibyte character that maps to a member of the
extended execution character set into a corresponding wide character
code (C90 6.1.3.4, C99 6.4.4.4).”

LC_ALL

© 2012 Microchip Technology Inc.

DS51686E-page 193

MPLAB® XC32 C/C++ Compiler User’s Guide

18.8

ISO Standard:

Implementation:

ISO Standard:

Implementation:

INTEGERS

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

18.9 FLOATING-POINT

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The current locale used to convert a wide string literal into correspond-
ing wide character codes (C90 6.1.4, C99 6.4.5).”

LC_ALL

“The value of a string literal containing a multibyte character or escape
sequence not represented in the execution character set (C90 6.1.4,
C99 6.4.5).”

The binary representation of the characters is preserved from the
source character set.

“Any extended integer types that exist in the implementation (C99
6.2.5)."

There are no extended integer types.

“Whether signed integer types are represented using sign and magni-
tude, two’s complement, or one’s complement, and whether the
extraordinary value is a trap representation or an ordinary value (C99
6.2.6.2).”

All integer types are represented as two’s complement, and all bit pat-
terns are ordinary values.

“The rank of any extended integer type relative to another extended
integer type with the same precision (C99 6.3.1.1).”

No extended integer types are supported.

“The result of, or the signal raised by, converting an integer to a signed
integer type when the value cannot be represented in an object of that
type (C90 6.2.1.2, C99 6.3.1.3).”

When converting value X to a type of width N, the value of the result is
the Least Significant N bits of the 2's complement representation of X.
That is, X is truncated to N bits. No signal is raised.

“The results of some bitwise operations on signed integers (C90 6.3,
C99 6.5).”

Bitwise operations on signed values act on the 2's complement repre-
sentation, including the sign bit. The result of a signed right shift
expression is sign extended.

C99 allows some aspects of signed ‘<<’ to be undefined. The compiler
does not do so.

“The accuracy of the floating-point operations and of the library func-
tions in <math.h> and <complex.h> that return floating-point results
(C90 and C995.2.4.2.2).”

The accuracy is unknown.

“The accuracy of the conversions between floating-point internal repre-
sentations and string representations performed by the library functions
in <stdio.h>, <stdlib.h>, and <wchar.h> (C90 and C99 5.2.4.2.2).”

The accuracy is unknown.

“The rounding behaviors characterized by non-standard values of
FLT_ROUNDS (C90 and C99 5.2.4.2.2)."

No such values are used.

“The evaluation methods characterized by non-standard negative val-
ues of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”

No such values are used.

DS51686E-page 194

© 2012 Microchip Technology Inc.

Implementation-Defined Behavior

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“The direction of rounding when an integer is converted to a float-
ing-point number that cannot exactly represent the original value (C90
6.2.1.3,C99 6.3.1.4).”

C99 Annex F is followed.

“The direction of rounding when a floating-point number is converted to
a narrower floating-point number (C90 6.2.1.4, 6.3.1.5).”

C99 Annex F is followed.

“How the nearest representable value or the larger or smaller repre-
sentable value immediately adjacent to the nearest representable value
is chosen for certain floating constants (C90 6.1.3.1, C99 6.4.4.2).”

C99 Annex F is followed.

“Whether and how floating expressions are contracted when not disal-
lowed by the FP_CONTRACT pragma (C99 6.5).”

The pragma is not implemented.
“The default state for the FENV_ACCESS pragma (C99 7.6.1).”
This pragma is not implemented.

“Additional floating-point exceptions, rounding modes, environments,
and classifications, and their macro names (C99 7.6, 7.12).”

None supported.
“The default state for the FP_CONTRACT pragma (C99 7.12.2).”
This pragma is not implemented.

“Whether the “inexact” floating-point exception can be raised when the
rounded result actually does equal the mathematical result in an IEC
60559 conformant implementation (C99 F.9).”

Unknown.

“Whether the “underflow” (and “inexact”) floating-point exception can
be raised when a result is tiny but not inexact in an IEC 60559 confor-
mant implementation (C99 F.9).”

Unknown.

© 2012 Microchip Technology Inc.

DS51686E-page 195

MPLAB® XC32 C/C++ Compiler User’s Guide

18.10 ARRAYS AND POINTERS

ISO Standard: “The result of converting a pointer to an integer or vice versa (C90
6.3.4, C99 6.3.2.3).”
Implementation: A cast from an integer to a pointer or vice versa results uses the binary

representation of the source type, reinterpreted as appropriate for the
destination type.

If the source type is larger than the destination type, the Most Signifi-
cant bits are discarded. When casting from a pointer to an integer, if the
source type is smaller than the destination type, the result is sign
extended. When casting from an integer to a pointer, if the source type
is smaller than the destination type, the result is extended based on the
signedness of the source type.

ISO Standard: “The size of the result of subtracting two pointers to elements of the
same array (C90 6.3.6, C99 6.5.6).”

Implementation: 32-bit signed integer.

18.11 HINTS

ISO Standard: “The extent to which suggestions made by using the register stor-
age-class specifier are effective (C90 6.5.1, C99 6.7.1).”

Implementation: The register storage class specifier generally has no effect.

ISO Standard: “The extent to which suggestions made by using the inline function

specifier are effective (C99 6.7.4).”

Implementation: If-fno-inline or- Q0 are specified, no functions will be inlined,
even if specified with the i nl i ne specifier. Otherwise, the function
may or may not be inlined dependent on the optimization heuristics of
the compiler.

DS51686E-page 196 © 2012 Microchip Technology Inc.

Implementation-Defined Behavior

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

18.13 QUALIFIERS

ISO Standard:

Implementation:

18.12 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT FIELDS

“A member of a union object is accessed using a member of a different
type (C90 6.3.2.3).”

The corresponding bytes of the union object are interpreted as an
object of the type of the member being accessed without regard for
alignment or other possible invalid conditions.

“Whether a “plain” i nt bit field is treated as a si gned i nt bit field or
as an unsi gned i nt bit field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99
6.7.2.1)."

By default, a plain i nt bit field is treated as a signed integer. This
behavior can be altered by use of the - f unsi gned-bi tfi el ds
command line option.

“Allowable bit field types other than _Bool , si gned i nt, and
unsi gned int (C996.7.2.1).”

No other types are supported.

“Whether a bit field can straddle a storage unit boundary (C90 6.5.2.1,
C996.7.2.1).

No.

“The order of allocation of bit fields within a unit (C90 6.5.2.1, C99
6.7.2.1)."

Bit fields are allocated left to right.

“The alignment of non-bit field members of structures (C90 6.5.2.1, C99
6.7.2.1).”

Each member is located to the lowest available offset allowable accord-
ing to the alignment restrictions of the member type.

“The integer type compatible with each enumerated type (C90 6.5.2.2,
C996.7.2.2)."

If the enumeration values are all non-negative, the type is unsi gned
i nt,elseitisi nt.The-fshort-enunms command line option can
change this.

“What constitutes an access to an object that has volatile-qualified type
(C906.5.3,C99 6.7.3).”

Any expression which uses the value of or stores a value to a volatile
object is considered an access to that object. There is no guarantee
that such an access is atomic.

If an expression contains a reference to a volatile object but neither
uses the value nor stores to the object, the expression is considered an
access to the volatile object or not depending on the type of the object.
If the object is of scalar type, an aggregate type with a single member
of scalar type, or a union with members of (only) scalar type, the
expression is considered an access to the volatile object. Otherwise,
the expression is evaluated for its side effects but is not considered an
access to the volatile object.

For example:

vol atile int a;
a, /* access to

a’ since ‘a’ is scalar */

© 2012 Microchip Technology Inc.

DS51686E-page 197

MPLAB® XC32 C/C++ Compiler User’s Guide

18.14 DECLARATORS

ISO Standard:

Implementation:

18.15 STATEMENTS

ISO Standard:

Implementation:

“The maximum number of declarators that may modify an arithmetic,
structure or union type (C90 6.5.4).”

No limit.

“The maximum number of case values in a switch statement (C90
6.6.4.2)."

No limit.

18.16 PRE-PROCESSING DIRECTIVES

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

“How sequences in both forms of header names are mapped to head-
ers or external source file names (C90 6.1.7, C99 6.4.7)."

The character sequence between the delimiters is considered to be a
string which is a file name for the host environment.

“Whether the value of a character constant in a constant expression
that controls conditional inclusion matches the value of the same char-
acter constant in the execution character set (C90 6.8.1, C99 6.10.1).”

Yes.

“Whether the value of a single-character char act er constantin a
constant expression that controls conditional inclusion may have a neg-
ative value (C90 6.8.1, C99 6.10.1).”

Yes.

“The places that are searched for an included < > delimited header,
and how the places are specified or the header is identified (C90 6.8.2,
C99 6.10.2).”

<i nstall

directory>/1ib/gcc/pic32nx/ 3. 4. 4/ i ncl ude

<install directory>/pic32nx/incl ude

“How the named source file is searched for in an included “” delimited
header (C90 6.8.2, C99 6.10.2).”

The compiler first searches for the named file in the directory containing
the including file, the directories specified by the - i quot e command
line option (if any), then the directories which are searched fora< >
delimited header.

“The method by which preprocessing tokens are combined into a
header name (C90 6.8.2, C99 6.10.2).”

All tokens, including whitespace, are considered part of the header file
name. Macro expansion is not performed on tokens inside the delimit-
ers.

“The nesting limit for #i ncl ude processing (C90 6.8.2, C99 6.10.2).”
No limit.

“The behavior on each recognized non-STDC #pr agna directive (C90
6.8.6, C99 6.10.6).”

See Section 6.12 “Variable Attributes”.

“The definitions for __DATE_ _ and __TI ME_ _ when respectively,
the date and time of translation are not available (C90 6.8.8, C99
6.10.8).”

The date and time of translation are always available.

DS51686E-page 198

© 2012 Microchip Technology Inc.

Implementation-Defined Behavior

18.17 LIBRARY FUNCTIONS

ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:
Implementation:
ISO Standard:
Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:
Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:
ISO Standard:
Implementation:
ISO Standard:

Implementation:
ISO Standard:

Implementation:

“The Null Pointer constant to which the macro NULL expands (C90
7.1.6, C99 7.17).”

(void *)O

“Any library facilities available to a freestanding program, other than the
minimal set required by clause 4 (5.1.2.1).”

See the “32-Bit Language Tools Libraries” (DS51685).

“The format of the diagnostic printed by the assert macro (7.2.1.1).”
“Failed assertion ‘message’ at line line of ‘filename’.\n”

“The default state for the FENV_ACCESS pragma (7.6.1).”
Unimplemented.

“The representation of floating-point exception flags stored by the
f eget except fl ag function (7.6.2.2).”

Unimplemented.

“Whether the f er ai seexcept function raises the inexact exception
in addition to the overflow or underflow exception (7.6.2.3).”

Unimplemented.

“Floating environment macros other than FE_DFL_ENV that can be
used as the argument to the f eset env or f eupdat eenv function
(7.6.4.3, 7.6.4.4)."

Unimplemented.

“Strings other than “C’ and “” that may be passed as the second
argument to the set | ocal e function (7.11.1.1).”

None.

“The types defined for f | oat _t and doubl e_t when the value of
the FLT_EVAL_METHOD macro is less than 0 or greater than 2 (7.12).”

Unimplemented.
“The infinity to which the | NFI NI TY macro expands, if any (7.12).”
Unimplemented.

“The quiet NaN to which the NAN macro expands, when it is defined
(7.12).”

Unimplemented.

“Domain errors for the mathematics functions, other than those
required by this International Standard (7.12.1).”

None.

“The values returned by the mathematics functions, and whether
err no is setto the value of the macro EDOV] on domain errors
(7.12.1).”

errno is set to EDOMon domain errors.

“Whether the mathematics functions set er r no to the value of the
macro ERANGE on overflow and/or underflow range errors (7.12.1).”

Yes.
“The default state for the FP_CONTRACT pragma (7.12.2)
Unimplemented.

“Whether a domain error occurs or zero is returned when the f nod
function has a second argument of zero (7.12.10.1).”

NaN is returned.

“The base-2 logarithm of the modulus used by the r enquo function in
reducing the quotient (7.12.10.3).”

Unimplemented.

© 2012 Microchip Technology Inc.

DS51686E-page 199

MPLAB® XC32 C/C++ Compiler User’s Guide

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:
ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

“The set of signals, their semantics, and their default handling (7.14).”

The default handling of signals is to always return failure. Actual signal
handling is application defined.

“If the equivalent of si gnal (si g, SI G DFL); is notexecuted prior
to the call of a signal handler, the blocking of the signal that is per-
formed (7.14.1.1).”

Application defined.

“Whether the equivalent of si gnal (si g, SI G DFL); is executed
prior to the call of a signal handler for the signal SI G LL (7.14.1.1).”

Application defined.

“Signal values other than SI GFPE, SI G LL, and SI GSEGV that corre-
spond to a computational exception (7.14.1.1).”

Application defined.

“Whether the last line of a text stream requires a terminating new-line
character (7.19.2).”

Yes.

“Whether space characters that are written out to a text stream immedi-
ately before a new-line character appear when read in (7.19.2).”

Yes.

“The number of null characters that may be appended to data written to
a binary stream (7.19.2).”

No null characters are appended to a binary stream.

“Whether the file position indicator of an append-mode stream is ini-
tially positioned at the beginning or end of the file (7.19.3).”

Application defined. The system level function open is called with the
O_APPEND flag.

“Whether a write on a text stream causes the associated file to be trun-
cated beyond that point (7.19.3).”

Application defined.

“The characteristics of file buffering (7.19.3).”

“Whether a zero-length file actually exists (7.19.3).”
Application defined.

“The rules for composing valid file names (7.19.3).”
Application defined.

“Whether the same file can be open multiple times (7.19.3).”
Application defined.

“The nature and choice of encodings used for multibyte characters in
files (7.19.3).”

Encodings are the same for each file.
“The effect of the r enove function on an open file (7.19.4.1).”
Application defined. The system function unl i nk is called.

“The effect if a file with the new name exists prior to a call to the
renane function (7.19.4.2).”

Application defined. The system function | i nk is called to create the
new filename, then unl i nk is called to remove the old filename. Typi-
cally, I i nk will fail if the new filename already exists.

“Whether an open temporary file is removed upon abnormal program
termination (7.19.4.3).”

No.

“What happens when the t npnam function is called more than
TMP_MAX times (7.19.4.4).”

DS51686E-page 200

© 2012 Microchip Technology Inc.

Implementation-Defined Behavior

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Temporary names will wrap around and be reused.

“Which changes of mode are permitted (if any), and under what circum-
stances (7.19.5.4).”

The file is closed via the system level cl ose function and re-opened
with the open function with the new mode. No additional restriction
beyond those of the application defined open and cl ose functions
are imposed.

“The style used to print an infinity or NaN, and the meaning of the
n-char-sequence if that style is printed for a NaN (7.19.6.1, 7.24.2.1).”
No char sequence is printed.

NaN is printed as “NaN".

Infinity is printed as “[-/+]Inf".

“The output for % conversioninthe fpri ntf orfwprintf func-
tion (7.19.6.1, 7.24.2.1).”

Functionally equivalent to %x.

“The interpretation of a - character that is neither the first nor the last
character, nor the second where a”™ character is the first, in the scan-
listfor 9§ conversioninthe f scanf orfwscanf function (7.19.6.2,
7.24.2.1)."

Unknown

“The set of sequences matched by the % conversion in the f scanf
or fwscanf function (7.19.6.2, 7.24.2.2).”

The same set of sequences matched by %x.

“The interpretation of the input item corresponding to a % conversion
inthe f scanf orfwscanf function (7.19.6.2, 7.24.2.2).”

If the result is not a valid pointer, the behavior is undefined.

“The value to which the macro er r no is set by the f get pos,
fsetpos,orftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).”

If the result exceeds LONG_MAX, er r no is set to ERANGE.

Other errors are application defined according to the application defini-
tion of the | seek function.

“The meaning of the n-char-sequence in a string converted by the
strtod,strtof,strtol d,wecst od, wcst of , orwcst ol d
function (7.20.1.3, 7.24.4.1.1).”

No meaning is attached to the sequence.

“Whether or not the st rt od, strt of ,strtol d, wcst od,

west of ,orwest ol d function sets er r no to ERANGE when under-
flow occurs (7.20.1.3, 7.24.4.1.1).”

Yes.

“Whether the cal | oc, mal | oc, andr eal | oc functions return a
Null Pointer or a pointer to an allocated object when the size requested
is zero (7.20.3).”

A pointer to a statically allocated object is returned.

“Whether open output streams are flushed, open streams are closed,
or temporary files are removed when the abort function is called
(7.20.4.1)."

No.

“The termination status returned to the host environment by the abor t
function (7.20.4.1).”

By default, there is no host environment.

“The value returned by the syst em function when its argument is not a
Null Pointer (7.20.4.5).”

© 2012 Microchip Technology Inc.

DS51686E-page 201

MPLAB® XC32 C/C++ Compiler User’s Guide

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

18.18 ARCHITECTURE

ISO Standard:

Implementation:

ISO Standard:

Implementation:

ISO Standard:

Implementation:

Application defined.

“The local time zone and Daylight Saving Time (7.23.1).”
Application defined.

“The era for the cl ock function (7.23.2.1).”

Application defined.

“The positive value fort m i sdst in a normalized t nx structure
(7.23.2.6).

1.

“The replacement string for the %&Z specifier to the st rfti ne,
strfxtime, wesftinme, andwesf xti me functions in the “C’
locale (7.23.3.5, 7.23.3.6, 7.24.5.1, 7.24.5.2).”

Unimplemented.

“Whether or when the trigonometric, hyperbolic, base-e exponential,
base-e logarithmic, error, and log gamma functions raise the inexact
exception in an IEC 60559 conformant implementation (F.9).”

No.

“Whether the inexact exception may be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 confor-
mant implementation (F.9).”

No.

“Whether the underflow (and inexact) exception may be raised when a
result is tiny but not inexact in an IEC 60559 conformant implementa-
tion (F.9).”

No.
“Whether the functions honor the Rounding Direction mode (F.9).”
The Rounding mode is not forced.

“The values or expressions assigned to the macros specified in the
headers <f | oat . h>,<linmits. h> and<stdint.h> (C90 and
C995.2.4.2,C99 7.18.2, 7.18.3).”

See Section 6.4.2 “limits.h”.

“The number, order, and encoding of bytes in any object (when not
explicitly specified in the standard) (C99 6.2.6.1).”

Little endian, populated from Least Significant Byte first. See
Section 6.3 “Data Representation”.

“The value of the result of the size of operator (C90 6.3.3.4, C99
6.5.3.4)."

See Section 6.3 “Data Representation”.

DS51686E-page 202

© 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Appendix 19. ASCII Character Set

TABLE 19-1: ASCII CHARACTER SET

Most Significant Character

Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c S
4 EOT | DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F \% f Y
Least
Significant 7 Bell ETB 7 G % g w
Character
8 BS CAN (8 H X h X
9 HT EM) 9 [Y [y
A LF SUB * : J Z j z
B VT | ESC + ; K [k {
C FF FS , < L \ | |
D CR GS - = M] m }
E SO RS . > N A n ~
F Sl us / ? o} B 0 DEL

© 2012 Microchip Technology Inc. DS51686E-page 203

MPLAB® XC32 C/C++ Compiler User’s Guide

NOTES:

DS51686E-page 204 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Appendix 20. Deprecated Features

20.1 INTRODUCTION

The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated
feature will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependency on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

Deprecated features covered are:
Variables in Specified Registers

20.2 VARIABLES IN SPECIFIED REGISTERS

The compiler allows you to put a few global variables into specified hardware registers.

Note: Using too many registers, in particular register W0, may impair the ability of
the 32-bit compiler to compile. It is not recommended that registers be
placed into fixed registers.

You can also specify the register in which an ordinary register variable should be
allocated.

« Global register variables reserve registers throughout the program. This may be
useful in programs such as programming language interpreters which have a
couple of global variables that are accessed very often.

 Local register variables in specific registers do not reserve the registers. The
compiler’s data flow analysis is capable of determining where the specified
registers contain live values, and where they are available for other uses. Stores
into local register variables may be deleted when they appear to be unused.
References to local register variables may be deleted, moved or simplified.

These local variables are sometimes convenient for use with the extended inline
assembly (see Chapter 14. “Mixing C/C++ and Assembly Language”), if you want
to write one output of the assembler instruction directly into a particular register. (This
will work provided the register you specify fits the constraints specified for that operand
in the inline assembly statement).

20.2.1 Defining Global Register Variables
You can define a global register variable like this:

register int *foo asm ("w8");

Here w8 is the name of the register which should be used. Choose a register that is
normally saved and restored by function calls (W8-W13), so that library routines will not
clobber it.

© 2012 Microchip Technology Inc. DS51686E-page 205

MPLAB® XC32 C/C++ Compiler User’s Guide

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted, moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them especially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function f oo by way of a third function | ose that was compiled without knowledge of
this variable (i.e., in a source file in which the variable wasn’t declared). This is because
| ose might save the register and put some other value there. For example, you can’t
expect a global register variable to be available in the comparison-function that you
pass to gsort, since gsort might have put something else in that register. This
problem can be avoided by recompiling gsor t with the same global register variable
definition.

If you want to recompile gsor t or other source files that do not actually use your global
register variable, so that they will not use that register for any other purpose, then it
suffices to specify the compiler command-line option - f f i xed- r eg. You need not
actually add a global register declaration to their source code.

A function that can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the
caller expects to find there on return. Therefore, the function that is the entry point into
the part of the program that uses the global register variable must explicitly save and
restore the value that belongs to its caller.

The library function | ongj np will restore to each global register variable the value it
had at the time of the set j np.

All global register variable declarations must precede all function definitions. If such a
declaration appears after function definitions, the register may be used for other
purposes in the preceding functions.

Global register variables may not have initial values because an executable file has no
means to supply initial contents for a register.

20.2.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:
register int *foo asm ("w8");

Here w8 is the name of the register that should be used. Note that this is the same
syntax used for defining global register variables, but for a local variable it would appear
within a function.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live.
Using this feature may leave the compiler too few available registers to compile certain
functions.

This option does not ensure that the compiler will generate code that has this variable
in the register you specify at all times. You may not code an explicit reference to this
register in an asmstatement and assume it will always refer to this variable.

Assignments to local register variables may be deleted when they appear to be
unused. References to local register variables may be deleted, moved or simplified.

DS51686E-page 206 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
MICROCHIP USER'’S GUIDE

Glossary

A

Absolute Section
A section with a fixed (absolute) address that cannot be changed by the linker.
Access Memory

PIC18 Only — Special registers on PIC18 devices that allow access regardless of the
setting of the Bank Select Register (BSR).

Access Entry Points

Access entry points provide a way to transfer control across segments to a function
which may not be defined at link time. They support the separate linking of boot and
secure application segments.

Address
Value that identifies a location in memory.
Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a,b,..,z,AB, ..., 2).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
0,1, ...,9).

ANDed Breakpoints

Set up an ANDed condition for breaking, i.e., breakpoint 1 AND breakpoint 2 must

occur at the same time before a program halt. This can only be accomplished if a data
breakpoint and a program memory breakpoint occur at the same time.

Anonymous Structure
32-bit C/C++ Compiler — An unnamed structure.

PIC18 C Compiler — An unnamed structure that is a member of a C union. The mem-
bers of an anonymous structure may be accessed as if they were members of the
enclosing union. For example, in the following code, hi and | o are members of an
anonymous structure inside the union cast er.
uni on cast away

int intval;

struct {

char lo; //accessible as caster.lo

char hi; //accessible as caster. hi

b

} caster;

ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

© 2012 Microchip Technology Inc. DS51686E-page 207

MPLAB® XC32 C/C++ Compiler User’s Guide

Application
A set of software and hardware that may be controlled by a PIC® microcontroller.
Archive/Archiver

An archivel/library is a collection of relocatable object modules. It is created by assem-
bling multiple source files to object files, and then using the archiver/librarian to com-
bine the object files into one archive/library file. An archive/library can be linked with
object modules and other archives/libraries to create executable code.

ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembly/Assembler

Assembly is a programming language that describes binary machine code in a sym-
bolic form. An assembler is a language tool that translates assembly language source
code into machine code.

Assigned Section
A section which has been assigned to a target memory block in the linker command file.
Asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

Attribute

Characteristics of variables or functions in a C program which are used to describe
machine-specific properties.

Attribute, Section

Characteristics of sections, such as “executable”, “readonly”, or “data” that can be
specified as flags in the assembler . sect i on directive.

B
Binary

The base two numbering system that uses the digits 0-1. The rightmost digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

Breakpoint
Hardware Breakpoint: An event whose execution will cause a halt.

Software Breakpoint: An address where execution of the firmware will halt. Usually
achieved by a special break instruction.

Build

Compile and link all the source files for an application.
C

C\C++

C is a general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators. C++ is the
object-oriented version of C.

Calibration Memory

A special function register or registers used to hold values for calibration of a PIC
microcontroller on-board RC oscillator or other device peripherals.

DS51686E-page 208 © 2012 Microchip Technology Inc.

Glossary

Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the arithmetic logic unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.

Clean

Clean removes all intermediary project files, such as object, hex and debug files, for
the active project. These files are recreated from other files when a project is built.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Compiler

A program that translates a source file written in a high-level language into machine
code.

Conditional Assembly

Assembly language code that is included or omitted based on the assembly-time value
of a specified expression.

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

Configuration Bits

Special-purpose bits programmed to set PIC microcontroller modes of operation. A
Configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.

CPU
See Central Processing Unit.
Cross Reference File

A file that references a table of symbols and a list of files that references the symbol. If
the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

D

Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.

© 2012 Microchip Technology Inc. DS51686E-page 209

MPLAB® XC32 C/C++ Compiler User’s Guide

Debug/Debugger
See ICE/ICD.
Debugging Information

Compiler and assembler options that, when selected, provide varying degrees of infor-
mation used to debug application code. See compiler or assembler documentation for
details on selecting debug options.

Deprecated Features

Features that are still supported for legacy reasons, but will eventually be phased out
and no longer used.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Digital Signal Controller

A digital signal controller (DSC) is a microcontroller device with digital signal processing
capability, i.e., Microchip dsPIC® DSC devices.

Digital Signal Processing/Digital Signal Processor

Digital Signal Processing (DSP) is the computer manipulation of digital signals, com-
monly analog signals (sound or image) which have been converted to digital form (sam-
pled). A digital signal processor is a microprocessor that is designed for use in digital
signal processing.

Directives
Statements in source code that provide control of the language tool’s operation.
Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.

DWARF

Debug With Arbitrary Record Format. DWAREF is a debug information format for ELF
files.

E
EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

ELF

Executable and Linking Format. An object file of this format contains machine code.
Debugging and other information is specified in with DWARF. ELF/DWARF provide
better debugging of optimized code than COFF.

Emulation/Emulator

See ICE/ICD.

Endianness

The ordering of bytes in a multi-byte object.
Environment

MPLAB PM3 — A folder containing files on how to program a device. This folder can be
transferred to a SD/MMC card.

DS51686E-page 210 © 2012 Microchip Technology Inc.

Glossary

Epilogue

A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the runtime model. This code executes after any user code for a given function,
immediately prior to the function return.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.

Error/Error File

An error reports a problem that makes it impossible to continue processing your
program. When possible, an error identifies the source file name and line number
where the problem is apparent. An error file contains error messages and diagnostics
generated by a language tool.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W), and time stamp. Events are used to describe triggers,
breakpoints and interrupts.

Executable Code

Software that is ready to be loaded for execution.

Export

Send data out of the MPLAB IDE in a standardized format.
Expressions

Combinations of constants and/or symbols separated by arithmetic or logical
operators.

Extended Microcontroller Mode

In extended microcontroller mode, on-chip program memory as well as external mem-
ory is available. Execution automatically switches to external if the program memory
address is greater than the internal memory space of the PIC18 device.

Extended Mode (PIC18 MCUs)

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.

External Label
A label that has external linkage.
External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

© 2012 Microchip Technology Inc. DS51686E-page 211

MPLAB® XC32 C/C++ Compiler User’s Guide

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM
Off-chip Read/Write memory.

F

Fatal Error
An error that will halt compilation immediately. No further messages will be produced.
File Registers

On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).

Filter

Determine by selection what data is included/excluded in a trace display or data file.
Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.
FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle instruc-
tion. Since the PIC microcontroller architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current instruction.
However, if the current instruction changes the program counter, this prefetched
instruction is explicitly ignored, causing a forced NOP cycle.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Provides a convenient base from
which to access local variables and other values for the current function.

Free-Standing

An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <f | oat . h>,
<i s0646. h>,<limts. h> <stdarg. h> <stdbool . h>, <st ddef . h>and
<stdint. h>.

G
GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

H

Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.
Heap

An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at runtime.

Hex Code/Hex File

Hex code is executable instructions stored in a hexadecimal format code. Hex code is
contained in a hex file.

DS51686E-page 212 © 2012 Microchip Technology Inc.

Glossary

Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f). The
digits A-F represent hexadecimal digits with values of (decimal) 10 to 15. The rightmost
digit counts ones, the next counts multiples of 16, then 162 = 256, etc.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

I
ICE/ICD

In-Circuit Emulator/In-Circuit Debugger: A hardware tool that debugs and programs a
target device. An emulator has more features than an debugger, such as trace.

In-Circuit Emulation/In-Circuit Debug: The act of emulating or debugging with an
in-circuit emulator or debugger.

-ICE/-ICD: A device (MCU or DSC) with on-board in-circuit emulation or debug circuitry.
This device is always mounted on a header board and used to debug with an in-circuit
emulator or debugger.

ICSP™ Programming Capability

In-Circuit Serial Programming™ programming capability. A method of programming
Microchip embedded devices using serial communication and a minimum number of
device pins.

IDE

Integrated Development Environment, as in MPLAB IDE.
Identifier

A function or variable name.

IEEE

Institute of Electrical and Electronics Engineers.

Import

Bring data into the MPLAB IDE from an outside source, such as from a hex file.
Initialized Data

Data which is defined with an initial value. In C,

i nt myVar =5;

defines a variable which will reside in an initialized data section.
Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications. Also known as 1SO.

© 2012 Microchip Technology Inc. DS51686E-page 213

MPLAB® XC32 C/C++ Compiler User’s Guide

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed. Upon
completion of the ISR, normal execution of the application resumes.

Interrupt Handler
A routine that processes special code when an interrupt occurs.
Interrupt Service Request (IRQ)

An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine (ISR)
Language tools — A function that handles an interrupt.

MPLAB IDE — User-generated code that is entered when an interrupt occurs. The loca-
tion of the code in program memory will usually depend on the type of interrupt that has
occurred.

Interrupt Vector
Address of an interrupt service routine or interrupt handler.
L

L-value

An expression that refers to an object that can be examined and/or modified. An I-value
expression is used on the left-hand side of an assignment.

Latency

The time between an event and its response.
Library/Librarian

See Archive/Archiver.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.

Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

Alisting file is an ASCII text file that shows the machine code generated for each C/C++
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.

Little Endian

A data ordering scheme for multibyte data whereby the least significant byte is stored
at the lower addresses.

DS51686E-page 214 © 2012 Microchip Technology Inc.

Glossary

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.

Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Loop-Back Test Board
Used to test the functionality of the MPLAB REAL ICE™ in-circuit emulator.
LVDS

Low Voltage Differential Signaling. A low noise, low-power, low amplitude method for
high-speed (gigabits per second) data transmission over copper wire.

With standard 1/0 signaling, data storage is contingent upon the actual voltage level.
Voltage level can be affected by wire length (longer wires increase resistance, which
lowers voltage). But with LVDS, data storage is distinguished only by positive and neg-
ative voltage values, not the voltage level. Therefore, data can travel over greater
lengths of wire while maintaining a clear and consistent data stream.

Source: http://www.webopedia.com/TERM/L/LVDS.html.

M

Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macro instruction. An instruction that represents a sequence of instructions in
abbreviated form.

Macro Directives
Directives that control the execution and data allocation within macro body definitions.
Makefile

Export to a file the instructions to Make the project. Use this file to Make your project
outside of MPLAB IDE, i.e., with a make.

Make Project

A command that rebuilds an application, recompiling only those source files that have
changed since the last complete compilation.

MCU
Microcontroller Unit. An abbreviation for microcontroller. Also uC.
Memory Model

For C compilers, a representation of the memory available to the application. For the
PI1C18 C compiler, a description that specifies the size of pointers that point to program
memory.

© 2012 Microchip Technology Inc. DS51686E-page 215

http://www.webopedia.com/TERM/L/LVDS.html

MPLAB® XC32 C/C++ Compiler User’s Guide

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, 1/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microcontroller mode, only internal execution is allowed. Thus, only the on-chip pro-
gram memory is available in microcontroller mode.

Microprocessor Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microprocessor mode, the on-chip program memory is not used. The entire program
memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
opcodes.

MPASM™ Assembler

Microchip Technology’s relocatable macro assembler for PIC microcontroller devices,
KeeLoq® devices and Microchip memory devices.

MPLAB Language Tool for Device

Microchip’s C compilers, assemblers and linkers for specified devices. Select the type
of language tool based on the device you will be using for your application, e.g., if you
will be creating C code on a PIC18 MCU, select the MPLAB C Compiler for PIC18
MCUs.

MPLAB ICD
Microchip’s in-circuit debuggers that works with MPLAB IDE. See ICE/ICD.
MPLAB IDE

Microchip’s Integrated Development Environment. MPLAB IDE comes with an editor,
project manager and simulator.

MPLAB PM3

A device programmer from Microchip. Programs PIC18 microcontrollers and dsPIC
digital signal controllers. Can be used with MPLAB IDE or stand-alone. Replaces
PRO MATE II.

MPLAB REAL ICE In-Circuit Emulator

Microchip’s next-generation in-circuit emulators that works with MPLAB IDE. See
ICE/ICD.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PIC MCU and dsPIC
DSC devices.

MPLIB™ Object Librarian

Microchip’s librarian that can work with MPLAB IDE. MPLIB librarian is an object librar-
ian for use with COFF object modules created using either MPASM assembler (mpasm
or mpasmwin v2.0) or MPLAB C18 C compiler.

DS51686E-page 216 © 2012 Microchip Technology Inc.

Glossary

MPLINK™ Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the
Microchip C18 C compiler. MPLINK linker also may be used with the Microchip MPLIB
librarian. MPLINK linker is designed to be used with MPLAB IDE, though it does not
have to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from MPLAB
IDE main pull down menus.

N

Native Data Size

For Native trace, the size of the variable used in a Watch window must be of the same
size as the selected device’s data memory: bytes for PIC18 devices and words for
16-bit devices.

Nesting Depth

The maximum level to which macros can include other macros.
Node

MPLAB IDE project component.

Non-Extended Mode (PIC18 MCUSs)

In Non-Extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

Non Real Time

Refers to the processor at a breakpoint or executing single-step instructions or MPLAB
IDE being run in simulator mode.

Non-Volatile Storage
A storage device whose contents are preserved when its power is off.
NOP

No Operation. An instruction that has no effect when executed except to advance the
program counter.

@]
Object Code/Object File

Object code is the machine code generated by an assembler or compiler. An object file
is a file containing machine code and possibly debug information. It may be immedi-
ately executable or it may be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.

Object File Directives
Directives that are used only when creating an object file.
Octal

The base 8 number system that only uses the digits 0-7. The rightmost digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

Off-Chip Memory
Off-chip memory refers to the memory selection option for the PIC18 device where
memory may reside on the target board, or where all program memory may be supplied

by the emulator. The Memory tab accessed from QOptions>Development Mode pro-
vides the Off-Chip Memory selection dialog box.

© 2012 Microchip Technology Inc. DS51686E-page 217

MPLAB® XC32 C/C++ Compiler User’s Guide

Opcodes
Operational Codes. See Mnemonics.
Operators

Symbols, like the plus sign ‘+' and the minus sign ‘-, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are
erasable.

P
Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any PC running a supported Windows operating system.
Persistent Data

Data that is never cleared or initialized. Its intended use is so that an application can
preserve data across a device reset.

Phantom Byte

An unimplemented byte in the dsPIC DSC architecture that is used when treating the
24-bit instruction word as if it were a 32-bit instruction word. Phantom bytes appear in
dsPIC DSC hex files.

PIC MCUs
PIC microcontrollers (MCUSs) refers to all Microchip microcontroller families.
PICkit™ 2 and 3 Programmer/Debugger

Microchip’s developmental device programmers with debug capability through Debug
Express. See the Readme files for each tool to see which devices are supported.

Plug-ins

The MPLAB IDE has both built-in components and plug-in modules to configure the
system for a variety of software and hardware tools. Several plug-in tools may be found
under the Tools menu.

Pod

The enclosure for an in-circuit emulator or debugger. Other names are “Puck”, if the
enclosure is round, and “Probe”, not be confused with logic probes.

Power-on-Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

Pragma

A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. MPLAB C30 uses attributes to
convey this information.

DS51686E-page 218 © 2012 Microchip Technology Inc.

Glossary

Precedence
Rules that define the order of evaluation in expressions.
Production Programmer

A production programmer is a programming tool that has resources designed in to pro-
gram devices rapidly. It has the capability to program at various voltage levels and com-
pletely adheres to the programming specification. Programming a device as fast as
possible is of prime importance in a production environment where time is of the
essence as the application circuit moves through the assembly line.

Profile

For MPLAB SIM simulator, a summary listing of executed stimulus by register.
Program Counter

The location that contains the address of the instruction that is currently executing.
Program Counter Unit

32-bit assembler — A conceptual representation of the layout of program memory. The
program counter increments by 2 for each instruction word. In an executable section,
2 program counter units are equivalent to 3 bytes. In a read-only section, 2 program
counter units are equivalent to 2 bytes.

Program Memory

MPLAB IDE — The memory area in a device where instructions are stored. Also, the
memory in the emulator or simulator containing the downloaded target application
firmware.

32-bit assembler/compiler — The memory area in a device where instructions are
stored.

Project

A project contains the files needed to build an application (source code, linker script
files, etc.) along with their associations to various build tools and build options.

Prologue

A portion of compiler-generated code that is responsible for allocating stack space, pre-
serving registers and performing any other machine-specific requirement specified in
the runtime model. This code executes before any user code for a given function.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PIC MCU devices have a PWM peripheral.

Q
Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

R

Radix

The number base, hex, or decimal, used in specifying an address.
RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

© 2012 Microchip Technology Inc. DS51686E-page 219

MPLAB® XC32 C/C++ Compiler User’s Guide

Raw Data
The binary representation of code or data associated with a section.
Read Only Memory

Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

Real Time

When an in-circuit emulator or debugger is released from the halt state, the processor
runs in Real Time mode and behaves exactly as the normal chip would behave. In Real
Time mode, the real time trace buffer of an emulator is enabled and constantly captures
all selected cycles, and all break logic is enabled. In an in-circuit emulator or debugger,
the processor executes in real time until a valid breakpoint causes a halt, or until the
user halts the execution.

In the simulator, real time simply means execution of the microcontroller instructions as
fast as they can be simulated by the host CPU.

Real-Time Watch

A Watch window where the variables change in real-time as the application is run. See
individual tool documentation to determine how to set up a real-time watch. Not all tools
support real-time watches.

Recursive Calls
A function that calls itself, either directly or indirectly.
Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.

Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relaxation

The process of converting an instruction to an identical, but smaller instruction. This is
useful for saving on code size. MPLAB ASM30 currently knows how to RELAX a CALL
instruction into an RCALL instruction. This is done when the symbol that is being called
is within +/- 32k instruction words from the current instruction.

Relocatable
An object whose address has not been assigned to a fixed location in memory.
Relocatable Section

32-bit assembler — A section whose address is not fixed (absolute). The linker assigns
addresses to relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned to relo-
catable sections and all symbols in the relocatable sections are updated to their new
addresses.

ROM
Read Only Memory (Program Memory). Memory that cannot be modified.
Run

The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.

DS51686E-page 220

© 2012 Microchip Technology Inc.

Glossary

Run-time Model
Describes the use of target architecture resources.

S

Scenario

For MPLAB SIM simulator, a particular setup for stimulus control.

Section

A portion of an application located at a specific address of memory.

Section Attribute

A characteristic ascribed to a section (e.g., an access section).
Sequenced Breakpoints

Breakpoints that occur in a sequence. Sequence execution of breakpoints is
bottom-up; the last breakpoint in the sequence occurs first.

Serialized Quick Turn Programming

Serialization allows you to program a serial number into each microcontroller device
that the Device Programmer programs. This number can be used as an entry code,
password or ID number.

Shell

The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows version.

Simulator
A software program that models the operation of devices.
Single Step

This command steps though code, one instruction at a time. After each instruction,
MPLAB IDE updates register windows, watch variables, and status displays so you can
analyze and debug instruction execution. You can also single step C compiler source
code, but instead of executing single instructions, MPLAB IDE will execute all assembly
level instructions generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on the proces-
sor bus at different times. For example, the executed opcodes appears on the bus as
a fetch during the execution of the previous instruction, the source data address and
value and the destination data address appear when the opcodes is actually executed,
and the destination data value appears when the nextinstruction is executed. The trace
buffer captures the information that is on the bus at one instance. Therefore, one trace
buffer entry will contain execution information for three instructions. The number of cap-
tured cycles from one piece of information to another for a single instruction execution
is referred to as the skew.

Skid
When a hardware breakpoint is used to halt the processor, one or more additional

instructions may be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in a formal programming language which can be translated into machine code
or executed by an interpreter.

© 2012 Microchip Technology Inc. DS51686E-page 221

MPLAB® XC32 C/C++ Compiler User’s Guide

Source File
An ASCII text file containing source code.
Special Function Registers (SFRs)

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, 1/O status, timers or other modes or peripherals.

sQTps™
See Serialized Quick Turn Programming.
Stack, Hardware

Locations in PIC microcontroller where the return address is stored when a function call
is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.

MPLAB Starter Kit for Device

Microchip’s starter kits contains everything needed to begin exploring the specified
device. View a working application and then debug and program you own changes.

Static RAM or SRAM

Static Random Access Memory. Program memory you can read/write on the target
board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such
current information as cursor position, development mode and device, and active tool
bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When stepping
over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.
If for some reason the subroutine gets into an endless loop or does not return properly,
the next breakpoint will never be reached. The Step Over command is the same as
Single Step except for its handling of CALL instructions.

Step Out

Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.

Stimulus

Input to the simulator, i.e., data generated to exercise the response of simulation to
external signals. Often the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Storage Class

Determines the lifetime of the memory associated with the identified object.

DS51686E-page 222 © 2012 Microchip Technology Inc.

Glossary

Storage Qualifier
Indicates special properties of the objects being declared (e.g., const).
Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.

Symbol, Absolute

Represents an immediate value such as a definition through the assembly . equ
directive.

System Window Control

The system window control is located in the upper left corner of windows and some dia-
logs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”

T
Target

Refers to user hardware.

Target Application

Software residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.
Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar
A row or column of icons that you can click on to execute MPLAB IDE functions.
Trace

An emulator or simulator function that logs program execution. The emulator logs pro-
gram execution into its trace buffer which is uploaded to MPLAB IDE’s trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trace Macro

A macro that will provide trace information from emulator data. Since this is a software
trace, the macro must be added to code, the code must be recompiled or reassembled,
and the target device must be programmed with this code before trace will work.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

© 2012 Microchip Technology Inc. DS51686E-page 223

MPLAB® XC32 C/C++ Compiler User’s Guide

Trigraphs

Three-character sequences, all starting with ??, that are defined by ISO C as
replacements for single characters.

U

Unassigned Section

A section which has not been assigned to a specific target memory block in the linker
command file. The linker must find a target memory block in which to allocate an
unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.
Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.

USB

Universal Serial Bus. An external peripheral interface standard for communication
between a computer and external peripherals over a cable using bi-serial transmission.
USB 1.0/1.1 supports data transfer rates of 12 Mbps. Also referred to as high-speed
USB, USB 2.0 supports data rates up to 480 Mbps.

Vv

Vector

The memory locations that an application will jump to when either a reset or interrupt
occurs.

W

Warning

MPLAB IDE — An alert that is provided to warn you of a situation that would cause phys-
ical damage to a device, software file, or equipment.

32-bit assembler/compiler — Warnings report conditions that may indicate a problem,
but do not halt processing. In MPLAB C30, warning messages report the source file

name and line number, but include the text ‘war ni ng:’ to distinguish them from error
messages.

Watch Variable

A variable that you may monitor during a debugging session in a Watch window.
Watch Window

Watch windows contain a list of watch variables that are updated at each breakpoint.
Watchdog Timer (WDT)

A timer on a PIC microcontroller that resets the processor after a selectable length of
time. The WDT is enabled or disabled and set up using Configuration bits.

Workbook
For MPLAB SIM stimulator, a setup for generation of SCL stimulus.

DS51686E-page 224 © 2012 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER

MICROCHIP

USER’S GUIDE

| ndex
Symbols A
. APP_EXCPL SeCtioN ...ccccevvevevieiieeiie e 182 A0-83 141
. bev_excpt Section ..o 182 absolute functions ... 29
DS 147 absolute variablesccccoveevieiiiiciecie e 29
. DSS SECtion ...ceveeii e 188 addr essr Attributeccooeveiriiiirie e 123
.config_addressiieiieiiiencennnn, 180 alias (symbol) ..o, 124
LAt @ 147 __align qualifierccccovveeiiiiie e 34
Ldat @ Sectioncccceieeeciiee e 186 aligned (N) i, 105, 106
.dbg_data Section ..., 186 always_i nline .. 124
. dbg_excpt Section ..., 182 ANONYMOUS UNIONS ..vivvieeieirenieneesreneseeeeneeeeeneas 99
L Ot SECHON ..oveiiiiee e 186 SANST 63, 64, 80, 130
.h files, see header files ANSI C Standard
heap 188 CONFOIMANCE ...oooveiieiiececee e 91
T A 147 implementation-defined behavior 92
T4 Section ..o 187 ANSI C standardcccceoveevieeiie e 18
T8 147 ANSI C, SECE oo 65
T8 Section ...oeeeiieee e 187 ANSI Standard Library SUPPOrtccccoeeveeneiennenne 14
AN UNC 148 AITAYS veeeveiireeeeeeeeteeeteeeteeeteesteeseteesteeesbeebeeeeeesreean 111
.ranf unc Sectioncccceeveeieeeceeciecee e 189 as dummy pointer targetsccccovveeerieeennnn 101
LT eSet Sectionccocviiiiiiicic 181 INLIAlIZALION ..o 103
. rodat @ Sectionc.cceeeieieree e 185 ASCII Character Setccceeieeiiiiiiiieeeeieee e 203
L SDBSS 147 ASCII characters
. SbSS Section ..., 188 extendedccceiie e 103
. SDSS2 SECHON .o 186 ASIM L 161
2 SAAL @ i 147 asm C StAEMENTociviiieiiiiiereeree e 42
.sdat @ Sectioncceveeiieie e 187 assembly code
. Sdat @2 SECtioncccoceeeieieiee e 185 MIXing With C ..o 161
. St AaCK SECHON ..o 188 assembly liStfilesccccovviiiiiii e 59
LStartup Sectionooovcvveeieiii 183 Assembly OPLIONSccooeveiiiiieee e 81
LT eXt Sectionocciciiiiiiiec 183 SV 81
. VEeCt OF _N SecCtionsccceveverieeieeiecieeeie e 183 attribute .. 105
“On Bootstrap” Procedurecccccoveeeeiieeeninennne 154 Attribute, Function
PreprocesSOr OPEratorcceceeeereeeeeneeaneeaeeanens 170 Addr €SS .o 123
#4 PreprocesSsor OPEratorcoevveeeereeereneenne 170 alias (symbol) .., 124
H#Aef I Ne oo 78 always_i nline ..., 124
Fldent .o 84 At _VECLOr .o 124
2 I OO 71 CONST ittt e 124
#Finclude ..o 78,79 deprecated ..., 124
F TN 80 far 124
HPF AQMBA oo 68 f or mat (type, f or mat _i ndex,
#pragma config . 171 first_to_check) ... 124
#pragma i nterrupt ..., 171 format _arg (index) ...iienns 125
#Pragma VECH OF ..o 171 I NEErTUPt e 125
NUmerics longcal | .o 125
. MBI | OC oo 125
TIBMBI -1 0= (i 61 M PSL6 oo 125
PIC32MX Device-Specific Options Naked ..o 125
SIBIMAN L -1 0 61 1 T=T: LA 125
Ob binary radix specifiercccccoiiiiiiiniiiieeen 102 noinline o 125
32-Bit C Compiler Macrosccccceevvveeeeeeseiieeennn. 172 no instrunent function ... 84
NOIM PSL6 oo 125

© 2012 Microchip Technology Inc.

DS51686E-page 225

MPLAB® XC32 C/C++ Compiler User’s Guide

nonnul I (index, ...) . 125
NOF €L UI N o 70,126
PUE © ottt 126
Famf UNC) oo 126
section (NaM®) ..., 126
Uni que_Section ...cccccvevevieceeeece e, 126
UNUSEA oo 126
USEA oottt 127
VECT OF oottt 127
warn_unused_result ... 127
WBAK ..o 127
Attribute, Variable
aligned (N) v 105, 106
cleanup (function) ... 106
deprecat ed ..., 106
PACKE ..o 106
section (“Name”) ... 106
SPACE oo 107
Uni que_Section ...cccceveveeiiieceeiece e 107
UNUSEA oo 107
WBAK ..t 107
at_vector Attribute ... 124
aut o variablescocooiiiii 110,112
INIGHIZAtION ©.eoeiiiiii 147
memory allocationccccceeeviiiiiveeennnns 112-113
Automatic Variableccccccviiiniiiiineen 68, 69
—AUX-T NFO o 63, 64
B
S B e 47,82
Bad Virtual Address Registercccccovveveinenenns 149
BadVAddr. See Bad Virtual Address Register
__bank qualifierccccooviiiiiii 33
_BEV_EXCPT_ADDRccoovnineieieieinene 179,182
biased exponentcccccce i 96
binary constants
C COAR it 102
Bit FIelds ...cooeiiieieee e 64
Dit-fieldscoovveiiiiii 26,27,98-99
bitwise complement operatorccceevveeennnenn. 118
BMXDKPBA ..ottt 148
_bnmxdkpba_addr esscccoceieieiennnn 148,155
BMXDUDBAcoooiiiieieeieeiceie e 148
_bnmxdudba_addressccceeeveiiiiennns 148,155
BMXDUPBA ..ot 148
_bnmxdupba_addressccceevveieiiennnns 148,155
Boot Memory Region
ksegO_boot _mem.......cccooeveiiiciicnnen 179
ksegl boot mem........iieinnn. 179
Bootstrap EXCEePLiONcccovcvveeiiiieiniiee e 141
_boot strap_excepti on_handl er 156
_boot strap_excepti on_handl er() ... 141
Branch Del @yccccoviiiiiiiceececee e 151
_bss_begin . 188
_bsSs_end . 188
Bus Matrix REgIStErccccovivveiiiiiiiiie e 148
BMXDKPBA ..ottt 148
BMXDUDBAcooiiiiieiieieriee e 148
BMXDUPBA ..ot 148

C
2 78
K PP PUP TR 62,81
C Dialect Control Optionscccceevrveerrieeenne. 63, 64
SANST e 63, 64
—aUX-T1NfO 63, 64
-ffreestandi NG ..o 63
-fNo-asm. 63, 64
-fno-bui T Ein 63, 64
-fno-signed-bitfieldsccoernnnnn. 64
-fno-unsigned-bitfields 64
-fsigned-bitfields ..o 64
-fsigned-char ..o 64
-funsigned-bitfields ..., 64
-funsigned-charcccccooviiiiiiiiiene, 64
-fwitable-strings ..o, 64
-traditional .., 130
-ffreestandi NG ..o 64
C Stack USAgecccvvveriiiiiiieceie e 112
C standard librariesccocovoiiiiiiiiiii e 56
_ C32_VERSI ON__ .o 173
Call MAIN ..o 155
Cal 1 OC oo 114
Case RANGEScoovviiiiieiiee e 120
CASE ittt 68, 69, 70
CASHING .eviiiieie e 117
CAUSE i 151
CauSe REGISIENcccoiiiieiie et 151
Cause REQISIErcocveeiivieeeciie e 150
Gl e 19
char .., 64,65, 94,128
char data typesccvvvvieeeriieeree e 24
character constants
INC 103
CHAR BI T oo e 94
CHAR._MAX ..ot 94
CHAR M N i 94
cleanup (function) ... 106
clearing variablesc.ccccociiiiii i 147
Code Generation Conventions Options 83
-fargunent-alias ..o, 83
-fargunent-noalias ... 83
-fargunent - noal i as- gl obal 83
-fecall-saved ..., 83
-fecall-used .o 83
SFfIXed o 83
-finstrunment-functions 84
-fno-ident 84
-fno-short-doubl e ..o 84
-fno-verbose-asMm.....cccooveiiieicene, 84
-fpack-struct ..o 84
-fpce-struct-return ..o, 84
-fshort-enums ..., 84
-fverbose-asm.....iininiieiece 84
-fvolatile 84
-fvolatile-global ..o, 84
-fvolatile-staticC .oovninciciice, 84
Code Size, REAUCEcooeviieeiiiieeee e 72,73
Command Line Option, Compiler
-fdate-sections ..., 106

DS51686E-page 226

© 2012 Microchip Technology Inc.

-ffunction-sections ... 126
-fshort-enums ..., 197
-funsigned-bitfields ..o 197
-funsigned-char ... 94
ST QUOL @ e 198
S SO 81
-ndebugger e, 182,186
S PSLO o, 56,125
-m psl6 -mo-float ... 56
-mong-calls . 125
-mo-float . 56
S MPFr OCESSON i 177
-0 eX1.oUl 50
S OB 56
S8 - PSLB 56
-3 -mpsl6 -mo-float ... 56
-B -mo-float . 56
S 0B 56
S08 -M PSLOB i 56
-0Cs -mpsle -mo-float ... 56
-G8 -mMo-float . 56
SV 68
-Whonnul |, 125
Command Line Option, Linker
--def SYM.c 177
--defsym m n_stack_si ze 112
S SRS 177
Command-Line Simulatorccccooeeeeiiiineeenns 14
COMMENLS .o 65,78
common compiler interfaceccccevieeiniieennen. 19
Common Subexpression Elimination 73,74,75
Common SUubexpressionscccccovveeeiiieeniiieenne 76
CONPAN € i 150
Compare REQISLENccveeiiiieeeiiie e 150
Conpar € ReQiIStercccccveveieniiicieeieieeeeees 150
Compiler
DIVET ittt 45,82
compiler operating Modeoccceeevieeeiniieeenieeee 13
Conditional EXpressioncccccocvevneeinieeesineeennns 120
Conditionals with Omitted Operandsc........ 120
CONF i G e 152
Config REGISIEN ...occviiiiiiiie e 152
CoNF i gl oo 152
Configl REQISIErcccvvveeiieiiiieiee e 152
CoNfi g2 o 153
Config2 REQISLEr ..c..evviriiieiiieeeee e 153
Confi g3 o 153
Config3 REQISIEr ..o 153
CONFIgN o 180
Configuration Memory Region
confi g3, config2, configl,
configl .o 179
Configuration Pragmacccccocvveiniiennncinnennn 86, 87
Configuration Wordscccccceveeiviiiiereecieciinenn, 86, 87
CONST it 124
const objects
initialization ..o 104
const objects
storage 10Cationcceecevveeiieeeninieeseee e 113
CONSt QUALITIET ..vveeeiiiiciie e 104

constants
C SPECIfIEIS oviiiiiiiiii it 102
charactercccoviviiiie e 103
string, see string literalscccccovveeniinennne 103
conversion between typesccccevevveeennneennneenn 117
COUNL e 149, 150
Count REJISIErvvvieiiiiiiieec e 150
CouNt REQISIEr ...occcvvieiiiiiciiee e 150
COUNT Ppferverrrriir i, 150
CPO e 149
CPO ACCESS MACIOScovviieeiiiieee e 89
CPO REQISIEISuvveiieciiiiieee e 149
CUSLOMET SUPPOIT .eveeeiiiiiieeeiiiiee et 12
D
D 78,80
data mMemorycccccvveiiiiiiee e 110
Data Memory Region
ksegl data_Mmem.........enceienenne. 180
Data Memory SPacecccceeeeeiviiineeeeeiiieeee e 114
data types
floating PoINtcvvveviiie i 97
SIZE Of 1iviiiiiie 23,97
_data_end ... 187
DBD. See Debug Branch Delay
_DBG _CODE_ADDRc.coeeveeeeeeeeeeeeeeans 179,182
_DBG_EXCPT_ADDRcccooiiiiiriiiicneennn 179,182
S D s 78
DebUQ oo 153
Debug Branch Delayccccovcvieiiiciniieccce 154
Debug Exception Program Counter 154
Debug Exception Save Registercccccooeeeennne 154
Debug Executive Memory Region
debug_exec_MeM......cccooevveieiieeniecieeenn, 179
Debug REGISLErccvvvvieeiiiieee e 153
Debug REGISLENccieieieiiiiriecieiecie e 150
Debug SECHONSovvviiiiiiie e 190
DEDUQG2 ..o 154
Debug2 ReQISIErvvvveeeiiiieeee e 154
debug_exec_MEM.......cccccvevieieeiieseeie e 182
_DEBUGGERccoviitiiiieiie e 182,186
Debugging Informationccccccevveeiiiieinee e 72
Debugging OPLioNSceeviiieiieiiiee e 72
TR 72
= 72
-SAVE-TENPS i 72
Defining Global Register Variables 205
--def SYM 177
--def sym _ebase_address=A 152
--defsym _m n_heap_size=M............ 144
--defsym _m n_stack_size=N........... 144
--defsym _mn_heap_size ... 114
--defsym m n_stack_sizecoceeeennnnn. 112
DEPC. See Debug Exception Program Counter
__deprecate qualifierccceevcviiiieei e 38
deprecat ed Attributecoeevereereee e 70
deprecated Attribute ..., 106, 124
DESAVE ...ooviiiiiice 154
EVICE SUPPOIT .ottt 85
diagnostic fileSoevviiiieeee e 59
DIFECLOMES ...eeeiieieeeiiiei e 78,80

© 2012 Microchip Technology Inc.

DS51686E-page 227

MPLAB® XC32 C/C++ Compiler User’s Guide

Directory Search OptionSsccccceevvieeiiiieeeniiieenee 82

S B 47,82

S SPECST i 82
S AM s 78
AN s 78
Documentation

CONVENLIONS ..ot 9

LAYOUL oot 8
doubl € oo 84, 96,128
driver

INPUL IlES ..o 46
driver option

CCl it 43
driver OptioNSc.cvvivveriieieee e 46, 60-83
E
SE 62,78,79,80,81
EBASE ..o 152
EBasSe REeQISLErccoooveiiiiiiiiiiieie e 152
_ebase_address ..., 152,155
__eeprom qualifiercccceiiiieniii e 35
EITAG o «ovveveremiiiiiiiii s 153
BN 155,188
eNIANISIM ..o 96
ENTRY o 176
Environment Variables

PIC32_C_INCLUDE_PATHcccccovirrieieennnn 46

Pl C32_C | NCLUDE_PATHcccooiiiiiiins 46

Pl C32_COWPI LER _PATH ... 46

Pl C32_EXEC PREFI X ..o 47

Pl C32_LI BRARY_ PATH......cociiiiiis 47

TMPDI R .o 47

XC32_C | NCLUDE_PATHcooviiiiieiien, 46

XC32_COWPI LER_PATH ..., 46

XC32_EXEC _PREFI X .o, 47

XC32_LI BRARY_ PATH ..., 47
EPC .o 151
EPC REQISEr ...oveeeieeieieee e 141,151,154
ERET oo 144
Error Control Options

-pedanti C-errors ...iieeneieenn, 65

SV T OF 70
Error Exception Program Countercccccecvvene 154
Error EPC. See Error Exception Program Counter
Exception Base RegiSterccoccvvevvieiiieeeiiieenne 152
Exception Memory Region

excepti ON_MBM ... 179
Exception Program COUNLErcoccceeeriieeeiieeennns 151
EXCEPLON VECIOrevviiiieiiiieieeie e 139
EXCePti ON_MBM .o, 182
EXL Bit oo 151
EXPONENT ..ttt 96
extended character setc.cccociviieniicnicnceeenn, 103
EXTENSIONS ...t 79
EXTERN ..o 177
EXTEIN L 70,76,84,131
External Interrupt Controllerccccccovveeeineenns 151
F
F constant SUffiX ... 103
-falign-functions ..., 73

-falign-labels ..o, 73
-falign-100PS . 73
Far e 124
_ farqualifier ... 30
-fargunent-alias ..., 83
-fargunent-noalias ..., 83
-fargunent - noal i as-gl obal ... 83
fatal error MeSSagEScvvevvviiieiieiiiiieieee e 60
-fcaller-saves ... 73
-fcall-saved ..., 83
-fecall-used ., 83
-fcse-foll OWj UNMPS e, 73
-fcse-skip-blocks . 74
-fdata-sectionsccoceveviieiicceene, 74,106
-fdefer-pop. See-fno-defer
-fexpensive-optimnm zationsccceeeee. 74
i Xed o, 83,206
-fforce-mem. .. 73,76
-ffreestandi NG ..o 63, 64
-ffunction-sectionscceeenene. 74,126
ST gCSE 74
-fgese- I M, 74
-fgCSe-SMuiii e 74
File EXIENSIONS ..vviiiiiiieiice e 48
il e C e, 48
File N e, 48
File i 48
File il i 48
Fil@. 0 i 48
il e S 48
il S 48
file types
0] o 11 | S PP RPUP PP UPPP PP 46
Fil €. C i, 48
File. N e, 48
il e 48
Tl @0 48
il B S e 48
Fil @S e, 48
-finline-functions 70,73,76,130
-finline-limt=n ... 76
-finstrunment-functions ... 84
-fkeep-inline-functions ... 76,131
-fkeep-static-consts ..o, 76
Flags, Positive and Negativec.cccceeeennee 76,83
float ., 84,96,128
float. h e, 96
floating-point constant suffixescccccovceeennnenn. 103
Floating-Point Format
doubl @ .o 96
float . 96
long doubl e ..o, 96
floating-point tyPeSoocveeiiiieiiie e 97
biased exponent ..o 96
EXPONENT ..ttt 96
FOUNING ©vvvieeiiiiiiiee e 97
-frove-al | -nmovabl es . 74
F N0 76,83
SfNo-asSM 63, 64
SfNo-bui TN v 63, 64

DS51686E-page 228

© 2012 Microchip Technology Inc.

Index

-fno-defer-pop .o 74
-fno-function-cse .., 76
-fno-ident o 84
-fNo-inline 77
-fno-keep-static-constsccoceeveeinnn. 76
-fno-peephol e ..o 74
-fno-peephol €2 ..o 74
-fno-short-double ..., 84
-fno-show col um ... 78
-fno-signed-bitfields ..o, 64
-fno-unsigned-bitfields ..o 64
-fno-verbose-asm......cooveiiniiiiiinie 84
-fomt-franme-pointer ... 72,73,77
-foptimze-regi ster-noveccooeven. 74
-foptim ze-sibling-calls ..o, 77
f or mat (type, format _i ndex,
first _to _check) . 124
format _arg (index) ..iieiieieenn, 125
8« TR 141
-fpack-struct ... 84
-fpce-struct-return i, 84
Frame Pointer (W14)coccovoiiieiieeeniieesee 77,83
-freduce-all-gi VS . 74
S regnmDVe 74
-frename-regi sters ..., 74
-frerun-cse-after-100p ...coceevvnnnen. 74,75
-frerun-100p-0pt .o 74
-fschedul e-i NSNS ..o 75
-fschedul e-iNSNS2 ..., 75
-fshort-enums ... 84,197
-fsigned-bitfields ..o 64
-fsigned-char ..o 64
-fstrength-reduce ... 75
-fstrict-aliasing ..o, 73,75
-fsyntax-only . 65
-fthread-junps .o, 72,75
function
PAramMetersvvvieeiiiiiiie e 112,128
POINTEIS .oeiiiiiie et 101
SPECIfIEIS .eoiiiii e 123
functions
AbSOIULE ...ooiiiiiiii 29
STALT C v 123
written in assembler ..o, 161
-funroll-all-100pPS .o 73,75
-funrol I -100PS . 73,75
-funsigned-bitfields ..o 64,197
-funsi gned-char ..., 64,94
-fverbose-asm.. .. 84
-fvolatile 84
-fvolatile-global ... 84
-fvolatile-static .o, 84
-fwitable-strings ., 64
G
S ettt 72
G NUM L 61
General EXCEPLIONcocveeiiieieiiie e 141
_general _exception_context() ... 141
_general _exception_handl er ... 156
_GEN_EXCPT_ADDRccoeieiiierinieeeaeenes 179,182

Global Register Variablescccccooovvieeeviiinnen.n. 205
L€ o USSR 147
LGP e 146,155, 186
O coovereieee e 141,146
H
S H 78
Hardware Enable Registerccccceiviieininnennne 149
header file
search pathccccciiiii i, 22
Header Filescccovvviiiiiiieeinieeee 46,48, 78,79, 80
header files ... 21,159
AEVICE e 85, 88
HEAP .o 144
NEap .o 144,155
el P 62
HEX FIl it 50
hexadecimal constants
C COAR i 102
N 141
High-Priority INtErruptsccccooceeerieeiiiee e 133
HWRENG ..o 149
I
L I PSP PRSPPI 78,80
L ISP OPRTRO 78,80
identifiers
unique length of ... 23
sidirafter o, 78
ST MBCT OS e 78,80
implementation-defined behaviorccccceoiene 92
minclude o 79,80
INClude Filescooiiiiiiiiiee e 82
incremental buildscccoooo 51
INNIDIt WarNINGSovvviriieiiiie e 65
initialized variablescccooceiiiiine 147
ININE oo 70,73,76
I NLTNE e, 77,84,130
FNPUT e 177
INPUL FIES .o 46
I N e 94,128
FNECET 150
iNteger CONSLaNTScceeeviiiiiiiiee e 102
integer SUffiXeScccoviiiiieiiiiiiiee e 102
Integer Values
Char e 94
I N 94
L ONG oo 94
1oNg 1 ONG oo 94
SHOI T e 94
signed char ..., 94
signed inNt e 94
signed [0Ng ., 94
signed long long ...cccooeeveeveicciciecen, 94
signed shortiiiiieniciciecee, 94
unsi gned char ..., 94
unsigned Nt . 94
unsi gned 1 0Ng .o 94
unsigned long 10Ng oo, 94
unsi gned short ..., 94
integral Promotioncoccceiiiee e 117

© 2012 Microchip Technology Inc.

DS51686E-page 229

MPLAB® XC32 C/C++ Compiler User’s Guide

Internet Address, MiICroChipccccveeeiiieeinieeennee. 12
Interrupt
High Priorityoovoieeieeeeceecee e 133
LOWET PIIOMLY ..ooveveeiiiie e 133
I NEErruPt s 125
Interrupt Attribute ... 134
i nterrupt Attributeccooeiveiiee, 125
Interrupt Control RegIStercccoevvieiiieeeiiieeene 150
interrupt functions
context SWItChiNgcoocveeviiienniie s 142
interrupt handler functioncccccoeviiinieeninen. 134
Interrupt Pragmacccevveiiiiiiiiiiieece e 135
Interrupt Pragma Clausecccccevvcieiiieeeinieenns 139
__interrupt qualifierccccovviiriiiiei e 35
I INT_MAX e 95
FNT_M N e 95
ST QUOL € 198
ISRV, TPl 135
_ ISR AT_VECTOR(Vv, ipl) i, 136
S SYSEEM i 82
K
KO e 141
KL e 141
ksegO_program mem............... 183, 185, 186, 187
KSEGL1 Data MemOrYcccccovvvreeiiiiiieee e 144
ksegl_boot _nmem.........eieeneenn, 181,182
ksegl data mem.........en. 186,187,188
L
S ST ROTRRP 81,82,177
R TSROSO 81
L constant SUfiXccccerieeniiniiienieeec e 102
_ LANGUAGE_ASSEMBLYoooiiiiieeiinieieens 172
_ LANGUAGE_ASSEMBLY__ .o 172
_LANGUAGE_ASSEMBLYcooviiiiiiiciinic e 172
LANGUAGE_ASSEMBLYc.ooiiiiiiiiieiinie e 172
_ LANGUAGE_C ..ottt 172
_ LANGUAGE _C e 172
_LANGUAGE C ..ot 172
LANGUAGE_C ..ot 172
DFaresoooveiieiicee e 55
SEArCh Orderccvvciiiiiieee e 46
user-definedcccovviiiiini 57
LIDFrAry oo 81
ANSI Standardccccovveeeiiiienee 14
FTmMtS. N o 94
CHAR BI T oo 94
CHAR _MAX . 94
CHAR M N .o 94
I NT_MAX e 95
IFNT_M N e 95
LLONG _MAX ...t 95
LLONG M N .o 95
LONG_IMAX e 95
LONG_M N .o 95
MB_LEN MAX ..t eeeereeee 94
SCHAR_IMAX ...t 94
SCHAR_ M N .o 94
SHRT_MAX L. 94
SHRT_M N oo 94

UCHAR _MAX ..ot 94
UL NT_IMAX e 95
ULLONG _MAX et 95
ULONG_MAX ..ot 95
USHRT _MAX ..ot 94
F T NK e 200
LINKET et 81
INKET SCHIPLS ...vvveeeiiie e 175
LiNKING OPLIONSvveiiiiiiieee e 81
m L e 81, 82
T OO UPRUSUPUOURUORS 81
-nodefaul t1ibs . 81
SNOSEAl I D o 81
L TSRO PSR PRUPPPROPPR 82
U e 82
W 82
XL NKEE 82
little endian formatcccoceeviiiiiiiinee 96
little-endianccoviniiiie e 93
LLONG _MAX ..ottt 95
LLONG M N oo 95
| 0 e 141
Local Register Variablescccccccovvivienennn. 205, 206
L ONG oo 94,128
Long doubl e ..o 128
long doubl eccoveiiiiiie 84,96
10Ng 1 0NQ i 70, 94,128
longcal | 125
I ongcal | Atributeccooevieiieiceeee, 127
LONG_IMAX e 95
LONG_M N i 95
__longranfunc__ ..., 127
LOOP OPLMIZETvveeeiiiereee e 74
LOOPp UNrolliNgooevviiiiieies e 75
Lower-Priority INterruptsccceevvvveeinercnieeenne, 133
M
S Mo 79
MBCTO ..t 78,80, 131
Macros
_ C32_VERSI ON_ ..o 173
__ LANGUAGE_ASSEMBLYccceiieieieenenne 172
_ LANGUAGE_ASSEMBLY .o 172
_LANGUAGE_ASSEMBLYccooiiiiriienee 172
LANGUAGE_ASSEMBLYcoceeviriieiineeine 172
_ LANGUAGE_C...oooirireeeet e 172
_ LANGUAGE_C__ i 172
_LANGUAGE C ..o 172
LANGUAGE _C ..t 172
_nmchp_no_float ..o, 172
_MCHP_SZI NT o 172
_MCHP_SZLONG......ccoiieeiinierc e 172
_MCHP_SZPTR ...cviiiiiiiiiie e 172
_ NO FLOAT e 172
U PIC e 172
P G e 172
_ PIC32_FEATURE_SET__ ..o 172
Pl C32MX ..o 172
Pl C32MX_ 172
Pl C32MX e 172
_ PrOCESSOI i 173

DS51686E-page 230

© 2012 Microchip Technology Inc.

__VERSI ON__ e 173
ITBUE 1N et 143
main functioncccccooiii 21,143
MaiN-IiNE COUEooiuiiiiiieiiie e 133
MBI | OC (i, 114,125
MANTISSA ...vveeeiiiie ittt 96
MAP fIl€S .o 59
-MapPi 0- debug ..o 62
MB LEN MAX ..o 94
-ntheck-zero-di vi Si ON .o 61
CIMCHP e 172
_nmchp_no_float .., 172
CIMCHP_SZI NT e 172
_MCHP_SZLONG ..o 172
_MCHP_SZPTR ..ot 172
VD e 79
-mdebugger ... 182,186
-nmenbedded-dat a ..o 61
memory allocationccccceeeeieiiiiiiee e 109
data memorycoccveeiiiiiiieee e 110
function codecceiiiiiiii 127
non-aut 0 variablescccccveieiiiiiiiieeees 110
program Memolyccccoeeeeiiiiiniiiiiiiiiiiniienens 113
static variablesccceciiiiin e 110
mMemory modelsccceeeeiviiiee e 114
messages
error, see error messages
fatal erroroooe v 60
TYPES OF i 60
SV 79
MG 79
_mn_heap_Si Ze ..o, 144,177
_mn_stack_Size .., 144,177
CIMPS e 174
M PS oot 174
B (< 1T 174
TIPS oottt ettt neeen 174
M PSLO oo 174
M PSLO s 56, 61,125
M PSLB i 125
-m psl6 -mo-float .., 56
_M PS_ARCH Pl C32MXoeiiiiiieiiiiiiesieeenn 174
M PSEL o 174
M PSEL__ o 174
M PSEL ..o 174
M PSEL ..ot 174
M PS_FPr e 174
M PS I SA 174
M PS_1SA TV it 174
_mps_no_float ..o, 174
_mps_soft _float ..., 174
M PS_SZINT ot 174
M PS _SZLONG ..ot 174
M PS_SZPTR ..ot 174
_M PS_TUNE_PI C32MX ...ooeiviiiieiiiiiiesiee e, 174
-mong-calls ., 61,125
S MM e 79
SMVD L 79
B 100057003 ¢V 61
-mo- check-zero-di vi si onccceevenee 61

-mo- enbedded-data ... 61
-MoO-float . 56, 61
-mo-long-calls ., 61
= MMO- MBNTPY eoeiieeeieieeie e e e 61
SIMO- M PSL6 i 56, 61
-mo- peripheral -1ibs ..o, 61
-mMmo-uni nit-const-in-rodata.......... 61
S VP s 79
S NPr OCESSON it 61,177
=V 79
-nsoft-float ., 56
S ML s 79
MICO INSLFUCHON ..vveevieeiieciie e 151
-nmuninit-const-in-rodatacccceeeei. 61
myMicrochip Personalized Notification Service 11
N
NAKEd oo 125
7= ¥ S 125
_ near qUAlifilercccooeieiie e 31
_nm _handl er ..., 144
-nodefaul t1ibs ., 81
_ NO FLOAT o 172
NOI NI NE Lo, 125
no_instrunent function Attribute...84
NOLQOADoooieeeeeeeeeeee e, 182,186
NOM PS16 .o, 125,144, 156
nonnul I (index, ...) e 125
non-volatile RAMccccceiiiiieinieeeic e 104
NOP e 183
(Yo) =] A U1 o T 126
nor et ur N Atrbuteooooiiiiiiiee e 70
SNOSTAi NC o 78,80
SNOSEAl T D o, 81
NULL MACIO ..vtiiiiiiiiiiiie ettt 28
NULL POINEIS .veeeieiiiiiiieii it 101
(0]
I SRR 72
=0 e e 50, 62
S0 X1 0UL 50
SO0 56,72
S OL s 72
SO 73,76
O G E SRR 56,73
SOB - PSLB e 56
-OB8 -mipsl6 -mo-float ..o 56
-B -mMmo-float . 56
ODbjeCt File ..ovvvviiiiiieiie e 74,79,81
Omitted OpPerandsccevveveenieeesieeeniee e 120
CON_FESEeL i 157
Optimization Control OptioNScccoecvveriveeiieeenn. 72
-falign-functions ... 73
-falign-labels ..o, 73
-falign-100pPsS i, 73
-fcaller-saves ..., 73
-fcse-foll OWjunps .o 73
-fcse-skip-blocks . 74
-fdata-secti onsccoceecieiiiciiieeeens 74
-fexpensi ve-optim zations 74
-fforce-mem. ., 76

© 2012 Microchip Technology Inc.

DS51686E-page 231

MPLAB® XC32 C/C++ Compiler User’s Guide

-ffunction-sections ... 74
S gCSE 74
-fgese-I Mo 74
-fgCSe-SMuiie 74
-finline-functions ... 76
-finline-limt=n ... 76
-fkeep-inline-functions 76
-fkeep-static-constsccccoeveeeerenn, 76
-frove-al |l -novabl es ..o, 74
-fno-defer-pop .o 74
-fno-function-cse ..o, 76
-fno-inline 77
-fno-peephol e ..o, 74
-fno-peephol €2 ..., 74
-fomt-frane-pointer ... 77
-foptimze-regi ster-nove 74
-foptim ze-sibling-calls........ 77
-freduce-all-giVvs .o, 74
-fregnove e, 74
-frename-regi sters ...cccvvveveieenn, 74
-frerun-cse-after-1o00p ...cccoevenee 74
-frerun-100p-0opt .o 74
-fschedul e-inNsSNS ..o 75
-fschedul e-insSNS2 ..., 75
-fstrength-reduce ..o, 75
-fstrict-aliasingccooceeveeviveeecnennn. 75
-fthread-junps . 75
-funroll-all-100pPS .o 75
-funrol I -100PS . 75
2 O e 72
SO0 e 72
S OL e 72
SO 73
OB 73
S OB 73
Optimization, LOOPccceevvvieiiieeeiiieeriiec e 74
Optimization, Peepholeccccooviiniiiinieiiien 74
Options
ASSEMDIING ...eveeeiiee 81
C Dialect Controlcccooviieiiiiiiiiiieeees 63, 64
Code Generation Conventionsccccceveerueee. 83
DebuggiNg ..eoeeeieiiiiee e 72
Directory Searchcccccoceeeeiviiiee e 82
LINKING oo 81
Optimization CoNtrolccccevveeiiieeesiiee e, 72
OULPUL CONLIOL ..o 62
Preprocessor Controlcccocevevvvvinivee e 78
Warnings and Errors Controlcccceeeeiinne 65
S 0B 56,73
S08 - PSLOB i 56
-Gs -mipsl6 -mo-float ..o 56
-0 -mMo-float i, 56
Output Control OPLIONSccevevireeeeriiieeneeeeee e 62
I PP PP PP 62
S 62
mhel P 62
L O TSRS PPN 62
S S 62
LTSRN 62
=K e e 62

output files

NAMES OF ..o 58
QUTPUT_ARCH ..ot 176
OQUTPUT_FORMAT ... 176
P
S P 80
_pack qualifiercocceeriiiiiiiee 37
PACKEd ..o 106
parameters, see function, parameters
SPedaNt i C oo 65, 70
-pedanti C-errors . 65
Peephole Optimizationccccevvvinieeeiiieeiieee 74
__persisten qualifierccccovvviiiis 32
persi stentqualifier ..o, 147
persi stent qualifier ..o, 157
PG 172
I G e 172
PIC32_C_INCLUDE_PATH ..ot 46
Pl C32_C I NCLUDE _PATH......ccooiiiiiieeee 46
Pl C32_COWPI LER _PATH ... 46
Pl C32_EXEC PREFI Xcooiiiiiiiiiiee 47
_ PIC32_FEATURE_SET__ .o, 172
Pl C32_LI BRARY_ PATH ... 47
_ PECB2MX e 172

Pl C32MX e 172
Pl C32MX .o 172
PIC32MX Device-Specific Options

G NUM 61

-mappi 0-debug ..o 62

-ntheck-zero-di vi si on ..ccoeviienne, 61

-menbedded-dat a ..o 61

S PSLO 61

-mong-calls i 61

S MTBITEPY ottt 61

- mo- check- zero-di vi sion 61

- mo- enbedded-data ..o 61

-mmo-float . 61

-mo-long-calls ., 61

= MMO- MBNCPY ot 61

SMMO-M PSL6 i 61

-mo- peripheral -1ibs ... 61

-mMmo-uni nit-const-in-rodata....... 61

S IPF OCES SO i 61

-nuninit-const-in-rodata ... 61
PIC32MX Start-up Codeccceevvireeiiiienieee e 144
pointer

COMPATISONS ..evveiiieeeirie e enree e 101

definitions ... 100

QUAIIFIEIS .o 100

EYPES it 100
POINTEIS ..t 70

Frame ... 77,83

SEACK ceiieiiiiiee e 83
POINTEIS .t 100-101

assigning dummy targetscccccecvevveennnn. 101

assigning iNtEgerscccceeeeviiiiieeeeeiiiiieeeeens 101

FUNCLION oo 101
POWETUP FOULINE oot 157
pragma dir€CtiVEScccovveeiriirenieeenee e 171
Pragmas

DS51686E-page 232

© 2012 Microchip Technology Inc.

#pragma config .ceevevicninn, 86,87,171
#pragma interrupt ..., 171
#pragnma VEeCt OFocovvciiiiiiicneeene 171
Predefined Macrosccccceviiiiieii i 172
PrEfiX e 82
PreEPIrOCESSING ..veieeeeiiaiieeeriiieesieeeeniieeeaieeesnneeeenees 169
preprocessor
tYPE CONVEISIONS ...oeviiiiiiiiiieiiiie et 170
Preprocessor Control Optionscccovvveeiiieenns 78
S 78
S D 78
D 78
SAMo 78
AN 78
-fno-showcol um ..o 78
S H 78
N SR 78
L I TSP OPRURPROON 78
idirafter 78
ST MBCT OS i 78
sinclude o 79
M 79
VD 79
SV 79
MG 79
MM 79
SMVD 79
Y, © OO TR 79
ML 79
—NOSEAi NC v 80
P 80
Strigraphs 80
U 80
undef 80
preprocessor direCtivescccocuvveeeeeniinnnen. 169-170
preprocessor macros
predefinedoccceiiiiiii i 41
PRI . 152
_ PrOCESSOI i 173
Processor Identification Registercccccvevneeen. 152
PrOCESSOr . O oo 177
Program MEMONYcoovuureeeeemiiurrieeeeaainneeeeeanens 113
Program Memory Region
ksegO_program mMmemc.cecevvevernenen. 179
ProOJECE NAME ...ooiiiiiii e 59
PROVI DE ..ottt 177
PrOVISIONS ...ooiiiiiiiiee e 58
PUT € it 126
Q
=0 72
qualifier
align 34
AUL O oo 112
DaNK ..o 33
(070 0 <1 AP PTR 104
_ dEPreCateceevvveeeiiieeeee e 38
_BBPIOM ittt 35
Al 30
_NLEITUPL e 35
NEAT .. 31

PACK e 37
_ PEISISIENE .eviiiiiiie e 32
persi stent ..., 147,157
 SECHON .eveiieeeetie e 39
VOIALIE .. 104
_XAALA e 33
_ YdatA e 33
QUANIFIEIS .veiiiiie e 104-105
and aut o variablesccccoveieiiiiienin 112
and STUCLUIES ... 98
R
_ RBOO00 e 174
_ RBO00__ e 174
R3000 ..o 174
R3000 . 174
L i 141
radix specifiers
C COAR i 102
_ramfunC__ e 127
Fant UNC oo 126
_ranfunc_begi N ..o, 155
_ranfunc_length ..., 148,155
RAW DEPENUENCY ...ovovriieiiiieiiiee et 75
RDHWR ...ttt 149
Reading, Recommendedccccceeiiiiiiiee e, 10
read-only variablescccoceeeiiiiiiiii e 104
Feal | 0C .o 114
Reduce Code Sizeccccceviiriieiiiiicseesen 72,73
Fegi Ster i, 205, 206
Register CoNVeNtionsccccecvveriieennieeesnieee e 121
registers
allocation toccecvvevierieneer e 114
Requested Interrupt Priority Levelccccooceeeeee 151
LT ESEL 176
reset
code executed afterccoevvieiiiei e 157
_RESET_ADDRcoioiiiiiieie e 179,181
RETUIMN TYPE .. 66
runtime startup code
variable initializationccocceiiiiiiiennnn. 147
PR PTT 180
S
S S 62,81
R PPN 82
S0- ST s 141
-SAVE-TENPS i 72
SBI K e 144
_Sbss_begin ..o, 188
_Shss_end ..., 188
SCHAR_IMAX ..ottt 94
SCHAR. M N .o 94
Schedulingoooviciiiiec e 75
_sdata_begi N ..o, 187
_sdata_end ... 187
SDE Compatibility Macrosccccceevvvvincvneeninnennn 174
M PS o 174
M PS_ e 174
T PS oot 174
M PSL6 oo 174

© 2012 Microchip Technology Inc.

DS51686E-page 233

MPLAB® XC32 C/C++ Compiler User’s Guide

_M PS_ARCH PI C32MX ..ot 174
_ M PSEL ..o 174
M PSEL_ e 174
M PSEL ..o 174
M PSEL ..o 174
M PS_FPr 174
_CMPS I SA 174
M PS_1SA TV i 174
_mps_no_float ..., 174
__mps_soft _float ... 174
M PS_SZINT e 174
_MPS_SZLONGcocoviiiiririciieee 174
_MPS_SZPTR ..ot 174
_M PS_TUNE_PI C32MX ..o 174
R3000 .. 174
_ RB0O00__ 174
R3000 ..o 174
R3000 ..o 174
Section
Configuration Wordscccceeeeeiiiveneeeeinnnnen. 86
LS]=Tox 1o] o PR 74
section (“Name”) . 106
Section (NAMB) . 126
__section qualifierccccovieriiiiieine e 39
SECTI ONS Commandcccevvvvvieiieenieen 180, 181
SFR Memory Region
ST I S 180
SRS i 88
Shadow Register Control Registerc.cccccvveeen. 151
Shadow Register Map Registerccccovevvernnenn. 151
SHOI T 94,128
SHRT_MAX e 94
SHRT_M N e 94
SIGN DIt oo 96
Signed char ... 94
signed i Nt 94
signed [oNg oo 94
signed 1ong 10N .o, 94
Signed ShOort ..o 94
Simulator, Command-Linecccccvvveeeeeeeeeeeeeiinen, 14
SI_Timerint e 150
SIZE OF tYPES it 97
] o OO 141,144
SpPACe AHNDULEoovviiieiiee e 107
Special Function RegiSterscccoovvvivieiiiee e 50
special function registers, see SFRs
Specifying Registers for Local Variables 206
S S P CS T i 82
SR 141
SRSCET e 151
SRSMVAD oo 151
Stack
CUSAQE oo 112
Pointer (W15) ...coccvevieiiieeec e 83, 86
_SEtACK i 144,155, 189
Stack LOCALIONc.evevviiieiiieeeeec e 189
Stack POINtEr ... 144
Standard I/O FUNCHIONScoovveeiiiiieiiee e 14
standard library files
Start-up and Initializationcccccceeviiiinnieiiineenn 58

FOI C o 58
FOI CH oo 58
SEALIC it 84
staticfunctionsccoceeveiiiiiiiciecccceee, 123
static variablesccccooiiiiii 110
stati cvariablescccocevviviiiiiiie i 147
SEATUS o 150
Status REQISTErcooviieiieciieee e 150
St At USBEY v 152,156
storage durationcccceeeriieeiniee e 110
StriNG ItEralscvveveiiiie e 103
CONCALENALION ..eoivveiiiiiee e 104
storage locationcccovveeeiiiiiiee e 103
EYPE OF e 103
SHINGS i s 64
struct types, see structures
SErUCTUNe o 128
structure bit-fieldsccccovviiiiiiiie 98
structure QUAlIfiersccccviiiriiinie e 98
SEIUCTUIES oot 98
bit-fields in ... 98
SWIECK <. 67
SYMDOI .o 82
SyntaX CheCKcoiviiiiiieiiiiiiie e 65
System Function
LT NK e 200
UNLTNK e, 200
System Header Filesccoccvvvvieeiniie e 67,79
T
F0-T 9 i 141
temporary variablescccooiviiiiee i 112
TIMPDE R oo 47
Trace Control Registerccccvvveeiiiiieeeeeeiiiiienn. 153
TraceBPC ... 153
TraceBPC ReQiStercoovcviiiieeiiieeeeeec e 153
TraceCont rol ... 153
TraceControl 2 ..o 153
-traditional ., 64,130
Traditional Ccceeeeiiiiiiiie e 71
THGraphs ..oooeeeoi 67,80
SErigraphs 80
TYPE CONVEISION oot 70
tYPE CONVEISIONS ...oeviviieiiie et 117
U
S U 78,80
LU TSP R 82
U constant SUfiXcccecveriieiiieniiesieeiee e 102
UCHAR _MAX ..ottt 94
UL NT_ MAX e 95
ULLONG MAX ..ot 95
ULONG MAX ..ot 95
SUNAET 80
uninitilized variablesccccooiiiiini e, 147
unions
ANONYIMOUS ...ttt 99
QUAIIFIEIS vt 98
Uni que_secti ON ...ccocevvveieieieneneiee, 107,126
UNETNK (e 200
unnamed bit-fields ... 99

DS51686E-page 234

© 2012 Microchip Technology Inc.

unnamed structure membersccccvveeevnieeenninenn. 99
18101 o] I oo] o R PRSP 75
unsi gned char ... 94
unsi gned Nt . 94
unsi gned 1 0Ng ..o 94
unsigned long 10oNg .o, 94
unsi gned short ..., 94
unused Attributecoccoeeieiiieneiee 68, 107, 126
Unused Function Parameterccccooccvenineenineeene 68
Unused Variable ... 68
unused variables
TEMOVING .eevieeiiiiiiieeeciiiie e e e e etirree e e e saireeeeeeeaees 104
USB et 224
USed ALMDULEcvvieiiececce e 127
User Trace Data Registerccccocveeiiieeeniieennnee. 153
User TraceDat @ccccvveiiiiiiniiciiiciee, 153
USHRT _MAX ..t 94
Vv
SV s 62
VO e 141
VL e 141
variables
ADSOIULE .. 29
AUL O o 112
iN Program Memoryccccoecvverveeerinneens 113-114
INTEUISIEIS oot 114
INItIANIZAtION ...oooviiei 147
SIZES it s 97
SEALT € v 110
storage durationcccccveeiieeeniniennieeennenn 110
Variables in Specified Registersccccocvvrrnnenn. 205
VECT OF oottt 127
VECLOr Pragmaccccvvvvviiieiiiiiiiiieeeeeieeeesnsnssssisenes 140
_Vector_spaci NQ ...ccoevveeveeieennns 150, 155, 178
_ VERSI ON__ e 173
VOIALIE .. 84
volatile qualifierccccoocviiieii 104
W
S Wi e 65, 68,69, 71
=W et 65
WE X e 180
SV 81
-Vaggregate-return ... 69
VLT 65, 68,69, 71
WarNiNGg MESSAJESvvverueeeiirreeeaireeenrreennneeasneeannes 60
Warnings and Errors Control Optionsc....... 65
-fsyntax-only . 65
-Pedant i C .occcveeeeice e 65
-pedanti C-errors . 65
WV 69
=W e 65
-VAggregate-returncoceeeeeviviieennnnn, 69
SV 65
-Whad-function-cast ... 69
-Weast-al i gn .o 69
-Weast - qual .o 69
-Wehar-subscripts ... 65
-WEOMYBNT o 65
-WEONVEr ST ON o 70

-WHi V-DY-Zero i, 65
SWEITOF ittt
-Wormat ...

-Wnplicit
-Wnplicit-function-declaration66

-Wiplicit-int e, 66
SWNEiNe 70
-Warger-than- ..o, 70
-Wong-10Ng e 70
W N 66
- Wi ssing-braces ..o, 66
-Whri ssi ng-declarations 70
-Wrissing-format-attribute ... 70
-Wri ssing-noreturncceeevveeneeennn. 70
- Wi ssing-prototypes ...venne. 70
-Whrul tichar . 66
-Whest ed-ext ernsccoceeviieinieeneens 70
-Who-1ong-10Nng .o, 70
-Who- si gn-conpareeeveeeeeenn. 71
-Whadded ..o, 70
-WWarent heses ..., 66
-Woointer-arith e, 70
-Wedundant -decl scccooiiieiiiins 70
-Weturn-type . 66
-Wsequence-poi Nt ..o, 67
SVBhadOW .o 70
-VMi gN- COMmPare ..o 71
-Vtrict-prototypes .iivcieneae 71
VWt Ch L, 67
-Wsystem headers ..o, 67
-Wraditional .o, 71
SWrigraphs e, 67
SWINdef 71
-Wininitialized . 68
- WINKNOWN- Pragnmasc.cccoeeeneneienenen. 68
-Winr eachabl e-code ..o, 71
SWINUSEd o 68
-Winused-function ..., 68
-Winused- | abel ... 68
-Winused- paramet ercccecevvieineenns 68
-Winused-val ue ..., 68
-Winused-variable ..., 68
W ite-Strings e, 71
-Wno-multicharccoceeiiiiieeee e, 66
Warnings, Inhibit ... 65
warn_unused_result ..., 127
Watchdog TIMErcoceviiiiieiiee e 224
-Whad-function-cast ... 69
-Weast-al i gn e 69
-Weast - qual .o 69
-Wehar-subscripts .., 65
SWEOMMEBNT L 65
SVWEONVEN ST ON o 70
-WHi V-DY-ZEro i 65
WBAK .o 107,127
Web Site, Microchipcccccccoiieeiiiieii e, 12
A -1 (o] S SRR 70
SWOrmat o 65, 70
SWIPLT CIt e 66
-Wnplicit-function-declaration ... 66

© 2012 Microchip Technology Inc.

DS51686E-page 235

MPLAB® XC32 C/C++ Compiler User’s Guide

SWplicit-int e, 66
SWNEine 70,131
W e 82
-Warger-than- ... 70
SWoNng-10Ng oo 70
SWVWIBE N 66
-Wr sSing-braces ..o 66
-Wri ssing-declarationsccceceeveienn, 70
-Wrissing-format-attribute 70
-Whi SSing-noreturn .., 70
- Wi SSing-prototypes ...vviennenine. 70
SWhul ti char e, 66
-Whest ed- exXt erns ..o, 70
SWA0- 65
- Who- depr ecat ed-decl arations 70
-Wh0-di V-DY-ZEr 0 .o 65
-WA0-10NG-10NG o 70
-Who-mul ti char e, 66
SWhoNNUE T 125
-WA0- Si gN- CONMPareccccoeeveecvece e, 69, 71
-Whadded ..o 70
-Warent heses ..., 66
-Woointer-arith 70
-Wedundant -decl s ..., 70
S-WeturnN-type . 66
-Wsequence- pPoi Nt . 67
SWVBhAadOW oo 70
Vi gN- COMPAr € .o 71
-Vtrict-prototypes . 71
SVBWI T Ch e, 67
-Wsystem headers ..., 67
-Wraditional . 71
SWrigraphs 67
SWINdef e 71
-Wininitialized e, 68
- WINKNOWN- Pr agimascccocveveevevieevee e, 67,68
-Winr eachabl e-code ..., 71
SWINUSEd i 68, 69
-Winused-function ..., 68
-Winused- | abel ..., 68
-Winused- paramet er ... 68
-Winused-val Ue ..., 68
-Winused-variabl e ..., 68
W Tt e-StrinNgS e 71
X

= X et 62
XC. hheaderfileccoceviiiiiiiciiiiccc e, 85
XC32_C I NCLUDE_PATH ...co.oviviveeeeeeeern, 46
XC32_COWPI LER PATH ..o 46
XC32_EXEC _PREFI X ..o, 47
Do Y o [of o USSR 45
XC32_LI BRARY_ PATH ..o 47
_ xdata qualifier ... 33
X T NKEE e 82
Y

__ydata qualifier ... 33

DS51686E-page 236

© 2012 Microchip Technology Inc.

Index

NOTES:

© 2012 Microchip Technology Inc. DS51686E-page 237

MICROCHIP

Worldwide Sales and Service

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqging
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai

Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/02/11

DS51686E-page 238

© 2012 Microchip Technology Inc.

http://support.microchip.com
http://www.microchip.com

@Iasﬂ U

KomnaHus ((3J'IeKTpO|_|J'|aCT» npeanaraeT 3akKn4vyeHmne onrocpoYHbIX OTHOLLIEHUN npu
NOoCTaBKaxX MMMNOPTHbIX 3NTEKTPOHHbIX KOMMOHEHTOB Ha B3aMMOBbLIFO4HbIX yCJ'IOBI/lFlX!

Hawwn npeumyuiectsa:

e OnepaTuBHbIE NOCTABKM LUMPOKOrO CMeKTpa 3NeKTPOHHbIX KOMMNOHEHTOB OTEYECTBEHHOIO U
MMMOPTHOrO NPON3BOACTBA HANPAMYO OT MPOM3BOAMTENEN U C KPYNMHENLLNX MUPOBbLIX
CKNaaos.;

MocTaBka 6onee 17-TM MUNIIMOHOB HAMMEHOBAHWUIN 3NEKTPOHHbLIX KOMMNOHEHTOB;

MocTaBka CNoXHbIX, AeULNTHBIX, MMOO CHATLIX C MPOM3BOACTBA NO3ULIUIA;

OnepaTtunBHbIE CPOKM NOCTABKM Nof 3aka3 (0T 5 pabounx gHewn);

OKcnpecc goctaska B Nnobyto Touky Poccuu;

TexHnyeckas nogaepkka npoekTa, NomMoLLlb B nogdope aHanoros, NocTaBka NPOTOTUMOB;

Cuctema MeHeXMeHTa KavyecTBa cepTuduumnposaHa no MexayHapogHomy ctaHgapTty 1ISO

9001;

o JlnueHausa ®CH Ha ocyulecTBneHne paboT ¢ NCNONb30BaHWEM CBEOEHUIN, COCTABAOLLINX
rocygapCTBEHHYIO TalHy;

o [locTaBka cneumnanmampoBaHHbIX KOMNoHeHToB (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics v gp.);

MoMMMO 3TOro, O4HMM M3 HanpaBnNeHU koMnaHum «AnekTpollnacT» ABNseTca HanpaBneHne

«UcTouHmkn nutaHua». Mel npeanaraem Bam nomoub KoHCTpyKTOpCKOro otaena:

e [logGop onTuManeHOro peleHus, TexHn4eckoe 060CHOBaHME Npu BbIOOpPE KOMMOHEHTA;
Monbop aHanoros.;
KoHcynbTaumm no NpUMEHEHMIO KOMMOHEHTA;
MocTaBka 06pa3yoB M NPOTOTUMNOB;
TexHn4veckasn noaaepka npoekTa;
3awmTa OT CHATMSA KOMMOHEHTA C NPON3BOACTBA.

Kak c Hamu cBfizaTbCcA

TenedoH: 8 (812) 309 58 32 (MHOrokaHanbHbIN)
Pakc: 8 (812) 320-02-42

OnekTpoHHas nouTta: org@eplastl.ru

Aapec: 198099, r. Cankt-INeTepbypr, yn. KannHuHa,
Oom 2, kopnyc 4, nutepa A.

mailto:org@eplast1.ru

