SCAS301R - JANUARY 1993 - REVISED MARCH 2005

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Specified From -40°C to 85°C, -40°C to 125°C, and -55°C to 125°C
- Max t_{pd} of 7 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C

- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

The SN54LVC574A octal edge-triggered D-type flip-flop is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC574A octal edge-triggered D-type flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

These devices feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

These devices are fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

 $Copyright @ 2005, Texas Instruments Incorporated \\ On products compliant to MIL-PRF-38535, all parameters are tested \\ unless otherwise noted. On all other products, production \\ processing does not necessarily include testing of all parameters. \\$

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

description/ordering information (continued)

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

T _A	PACKAGE	t	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RGY	Reel of 1000	SN74LVC574ARGYR	LC574A
–40°C to 85°C	VFBGA – GQN	Deal of 4000	SN74LVC574AGQNR	105744
	VFBGA – ZQN (Pb-free)	Reel of 1000	SN74LVC574AZQNR	LC574A
	PDIP – N	Tube of 20	SN74LVC574AN	SN74LVC574AN
		Tube of 25	SN74LVC574ADW	11/05744
	SOIC – DW	Reel of 2000	SN74LVC574ADWR	LVC574A
	SOP – NS	Reel of 2000	SN74LVC574ANSR	LVC574A
–40°C to 125°C	SSOP – DB	Reel of 2000	SN74LVC574ADBR	LC574A
		Tube of 70	SN74LVC574APW	
	TSSOP – PW	Reel of 2000	SN74LVC574APWR	LC574A
		Reel of 250	SN74LVC574APWT	
	TVSOP – DGV	Reel of 2000	SN74LVC574ADGVR	LC574A
	CDIP – J	Tube of 20	SNJ54LVC574AJ	SNJ54LVC574AJ
–55°C to 125°C	CFP – W	Tube of 85	SNJ54LVC574AW	SNJ54LVC574AW
	LCCC – FK	Tube of 55	SNJ54LVC574AFK	SNJ54LVC574AFK

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

GQN OR ZQN PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4
Α	1D	ŌĒ	V _{CC}	1Q
в	3D	3Q	2D	2Q
С	5D	4D	5Q	4Q
D	7D	7Q	6D	6Q
Е	GND	8D	CLK	8Q

FUNCTION TABLE (each flip-flop)

	(each	mp-no	P)
	INPUTS		OUTPUT
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	L	Х	Q ₀
Н	х	Х	Z

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

logic diagram (positive logic)

To Seven Other Channels

Pin numbers shown are for the DB, DGV, DW, FK, J, N, NS, PW, RGY, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}
(see Note 1)
Voltage range applied to any output in the high or low state, V _O
(see Notes 1 and 2)
Input clamp current, I _{IK} (V _I < 0)
Output clamp current, I _{OK} (V _O < 0)
Continuous output current, I _O
Continuous current through V _{CC} or GND ±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DB package
(see Note 3): DGV package
(see Note 3): DW package
(see Note 3): GQN/ZQN package
(see Note 3): N package
(see Note 3): NS package
(see Note 3): PW package
(see Note 4): RGY package
Storage temperature range, T _{sta}
Power dissipation, P_{tot} ($T_A = -40^{\circ}$ C to 125°C) (see Notes 5 and 6)

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

4. The package thermal impedance is calculated in accordance with JESD 51-5.

5. For the DW package: above 70°C the value of Ptot derates linearly with 8 mW/K.

6. For the DB, DGV, N, NS, and PW packages: above 60°C the value of P_{tot} derates linearly with 5.5 mW/K.

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

recommended operating conditions (see Note 7)

			SN54LV	C574A		
			–55 TO 125°C		UNIT	
			MIN	MAX		
		Operating	2	3.6	.,	
V _{CC}	Supply voltage	Data retention only	1.5		V	
V _{IH}	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		V	
V _{IL}	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	V	
VI	Input voltage	·	0	5.5	V	
		High or low state	0	V _{CC}	.,	
Vo	Output voltage	3-state	0	5.5	v	
		V _{CC} = 2.7 V		-12	mA	
I _{OH}	High-level output current	$V_{CC} = 3 V$		-24		
		V _{CC} = 2.7 V		12		
I _{OL}	Low-level output current	V _{CC} = 3 V		24	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate			6	ns/V	

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

recommended operating conditions (see Note 7)

					SN74L	/C574A			
			T _A =	25°C	-40 TC	D 85°C	–40 TC) 125°C	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
	a i i	Operating	1.65	3.6	1.65	3.6	1.65	3.6	
V_{CC}	Supply voltage	Data retention only	1.5		1.5		1.5		v
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		1.7		1.7		V
	vollage	V _{CC} = 2.7 V to 3.6 V	2		2		2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$	
ViL	Voltage V _{CC} = 2.7 V to 3.6 V 0.8 0.8 0.8	V_{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	v
VI	Input voltage		0	5.5	0	5.5	0	5.5	V
		High or low state	0	V _{CC}	0	V _{CC}	0	V _{CC}	
Vo	Output voltage	3-state	0	5.5	0	5.5	0	5.5	v
		V _{CC} = 1.65 V		-4		-4		-4	
	High-level	V _{CC} = 2.3 V		-8		-8		-8	
I _{OH}	output current	V _{CC} = 2.7 V		-12		-12		-12	mA
		$V_{CC} = 3 V$		-24		-24		-24	
		V _{CC} = 1.65 V		4		4		4	
	Low-level	V _{CC} = 2.3 V		8		8		8	mA
I _{OL}	output current	V _{CC} = 2.7 V		12		12		12	ШA
		V _{CC} = 3 V		24		24		24	
$\Delta t/\Delta v$	Input transition ris	se or fall rate		6		6		6	ns/V

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN54	LVC574A	۱		
PARAMETER	TEST CONDITIONS		V _{CC}	-55 1	O 125°C		UNIT	
				MIN	TYP [†]	25°C YP [†] MAX 0.2 0.4 0.55 ±5 ±15 10 10 10		
	$I_{OH} = -100 \ \mu A$		2.7 V to 3.6 V	V _{CC} – 0.2				
	10 - 10 - 10	2.7 V	2.2					
V _{OH}	I _{OH} = -12 mA		3 V	2.4			V	
	$I_{OH} = -24 \text{ mA}$		3 V	2.2				
	I _{OL} = 100 μA		2.7 V to 3.6 V			0.2		
V _{OL}	I _{OL} = 12 mA	2.7 V			0.4	V		
	I _{OL} = 24 mA		3 V			0.55		
l _l	V _I = 5.5 V or GND		3.6 V			±5	μA	
I _{OZ}	V _O = 0 to 5.5 V		3.6 V			±15	μA	
	V _I = V _{CC} or GND		0.01/			10	•	
Icc	$3.6~V \leq V_{I} \leq 5.5~V^{\ddagger}$	I _O = 0	3.6 V			10	μA	
Δl _{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND		2.7 V to 3.6 V			500	μA	
Ci	$V_I = V_{CC}$ or GND		3.3 V		4		pF	
Co	$V_{O} = V_{CC}$ or GND		3.3 V		5.5		pF	

[†] $T_A = 25^{\circ}C$ [‡] This applies in the disabled state only.

SCAS301R – JANUARY 1993 – REVISED MARCH 2005

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N74LVC574	Α				
PARAMETER	TEST CONDITIONS	v _{cc}	T _A :	= 25°C		-40 TO 8	35°C	-40 TO 1	25°C	UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX		
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} – 0.2			V _{CC} – 0.2		V _{CC} – 0.2			
	I _{OH} = -4 mA	1.65 V	1.29			1.2		1.2			
	I _{OH} = -8 mA	2.3 V	1.9			1.7		1.7		.,	
V _{OH}		2.7 V	2.2			2.2		2.2		V	
	$I_{OH} = -12 \text{ mA}$	3 V	2.4			2.4		2.4			
	I _{OH} = -24 mA	3 V	2.3			2.2		2.2			
	l _{OL} = 100 μA	1.65 V to 3.6 V			0.1		0.2		0.2		
	I _{OL} = 4 mA	1.65 V			0.24		0.45		0.45	v	
V _{OL}	I _{OL} = 8 mA	2.3 V			0.3		0.7		0.7		
-	I _{OL} = 12 mA	2.7 V			0.4		0.4		0.4		
	I _{OL} = 24 mA	3 V			0.55		0.55		0.55		
l _l	V _I = 5.5 V or GND	3.6 V			±1		±5		±5	μA	
I _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0			<u>+</u> 4		±10		±10	μA	
I _{OZ}	V _I = 0 to 5.5 V	3.6 V			±1		±10		±10	μA	
	$V_I = V_{CC}$ or GND				1.5		10		10	_	
I _{CC}	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\dagger}$ $I_{\text{O}} = 0$	3.6 V			1.5		10		10	μA	
Δl _{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500		500		500	μA	
Ci	V _I = V _{CC} or GND	3.3 V		4						pF	
Co	$V_{O} = V_{CC}$ or GND	3.3 V		5.5						pF	

[†] This applies in the disabled state only.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			SN54LV	C574A		
		V _{cc}	-55 TO	125°C	UNIT	
			MIN	MAX		
		2.7 V		150	N 41 1_	
f _{clock}	Clock frequency	$3.3~V\pm0.3~V$		150	MHz	
		2.7 V	3.3			
tw	Pulse duration, CLK high or low	$3.3~\textrm{V}\pm0.3~\textrm{V}$	3.3		ns	
		2.7 V	2			
t _{su}	Setup time, data before CLK↑	$3.3~\textrm{V}\pm0.3~\textrm{V}$	2		ns	
		2.7 V	2		ns	
t _h	Hold time, data after CLK↑	$3.3~V\pm0.3~V$	2			

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			SN54LV			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	-55 TO	UNIT	
				MIN	MAX	
			2.7 V	150		
f _{max}			$3.3~V\pm0.3~V$	150		MHz
			2.7 V		8	
t _{pd}	CLK	Q	$3.3~V\pm0.3~V$	1	7	ns
	AF		2.7 V		9	
t _{en}	ŌĒ	Q	$3.3~V\pm0.3~V$	1	7.5	ns
	t _{dis} <u>OE</u> Q	<u>^</u>	2.7 V		7	
^L dis		Q	$3.3~V\pm0.3~V$	0.5	6.4	ns

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				SN	74LVC57	4 A				
		V _{CC}	T,	_A = 25°C	-40 TC) 85°C	-40 TO	125°C	UNIT	
			MIN	TYP MAX	MIN	MAX	MIN	MAX		
		$1.8~V\pm0.15~V$		55		55		40		
	Charly fragmanan	$2.5~V\pm0.2~V$		95		95		80	N 41 1-	
f _{clock}	Clock frequency	2.7 V		150		150		150	MHz	
		$3.3~V\pm0.3~V$		150		150		150		
		$1.8~V\pm0.15~V$	9		9		9			
	t_w Pulse duration, CLK high or low	$2.5~V\pm0.2~V$	4		4		4		ns	
ι _w		2.7 V	3.3		3.3		3.3			
		$3.3~V\pm0.3~V$	3.3		3.3		3.3			
		$1.8~V\pm0.15~V$	6		6		6			
	Cature times, data bafava OLK ¹	$2.5~V\pm0.2~V$	4		4		4			
t _{su}	Setup time, data before CLK [↑]	2.7 V	2		2		2		ns	
		$3.3~V\pm0.3~V$	2		2		2			
		$1.8~V\pm0.15~V$	4		4		4			
		$2.5~V\pm0.2~V$	2		2		2			
t _h	Hold time, data after CLK↑	2.7 V	1.5		1.5		1.5		ns	
		$3.3~V\pm0.3~V$	1.5		1.5		1.5			

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

						SN	74LVC57	4 A			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC}	Τ,	₄ = 25°C		-40 TC	85°C	-40 TO	125°C	UNIT
	((001101)		MIN	ТҮР	МАХ	MIN	MAX	MIN	MAX	
			$1.8~V\pm0.15~V$	55			55		40		
4			$2.5~V\pm02~V$	95			95		80		
f _{max}			2.7 V	150			150		150		MHz
			$3.3~V\pm0.3~V$	150			150		150		
			$1.8~V\pm0.15~V$	1.0	7.1	21.5	1	21.6	1.0	21.6	
		CLK Q	$2.5~V\pm0.2~V$	1.0	4.9	10.0	1	10.5	1.0	10.5	ns
t _{pd}	CLK		2.7 V	1.0	5.0	7.8	1	8	1.0	8.0	
			$3.3~V\pm0.3~V$	2.2	4.6	6.8	2.2	7	2.2	7.0	
			$1.8~V\pm0.15~V$	1.0	6.6	19.0	1	19.5	1.0	19.5	
	~=		$2.5~V\pm0.2~V$	1.0	4.8	10.0	1	10.5	1.0	10.5	
t _{en}	ŌĒ	Q	2.7 V	1.0	5.5	8.3	1	8.5	1.0	8.5	ns
			$3.3~V\pm0.3~V$	1.5	4.4	7.3	1.5	7.5	1.5	7.5	
			$1.8~V\pm0.15~V$	1.0	5.4	18.3	1	18.8	1.0	18.8	
	75		$2.5~V\pm0.2~V$	1.0	3.0	7.3	1	7.8	1.0	7.8	
t _{dis}	ŌĒ	Q -	2.7 V	1.0	4.0	6.8	1	7	1.0	7.3	ns
			$3.3~V\pm0.3~V$	1.7	3.9	6.2	1.7	6.4	1.7	6.6	
t _{sk(o)}			$3.3~V\pm0.3~V$					1		1	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	v _{cc}	ТҮР	UNIT	
				1.8 V	25	
		Outputs enabled	f = 10 MHz	2.5 V	29	pF
				3.3 V	30	
C _{pd}	Power dissipation capacitance per flip-flop			1.8 V	9	
		Outputs disabled		2.5 V	9	
				3.3 V	11	

SCAS301R - JANUARY 1993 - REVISED MARCH 2005

PARAMETER MEASUREMENT INFORMATION

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

THERMAL PAD MECHANICAL DATA RGY (R-PQFP-N20)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

www.ti.com

21-Dec-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9757601Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9757601QRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type
5962-9757601QSA	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type
SN74LVC574ADBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74LVC574ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADGVRE4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADGVRG4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ADWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574AGQNR	NRND	BGA MI CROSTA R JUNI OR	GQN	20	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVC574AN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LVC574ANE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LVC574ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ANSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ANSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI

www.ti.com

RUMENTS

Orderable Device	Status ⁽¹⁾	Package	Package	Pine	Packag	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
Orderable Device	Otatus	Туре	Drawing	1 113	Qty		Leau/Dail 1 misi	
SN74LVC574APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWTE4	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574APWTG4	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC574ARGYR	ACTIVE	VQFN	RGY	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN74LVC574ARGYRG4	ACTIVE	VQFN	RGY	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN74LVC574AZQNR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQN	20	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SNJ54LVC574AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LVC574AJ	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type
SNJ54LVC574AW	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

21-Dec-2009

OTHER QUALIFIED VERSIONS OF SN54LVC574A, SN74LVC574A :

- Automotive: SN74LVC574A-Q1
 Enhanced Product: SN74LVC574A-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
 Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC574ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVC574ADGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC574ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
SN74LVC574AGQNR	BGA MI CROSTA R JUNI OR	GQN	20	1000	330.0	12.4	3.3	4.3	1.6	8.0	12.0	Q1
SN74LVC574AGQNR	BGA MI CROSTA R JUNI OR	GQN	20	1000	330.0	12.4	3.3	4.3	1.5	8.0	12.0	Q1
SN74LVC574ANSR	SO	NS	20	2000	330.0	24.4	8.2	13.0	2.5	12.0	24.0	Q1
SN74LVC574APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC574APWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC574ARGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
SN74LVC574AZQNR	BGA MI CROSTA R JUNI OR	ZQN	20	1000	330.0	12.4	3.3	4.3	1.6	8.0	12.0	Q1
SN74LVC574AZQNR	BGA MI CROSTA	ZQN	20	1000	330.0	12.4	3.3	4.3	1.5	8.0	12.0	Q1

www.ti.com

6-Aug-2010

Device		Package Drawing	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	R JUNI OR										

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC574ADBR	SSOP	DB	20	2000	346.0	346.0	33.0
SN74LVC574ADGVR	TVSOP	DGV	20	2000	346.0	346.0	29.0
SN74LVC574ADWR	SOIC	DW	20	2000	346.0	346.0	41.0
SN74LVC574AGQNR	BGA MICROSTAR JUNIOR	GQN	20	1000	340.5	338.1	20.6
SN74LVC574AGQNR	BGA MICROSTAR JUNIOR	GQN	20	1000	346.0	346.0	29.0
SN74LVC574ANSR	SO	NS	20	2000	346.0	346.0	41.0
SN74LVC574APWR	TSSOP	PW	20	2000	346.0	346.0	33.0
SN74LVC574APWT	TSSOP	PW	20	250	346.0	346.0	33.0
SN74LVC574ARGYR	VQFN	RGY	20	3000	346.0	346.0	29.0
SN74LVC574AZQNR	BGA MICROSTAR JUNIOR	ZQN	20	1000	340.5	338.1	20.6
SN74LVC574AZQNR	BGA MICROSTAR JUNIOR	ZQN	20	1000	346.0	346.0	29.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20

MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

GQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BC-2.
- D. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free.

ZQN (R-PBGA-N20)

PLASTIC BALL GRID ARRAY

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BC-2.
- D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb).

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

- The Pin 1 identifiers are either a molded, marked, or metal feature.
- F. Package complies to JEDEC MO-241 variation BC.

THERMAL PAD MECHANICAL DATA

RGY (R-PVQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

4206353-4/L 08/10

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.