$I_{Gxx(on)}$

 $I_{\text{Gxx(off)}}$

 V_{Vs}

 V_{GS}

T.ı

Dual Half Bridge Driver IC

850

580

10

7.5 ... 60

-40...+150

mΑ

mA

٧

V

°C

Features

- Compatible to very low ohmic normal level input N-Channel MOSFETs
- Separate input for each MOSFET
- PWM frequency up to 50 kHz
- Operates down to 7.5V supply voltage
- Low EMC sensitivity and emission
- Adjustable dead time with shoot through protection
- Deactivation of dead time and shoot through protection possible
- Short circuit protection for each Mosfet can be disabled and adjusted
- Driver undervoltage shut down
- Reverse polarity protection for the driver IC
- Disable function
- Input with TTL characteristics
- 1 bit diagnosis
- Integrated bootstrap diodes
- Green Product (RoHS compliant)
- AEC Qualified

PG-DSO 20

Marking **TLE6282G**

Application

- Dedicated for DC-brush high current motor bridges in PWM control mode and adapted for use in injector and valve applications for 12, 24 and 42V powernet applications. Useable as four fold lowside driver for unipolar 4 phase motor drives.
- The two half bridges can operate independently. The two half bridges can even operate at different supply voltages.

Product Summary

Supply voltage range

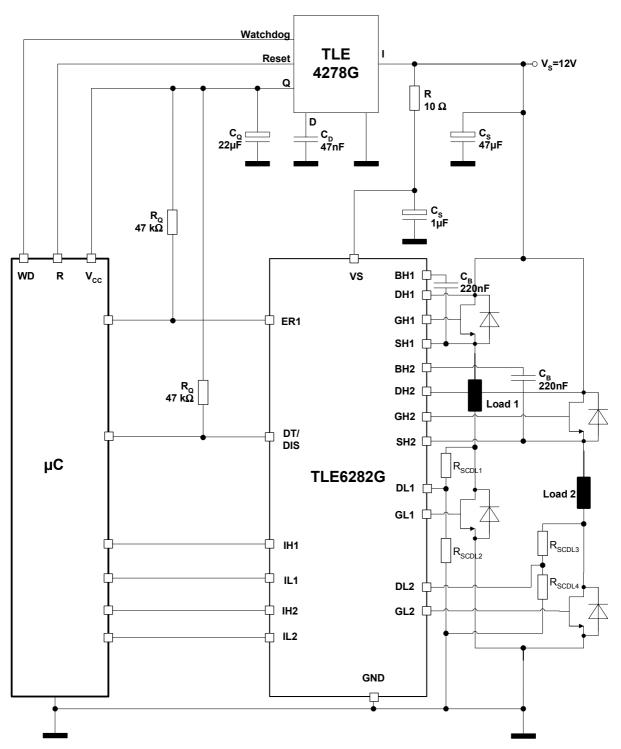
Temperature range

Turn on current

Turn off current

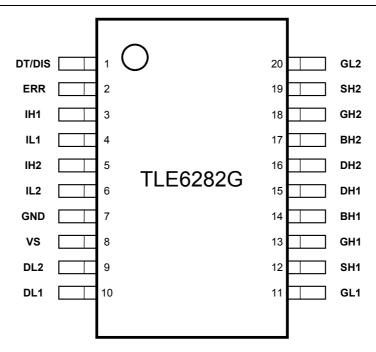
Gate Voltage

General Description


Dual half bridge driver IC for MOSFET power stages with multiple protection functions.

Block Diagram Charge Pump Linear BH1 Regulato BH2 GND DH1 V_{GS} limitation HS1 INH GH1 Short circuit SH1 Undervoltage IH1 Floating HS Driver 2 Input control DH2 IL1 V_{GS} limitation HS2 GH2 IH2 Level Short circuit SCD Dead time IL2 SH2 DT/DIS Floating LS Driver 1 DL1 V_{GS} limitation LS1 GL1 Shift Short circuit SCD Undervoltage detect. FRR Short circuit Detect Undervoltage Floating LS Driver 2 DL2 d GL2 V_{GS} limitation LS2 Short circuit SCD detect.

Data Sheet 1 Rev 2.4 2008-03-18


Application Block Diagram - Injector / Valve Drive

This application diagram shows the principle schematics of a typical injector / valve drive. Other configurations are possible as well. Freewheeling diodes are not considered. The voltage divider networks, e.g. R = 10 k Ω , across the two Low Side MOSFETs are an example as well; they allow to increase the current limit threshold for Short Circuit protection SCD for the Low Side MOSFETs. As they pull down the Sources of the High Side MOSFETs (while the Low Side MOSFETs are off), they allow to pre-charge the C_{Bx} capacitors during start-up (before the Driver IC gets enabled). The SCD current limit threshold can be increased for the High Side MOSFETs as well by using voltage divider networks across the High Side MOSFETs. SCD can also be disabled (High Side and / or Low Side MOSFETs).

Data Sheet 2 Rev 2.4 2008-03-18

Pin	Symbol	Function
1	DT/DIS	a) Set adjustable dead time by external resistor
		b) Deactivate deadtime and shoot through protection by connecting to 0V
		c) Reset ERR register
		d) Disable output stages
2	ERR	Error flag for driver shut down
3	IH1	Control input for high side switch 1
4	IL1	Control input for low side switch 1
5	IH2	Control input for high side switch 2
6	IL2	Control input for low side switch 1
7	GND	Ground
8	VS	Voltage supply
9	DL2	Sense contact for short circuit detection low side 2
10	DL1	Sense contact for short circuit detection low side 1
11	GL1	Output to gate low side switch 1
12	SH1	Connection to source high side switch 1
13	GH1	Output to gate high side switch 1
14	BH1	Bootstrap supply high side switch 1
15	DH1	Sense contacts for short circuit detection high side 1
16	DH2	Sense contacts for short circuit detection high side 2
17	BH2	Bootstrap supply high side switch 2
18	GH2	Output to gate high side switch 2
19	SH2	Connection to source high side switch 2
20	GL2	Output to gate low side switch 2

Data Sheet 3 Rev 2.4 2008-03-18

Maximum Ratings at T_j =-40...+150°C unless specified otherwise

Parameter	Symbol	Limits \	/alues	Unit
Supply voltage ¹	V _S	-4	60	V
Operating temperature range	T _j	-40	150	°C
Storage temperature range	T_{stg}	-55	150	
Max. voltage range at lxx; DT/DIS		-1	6	V
Max. voltage range at ERR		-0.3	6	V
Max. voltage range at BHx	V BHx	-0.3	90	V
Max. voltage range at DHx ²	V DHx	-4	75	V
Max. voltage range at GHx ³	V GHx	-7	86	V
Max. voltage range at SHx ³	V SHx	-7	75	V
Max. voltage range at DLx	V DLx	-7	75	V
Max. voltage range at GLx	V GLx	-2	12	V
Max. voltage difference BHx - SHx	VBHx-VSHx	-0.3	17	V
Max. voltage difference GHx – SHx	VGxx-VSxx	-0.3	11	V
Power dissipation (DC) @ T _A =125°C / min.footprint	P _{tot}		0.33	W
Power dissipation (DC) @ T _A =85°C / min.footprint	P _{tot}		0.85	W
Electrostatic discharge voltage (Human Body Model)	$V_{\rm ESD}^4$		2	kV
according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1 – 1993				
Thermal resistance junction - ambient (minimal footprint with thermal vias)	R_{thJA}		75	K/W
Thermal resistance junction - ambient (6 cm ²)	R _{thJA}		75	K/W

Functional range

Parameter and Conditions	Symbol	Valu	Values	
at $T_j = -40+150$ °C, unless otherwise specified				
Supply voltage	V _S	7.5	60	V
Operating temperature range	$T_{\rm j}$	-40	150	°C
Max. voltage range at Ixx, DT/DIS		-0.3	5.5	V
Max. voltage range at ERR		-0.3	5.5	V
Max. voltage range at BHx	V внх	-0.3	90	V
Max. voltage range at DHx ²	V DHx	-4	75	V
Max. voltage range at GHx ³	V GHx	-7	86	V
Max. voltage range at SHx ³	V SHx	-7	75	V
Max. voltage range at DLx ³	V DLx	-7	75	V
Max. voltage range at GLx	V GLx	-2	12	V

Data Sheet 4 Rev 2.4 2008-03-18

¹ With external resistor (≥10 Ω) and capacitor ² The min value -4V is increased to –(V_{BHx}- V_{SHx}) in case of bootstrap voltages <4V ³ The min value -7V is reduced to –(V_{BHx}-V_{SHx}-1V) in case of bootstrap voltages <8V ⁴ All test involving Gxx pins V_{ESD}=1 kV!

Data Sheet TLE6282G

Max. voltage difference BHx - SHx	VBHx-VSHx	-0.3	12	V
Max. voltage difference GHx – SHx	VGxx-VSxx	-0.3	11	V
PWM frequency	F PWM	0	50	kHz
Minimum on time external lowside switch – static condition @ 20 kHz; $Q_{Gate} = 200nC$	<i>t</i> p(min)		2	μs

Electrical Characteristics

Licetrical Gharacteristics					
Parameter and Conditions	Symbol		Values		Unit
at T_j = -40+150 °C, unless otherwise specified and supply voltage range V_S = 7.5 60V; f_{PWM} = 20kHz		min	typ	max	
Static Characteristics					
Low level output voltage (V _{GSxx}) @ I=10mA	△V LL	-	60	150	mV
High level output voltage (V _{GSxx}) @ I=-10mA; Vs≥11.5V	△VHL	8	10	11	V
High level output voltage (V _{GSxx}) @ I=-10mA; Vs<11.5V	△VHL		Vs-1.5		V
Supply current at VS (device disabled)	/VS(dis)42V		4	8	mA
$\textcircled{0}$ V _{bat} = V _S =42V R _{DT} =400k Ω					
Supply current at $V_S @ V_{bat} = V_S = 14V \ 20kHz$ (Outputs open)	NS(open)14V		7	15	mA
Supply current at $V_S @ V_{bat} = V_S = 14V 50kHz$ (Outputs open)	NS(open)14V		7	15	mA
Supply current at $V_S @ V_{bat} = V_S = 42V \ 20kHz$ (Outputs open)	I _{VS(open)42V}		7	15	mA
Low level input voltage	VIN(LL)			1.0	V
High level input voltage	VIN(HL)	2.0			V
Input hysteresis	ΔV IN	100	170		mV

Data Sheet 5 Rev 2.4 2008-03-18

(all channels; high on – low off)

Dynamic characteristics (pls. see test circuit and timing diagram) Turn on current @ $V_{Gxx} - V_{Sxx} = 0V$; $T_i = 25$ °C (Gxx(on) 850 mΑ @ $V_{Gxx} - V_{Sxx} = 4V$; $T_i = 125$ °C 700 @ C_{Load} =22nF; R_{Load} =0 Ω Turn off current @ V_{Gxx} -V_{Sxx} = 10V; T_i=25°C **I**Gxx(off) 580 mΑ @ $V_{Gxx} - V_{Sxx} = 4V$; $T_i = 125$ °C 300 @ C_{Load} =22nF; R_{Load} =0 Ω Dead time (adjustable) @ $R_{DT} = 1 \text{ k}\Omega$ $t_{\rm DT}$ 0 μs \bigcirc RDT = 10 k Ω 0.05 0.24 0.38 0.40 1.0 2.50 \bigcirc RDT = 50 k Ω 3.1 @ R_{DT} = 200 kΩ @ C_{Load} =10nF; R_{load} =1 Ω Rise time @ C_{Load} =10nF; R_{load} =1 Ω (20% to 80%) $t_{\rm rise}$ 100 300 ns Fall time @ C_{Load} =10nF ; R_{load} =1 Ω (80% to 20%) 150 440 **t**fall ns Disable propagation time tP(DIS) 3.4 5 7 μs @ C_{Load} =10nF ; R_{load} =1 Ω Reset time of diagnosis 1 2 tP(CL) 3.1 μs @ C_{Load} =10nF; R_{load} =1 Ω Input propagation time 160 500 tP(ILN) ns (low side turns on, 0% to 10%) Input propagation time **t**P(ILF) 100 500 ns (low side turns off, 100% to 90%) Input propagation time **t**P(IHN) 120 500 ns (high side turns on, 0% to 10%) Input propagation time **t**P(IHF) 120 500 ns (high side turns off, 100% to 90%) Input propagation time difference 20 40 70 **t**P(Diff) ns (all channels turn on) Input propagation time difference **t**P(Diff) 20 50 ns (all channels turn off) Input propagation time difference 40 150 **t**P(Diff) ns (one channel; low on – high off) Input propagation time difference tP(Diff) 20 150 ns (one channel; high on - low off) Input propagation time difference **t**P(Diff) 40 150 ns (all channels; low on - high off) Input propagation time difference **t**P(Diff) 20 150 ns

Data Sheet 6 Rev 2.4 2008-03-18

Test Circuit and Timing Diagram

Diagnosis and Protection Functions

Parameter and Conditions	Symbol		Values		Unit
at T_j = -40150°C, unless otherwise specified and supply voltage range V_S = 7.5 60V; f_{PWM} = 20kHz		min	typ	max	
Short circuit protection filter time	t _{SCP(off)}	6	9	12	μs
Short circuit criteria (VDS of Mosfets)	V _{DS(SCP)}				
For Low Sides		0.5	0.75	1.0	V
For High Sides		0.45	0.75	1.05	
Disable input level	V_{DIS}	3.3	3.7	4.0	V
Disable input hysteresis	ΔV_{DIS}		180		mV
Deactivation level for dead time and shoot through protection	V _{DIS}	0.6	0.85	1.1	V
Deactivation input hysteresis	ΔV_{DIS}		170		mV
Error level @ 1.6mA I _{ERR}	V_{ERR}			1.0	V
Under voltage lock out for highside output – bootstrap voltage	V _{BHx (uvlo)}		3.7	4.6	V
Under voltage lock out for lowside output – supply voltage	V _{Vs (uvlo)}		4.8	5.9	V

Data Sheet 7 Rev 2.4 2008-03-18

Remarks:

Default status of input pins:

To assure a defined status of all input pins in case of disconnection, these pins are internally secured by pull up / pull down current sources with approx. 20μ A. The following table shows the default status of each input pin.

Input pin	Default status
ILx (active high)	Low
IHx (active low)	High
DT/DIS (active high)	High

Definition:

In this datasheet a duty cycle of 98% means that the GLx pin is 2% of the PWM period in high condition.

Functional description

Description of Dead Time Pin / Disable Pin / Reset

In the range between 1.5 and 3.5 V the dead time is varied from 100ns to 3.1 μ s typ. In the range below 1.0V the dead time is disabled / shoot through is allowed. Both external Mosfets of the same half bridge can be switched on simultaneously. This function allows the use of a half bridge for valves and injectors. In the range above 4.0V the device is disabled. If DIS is pulled up to 5V for 3.1 to 3.4 μ s only the ERR register is cleared (reset), no output stage is shut down. A shut down of all external Mosfets occurs if DIS is pulled up for longer than 7μ s.

Condition of DT/DIS pin	Function
0 - 1V	Disable of dead time; Shoot through is allowed
1.5 - 3.5V	Adjust dead time between 100ns and 3.1µs typ.
> 4V	a) Reset of diagnosis register if DT/DIS voltage is higher than
	4V for a time between 3.1µs and 3.4µs
	b) Shut down of output stages if DT/DIS voltage is higher
	than 4V for a time above 7µs (Active pull down of gate volt-
	age)

Description of Diagnosis

The ERR pin is an open collector output and has to be pulled up with external pull up resistors to 5V. In normal conditions the ERR signal is high. In case of shutdown of any output stage the ERR is pulled down. This shut down can be caused by undervoltage or short circuit.

Data Sheet 8 Rev 2.4 2008-03-18

Recommended Start-up procedure

The following procedure is recommended whenever the Driver IC is powered up:

- Disable the Driver IC via DT/DIS pin
- After the supply voltage has ramped up, wait for several ms to pre-charge the bootstrap capacitors of the High Side MOSFETs C_{Bx} through the resistors R on the DLx pins (voltage divider network, pls. see Application block diagram on pg. 2) t_{WAIT} ≈ 3 x C_{Bx} x 2 x R, whereas R = 10 kΩ
- Enable the Driver IC via DT/DIS pin
- Start the operation by applying the desired pulse patterns. Do not apply any pulse patterns to the IHx or ILx pins, before the C_{Bx} capacitors are charged up.

Alternatively, the Driver IC can be enabled via the DT/DIS pin right after ramping up the supply voltage V_S . Now, the two Low Side MOSFETs are turned on via the ILx control inputs (to pull down the Sources of the High Side MOSFETs and to charge up the bootstrap capacitors C_{Bx} within several 10 μ s). The regular operation can be started when the bootstrap capacitors are charged up.

Short Circuit protection

The current threshold limit to activate the Short Circuit protection function can be adjusted to larger values, it can not be adjusted to lower values. This can be done by external resistors to form voltage dividers across the "sense element" (pls. see Application block diagram on pg. 2), consisting of the Drain-Source-Terminals, a fraction of the PCB trace and – in some cases – current sense resistors (used by the μC not by the Driver IC). The Short Circuit protection can be disabled for the High Side MOSFETs by shorting DH1 with SH1 and DH2 with SH2 on the PCB; in this case the DHx pins may not be connected to the Drains of the associated MOSFETs. To disable Short Circuit protection for the Low Side MOSFETs the DL1 and DL2 pin should be connected to the Driver IC's Ground.

Shut down of the driver

A shut down can be caused by undervoltage or short circuit.

A short circuit will shut down only the affected Mosfet until a reset of the error register by a disable of the driver occurs. A shut down due to short circuit will occur only when the Short Circuit criteria $V_{DS(SCP)}$ is met for a duration equal to or longer than the Short Circuit filter time $t_{SCP(off)}$. Yet, the exposure to or above $V_{DS(SCP)}$ is not counted or accumulated. Hence, repetitive Short Circuit conditions shorter than $t_{scp(off)}$ will not result in a shut down of the affected MOSFET.

An undervoltage shut down shuts only the affected output down. The affected output will auto restart after the undervoltage situation is over.

Operation at Vs<12V

If Vs<11.5V the gate voltage will not reach 10V. It will reach approx. Vs-1.5V, dependent on duty cycle, total gate charge of the external MOSFET and switching frequency.

Data Sheet 9 Rev 2.4 2008-03-18

Operation at different voltages for Vs, DH1 and DH2

If DH1 and DH2 are used with a voltage higher than Vs, a duty cycle of 100% can not be guaranteed. In this case the driver is acting like a normal driver IC based on the bootstrap principle. This means that after a maximum "On" time of the highside switch of more than 1ms a refresh pulse to charge the bootstrap capacitor of about 1µs is needed to avoid undervoltage lock out of this output stage.

Operation at extreme duty cycle:

The integrated charge pump allows an operation at 100% duty cycle. The charge pump is strong enough to replace leakage currents during "on"-phase of the highside switch. The gate charge for fast switching of the highside switches is supplied by the bootstrap capacitors. This means, that the bootstrap capacitor needs a minimum charging time of about 1µs, if the highside switch is operated in PWM mode (e.g. with 20kHz a maximum duty cycle of 96% can be reached). The exact value for the upper limit is given by the RC time formed by the impedance of the internal bootstrap diode and the capacitor formed by the external Mosfet ($C_{Mosfet}=Q_{Gate}$ / V_{GS}). The size of the bootstrap capacitor has to be adapted to the external MOSFET the driver IC has to drive. Usually the bootstrap capacitor is about 10-20 times bigger than C_{Mosfet} . External components at the Vs Pin have to be considered, too. The charge pump is active when the highside switch is "ON" and the voltage level at the SHx is higher than 4V. Only under these conditions the bootstrap capacitor is charged by the charge pump.

General remark:

It is assured that after the removal of any fault condition, which did not damage the device, the device will return to normal conditions without external trigger. Only short circuit condition needs restart by reset.

Data Sheet 10 Rev 2.4 2008-03-18

Estimation of power loss within the Driver IC

The power loss within the Driver IC is strongly dependent on the use of the driver and the external components. Nevertheless a rough estimation of the worst case power loss is possible.

Worst case calculation is:

 $P_{Loss} = (Q_{gate}*n*const* f_{PWM} + I_{VS(open)})* V_{Vs} - P_{RGate}$

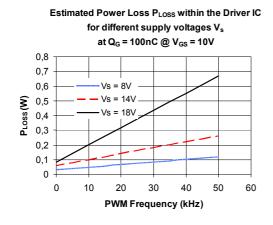
With:

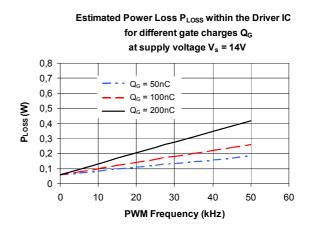
 P_{Loss} = Power loss within the Driver IC

f_{PWM} = Switching frequency

Q_{gate} = Total gate charge of used MOSFETs at 10V V_{GS}

n = Number of switched MOSFETs

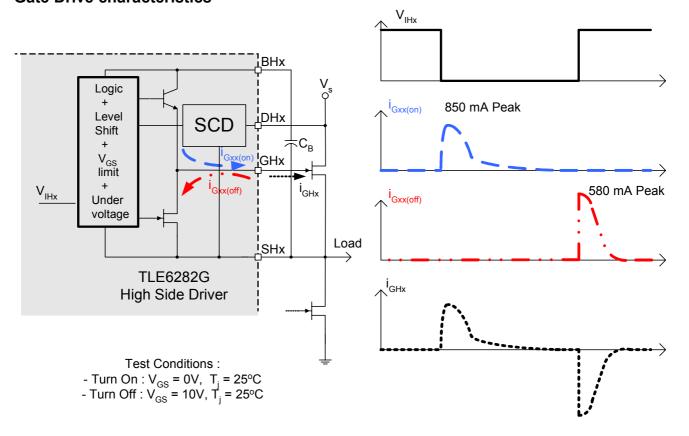

const = Constant considering some leakage current in the driver (about 1.2)


I_{VS(open)} = Current consumption of driver without connected Mosfets during switching

V_{VS} = Voltage at Vs

P_{RGate} = Power dissipation in the external gate resistors

This value can be reduced dramatically by usage of external gate resistors.


Conditions:

Junction temperature $T_j = 25^{\circ}C$ Number of switched MOSFET n = 2 Power dissipation in the external gate resistors $P_{RGate} = 0.2*P_{Loss}$

Data Sheet 11 Rev 2.4 2008-03-18

Gate Drive characteristics

This figure represents the simplified internal circuit of one high side gate drive. The drive circuit of the low sides looks similar.

This figure illustrates typical voltage and current waveforms of the high side gate drive; the associated waveforms of the low side drives look similar.

Data Sheet 12 Rev 2.4 2008-03-18

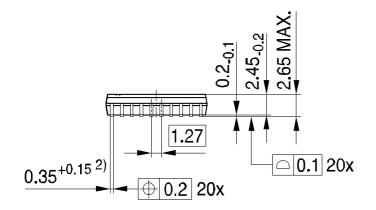
Truth Table

		put		ditions		Output	
ILx	lHx	DT / DIS	UV	SC	GLx	GHx	ERR
1	1	<3.5V	0	0	1	0	5V
0	0	<3.5V	0	0	0	1	5V
1	0	1.5-3.5V	0	0	Α	Α	5V
1	0	<1V	0	0	1	1	5V
0	1	<3.5V	0	0	0	0	5V
1	1	<3.5V	1	0	В	0	С
0	0	<3.5V	1	0	0	В	С
1	0	1.5-3.5V	1	0	D	D	С
1	0	<1V	1	0	В	В	С
0	1	<3.5V	1	0	0	0	С
1	1	<3.5V	0	1	Е	0	F
0	0	<3.5V	0	1	0	E	F
1	0	1.5-3.5V	0	1	D	D	F
1	0	<1V	0	1	Е	Е	F
0	1	<3.5V	0	1	0	0	F
Х	Х	Х	Х	Х	0	0	5V
X	Х	>4V	Х	X	0	0	5V

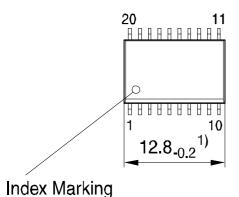
- A) stays in the condition before the shoot throught command occurs (see also dead time diagrams)
- B) 0 when affected; 1 when not affected; self recovery
- C) 0V when output does not correspond to input patterns; 5V when output corresponds to input patterns.
- D) stays in the condition before the shoot throught command occurs (see also dead time diagrams); 0 when affected
- E) 0 when affected– the outputs of the affected halfbridge are shut down and stay latched until reset; 1 when not affected
- F) 0V when output does not correspond to input patterns the outputs of the affected halfbridge are shut down and stay latched until reset; 5V when output corresponds to input patterns.
- X) Condition has no influence

Remark: Please consider the influence of the dead time for your input duty cycle

Data Sheet 13 Rev 2.4 2008-03-18



Package Outlines


(all dimensions in mm)⁵

Package

PG-DSO-20-45

- 1) Does not include plastic or metal protrusion of 0.15 max, per side
- 2) Does not include dambar protrusion of 0.05 max. per side

GPS05094

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Data Sheet 14 Rev 2.4 2008-03-18

⁵ More information about packages can be found at our internet page http://www.infineon.com/packages

Data Sheet TLE6282G

TLE6282G		
Revision History:	2008-03-18	Rev. 2.4
Previous Version: 2.3	Green Revision derived from TLE6282G	
Page	Subjects (major changes since last revision)	
1	AEC Qualified and RoHS compliant logos and features added.	
	Package picture updated.	
	Marking code added.	
23	Package outline updated.	
	Paragraph RoHS complaint added.	
25	Legal disclaimer updated.	

Data Sheet 15 Rev 2.4 2008-03-18

Edition 2008-03-18

Published by
Infineon Technologies AG
81726 Munich, Germany
© 4/1/08 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Data Sheet 16 Rev 2.4 2008-03-18

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.