

PET1600-12-074NA AC-DC Front-End Power Supply

The PET1600-12-074NA is a 1600 Watt AC to DC, power-factorcorrected (PFC) power supply that converts standard AC power into a main output of +12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches.

The PET1600-12-074NA utilizes full digital control architecture for greater efficiency, control, and functionality.

This power supply meets international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).

Key Features & Benefits

- Best-in-Class, 80 PLUS Certified "Platinum" Efficiency
- Auto-Selected Input Voltage Ranges: 90-140VAC, 180-264 VAC
- AC Input with Power Factor Correction
- 1600 W Continuous and 2100 W Peak Output Power Capability
- Always-On 12 V/3.5 A Standby Output
- Hot-plug Capable
- Parallel Operation with Active Current Sharing
- Full Digital Controls for Improved Performance
- High Density Design: 33.7 W/in³
- Small Form Factor: 265 x 73.5 x 40 mm (10.43 x 2.89 x 1.57 in)
- Power Management Bus Communication Protocol for Control Programming and Monitoring
- Status LED with Fault Signaling

Applications

- Networking Switches
- Servers & Routers
- Telecommunications

1. ORDERING INFORMATION

PET	1600	-	12	-	074	N	А
Product Family	Power Level	Dash	V1 Output	Dash	Width	Airflow	Input
PET Front-Ends	1600 W		12 V		74 mm	N: Normal	A: AC

2. OVERVIEW

The PET1600-12-074NA AC/DC power supply is a fully DSP controlled, highly efficient front-end power supply. It incorporates resonance-soft-switching technology to reduce component stresses, providing increased system reliability and very high efficiency. With a wide input operational voltage range the PET1600-12-074NA maximizes power availability in demanding server, network, and other high availability applications. The supply is fan cooled and ideally suited for integration with a matching airflow path. The PFC stage is digitally controlled using a state-of-the-art digital signal processing algorithm to guarantee best efficiency and

The PFC stage is digitally controlled using a state-of-the-art digital signal processing algorithm to guarantee best efficiency and unity power factor over a wide operating range.

The DC/DC stage uses soft switching resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current and renders the supply suitable for operation in redundant power systems.

The always-on standby output provides power to external power distribution and management controllers. It is protected with an active OR-ing device for maximum reliability.

Status information is provided with a front-panel LED. In addition, the power supply can be controlled and the fan speed set via the I2C bus. The I2C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures. Cooling is managed by a fan controlled by the DSP controller. The fan speed is adjusted automatically depending on the actual power demand and supply temperature and can be overridden through the I2C bus.

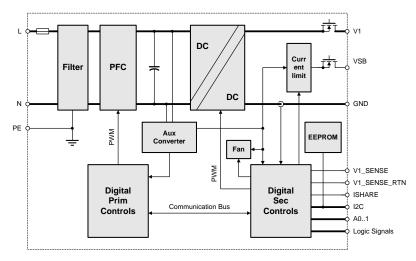


Figure 1. PET1600-12-074NA Block Diagram

3. ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability and cause permanent damage to the supply.

PARAMETER		CONDITIONS / DESCRIPTION	MIN	MAX	UNITS
Vi maxc	Maximum Input	Continuous		264	VAC

4. INPUT

General Condition: $T_A = 0...55$ °C, Vi = 230 VAC unless otherwise noted.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Vi nom	Nominal Input Voltage	Rated Voltage High Line (Vinom HL)	200	230	240	VAC
	Nominal input voltage	Rated Voltage Low Line (Vinom LL)	100	115	127	VAC
Vi	Input Voltage Ranges	Normal operating (Vi min HL to Vi max HL), High Line	180		264	VAC
Vi	input voltage hanges	Normal operating (Vimin LL to Vimax LL), Low Line	90		140	VAC
li max	Maximum Input Current	V _{IN} = 100 VAC, 100% load			13	ARMS
li inrush	Inrush Current Limitation	<i>Vi min</i> to <i>Vi max</i> , $T_{NTC} = 25^{\circ}C$, 5 ms			10	Ap
fi	Input Frequency		47	50/60	63	Hz
		10% Load	0.8	0.88		W/VA
95	Power Factor	20% Load	0.9	0.95		W/VA
PF		50% Load	0.9	0.997		W/VA
		100% Load	0.95	0.999		W/VA
THD	Total Harmonic Distortion	TBD			TBD	%
Vion	Turn-on Input Voltage ¹	Ramping up	87		90	VAC
V i off	Turn-off Input Voltage ¹	Ramping down	82		87	VAC
		V _{IN} = 230 VAC, 10% load	82	90.8		%
	Efficience 2	V _{IN} = 230 VAC, 20% load	90	93.5		%
η	Efficiency ²	V _{IN} = 230 VAC, 50% load	94	94.4		%
		V _{IN} = 230 VAC, 100% load	91	93.0		%
		V _{//V} = 230 VAC, 50% load		20		ms
Ŧ	Held on The e 1/	<i>V</i> /w= 230 VAC, 75% load		13		ms
Tv1 holdup	Hold-up Time V1	<i>V</i> _{//V} = 230 VAC, 100% load		9		ms
		V _{IN} = 110 VAC, 100% load		17		ms
TVSB holdup	Hold-up Time VsB	12 V _{SB} , full load	70			ms

4.1 INPUT FUSE

Time-lag 16 A input fuse (5 x 20 mm) in series with the L-line inside the power supply protects against severe defects. The fuse is not accessible from the outside and is therefore not a serviceable part.

4.2 INRUSH CURRENT

The AC-DC power supply exhibits an X capacitance of only 5.9 µF, resulting in a low and short peak current, when the supply is connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current.

NOTE:

Do not repeat plug-in / out operations within a short time, or else the internal in-rush current limiting device (NTC) may not sufficiently cool down and excessive inrush current or component failure(s) may result.

² Efficiency measured without fan power per EPA server guidelines

 Asia-Pacific
 Europe, Middle East

 +86 755 298 85888
 +353 61 225 977

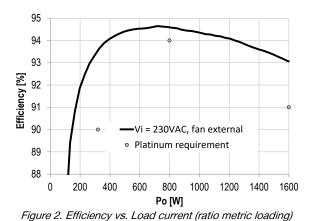
© 2019 Bel Power Solutions & Protection

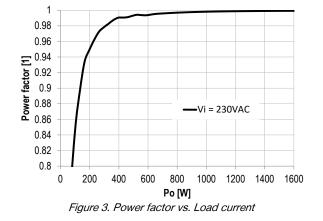
+1 408 785 5200

BCD.00350_AJ1

¹ The Front-End is provided with a minimum hysteresis of 3 V during turn-on and turn-off within the ranges

4.3 INPUT UNDER-VOLTAGE


If the sinusoidal input voltage stays below the input under voltage lockout threshold Vi on, the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again.


4.4 POWER FACTOR CORRECTION

Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. A fully digital controller is implemented giving outstanding PFC results over a wide input voltage and load ranges. The input current will follow the shape of the input voltage. If for instance the input voltage has a trapezoidal waveform, then the current will also show a trapezoidal waveform.

4.5 EFFICIENCY

High efficiency (see *Figure 2*) is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions.

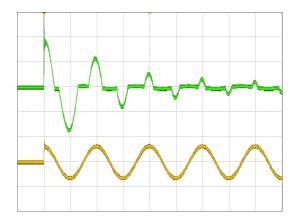


Figure 4. Inrush current, V_{in} = 230 Vac, 90° CH1: V_{in} (500 V/div), CH2: I_{in} (10 A/div

5. **OUTPUT**

5.1 MAIN OUTPUT V1

General Condition: $T_A = 0...55$ °C, Vi = 230 VAC unless otherwise noted.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
V1 nom	Nominal Output Voltage			12.0		VDC
V1 set	Output Setpoint Accuracy	$0.5 I_{1 nom}, T_A = 25^{\circ}C$	-0.5		+0.5	%V 1 nom
dV1 tot	Static Regulation	Vi min to Vi max, 0 to 100% /1 nom	-1		+1	%V1 nom
0	Neminal Output Dawar	Vi min HL to Vi max HL		1600		W
P1 nom	Nominal Output Power	Vi min LL to Vi max LL		1000		W
Π	Paak Output Bower3	Vi min HL to Vi max HL		2100		W
P _{1 peak}	Peak Output Power ³	Vi min LL to Vi max LL		1320		W
I _{1 nom}	Output Current	Vi min HL to Vi max HL	0.0		133	ADC
It nom red	Output Current	Vi min LL to Vi max LL	0.0		83	ADC
l _{1 peak}	Peak Output Current ³	Vimin HL to Vimax HL	0.0		175	ADC
I1 peak red	Feak Output Outfent	Vi min LL to Vi max LL	0.0		110	ADC
		$V_{i min}$ to $V_{i max}$, 0 to 75% $I_{1 nom}$, $C_{ext} = 0$ mF			120	mVpp
$V_{1\rho\rho}$	Output Ripple Voltage ⁴	$V_{i \min}$ to $V_{i \max}$, 75 to 100% $I_{1 \min}$, $C_{ext} = 0$ mF			150	mVpp
		$V_{i \min LL}$ to $V_{i \max HL}$, 0 to 100% $I_{1 nom}$, $C_{ext} \ge 1 \text{ mF/Low ESR}$			120	mVpp
dV1 load	Load Regulation	Vinom HL, 0 to 100% /1 nom	-67	-89	-111	mV
dV1 line	Line Regulation	Vi min to Vi max, 0.5 · I1 nom	-24	0	24	mV
dV1 temp	Thermal Drift	$0.5 \cdot I_{1 \text{ nom}}, T_A = 0 \dots 55^{\circ}\text{C}$			TBD	%/°C
dl1 share	Current Sharing	Difference between individual <i>I</i> ₇ , 0 8 power supplies in parallel	-8		+8	ADC
VISHARE	Current Share Bus Voltage	l1 peak		9.14		VDC
$dV_{1 lt}$	Load Transient Response	$\Delta I_1 = 50\% I_{1 \text{ nom}}, I_1 = 5 \dots 100\% I_{1 \text{ nom}}, C_{ext} = 0 \text{ mF}$		0.35	0.6	VDC
dV1 It		$\Delta h = 10\%$ It nom, It = 0 10% It nom, Cext = 0 mF		0.35	0.6	VDC
trec	Recovery Time	$dh/dt = 1 A/\mu s$, recovery within 1% of $V_{1 nom}$		0.5	1	ms
V _{1 dyn}	Dynamic Load Regulation	$\Delta h = 60\% \ I_{1 \ nom}, \ I_{1} = 5 \ \ 133 \ A, \ f = 50 \ \ 5000 \ Hz,$ Duty cycle = 10 90%, $C_{ext} = 2 \ \ 30 \ mF$	11.4		12.6	V
tv1 rise	Output Voltage Rise Time	$V_1 = 1090\%$ $V_{1 \text{ nom}}$, external capacitance < 10 mF	0.5		30	ms
t _{V1 ovr sh}	Output Turn-on Overshoot	Vinom HL, 0 to 100% Innom			12.6	V
dV1 sense	Remote Sense	Compensation for cable drop, 0 to 100% I1 norm			0.25	V
$C_{V1 \ load}$	Capacitive Loading		0		25	mF

³ Peak combined power for all outputs does not exceed 2100 W; maximum of peak power duration is 20 seconds without asserting the SMB Alert signal.

⁴ Measured with a 10 μF low ESR capacitor in parallel with a 0.1 μF ceramic capacitor at the point of measurement.

Europe, Middle East Asia-Pacific +86 755 298 85888

+353 61 225 977

North America

© 2019 Bel Power Solutions & Protection

BCD.00350_AJ1

5.2 STANBY OUTPUT V_{SB}

General Condition: $T_A = 0...55$ °C, Vi = 230 VAC unless otherwise noted.

PARAMET	ER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
VsB nom	Nominal Output Voltage			12.15		VDC
V _{SB set}	Output Setpoint Accuracy	$I_{SB} = 0 A, T_A = 25^{\circ} C$	-1		+1	%V <i>sBno</i> m
dVsB tot	Total Regulation	Vi min to Vi max, 0 to 100% ISB nom	-5		+1	%V _{SBno}
PSB nom	Nominal output power	Vi min to Vi max		42		W
PSB peak	Peak Output Power ⁵	Vi min to Vi max		48		W
ISB nom	Output Current	Vi min to Vi max	0.0		3.5	ADC
ISB peak	Peak Output Current ⁵	Vi min to Vi max	0.0		4	ADC
V _{SB pp}	Output Ripple Voltage ⁴	$V_{i min}$ to $V_{i max}$, 0 to 100% $I_{SB nom}$, $T_{A min}$ to $T_{A max}$			120	mVpp
$dV_{SB \ load}$	Load Regulation	Vinom HL, 0 to 100% ISB nom	-200	-300	-400	mV
dV _{SB line}	Line Regulation	$V_{i min}$ to $V_{i max}$, $I_{SB nom} = 0 A$	-24	0	24	mV
dV _{SB temp}	Thermal Drift	$V_{i nom HL}, I_{SB nom} = 0 A$		-0.5		%/°C
dlsB share	Current Sharing	Deviation from $I_{SB \text{ tot}}$ / N, $I_{SB} = 0.5 \cdot I_{SB \text{ nom}}$	-1		+1	ADC
dVsB dyn	Load Transient Response	$\Delta k_{\rm BB} = 50\% k_{\rm B nom}$, $k_{\rm BB} = 5 \dots 100\% k_{\rm B nom}$,		0.2	0.3	VDC
trec	Recovery Time	$dI_{SB}/dt = 1 \text{ A}/\mu \text{s}$, recovery within 1% of $I_{SB \text{ nom}}$		1	2	ms
VSB dyn	Dynamic Load Regulation	$\Delta I_{SB} = 1 \text{ A}, I_{SB} = 0 \dots I_{SB \text{ norm}}, f = 50 \dots 5000 \text{ Hz},$ Duty cycle = 10 \dots 90%, $C_{ext} = 0 \dots 5 \text{ mF}$	11.4		12.6	V
tvsB rise	Output Voltage Rise Time	$V_{SB} = 1090\% V_{SB nom}$, external capacitance < 1 mF	1	2	5	ms
tvsB ovr sh	Output Turn-on Overshoot	Vinom HL, 0 to 100% ISB nom			12.60	V
CVSB load	Capacitive Loading		0		3100	μF

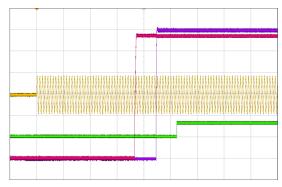


Figure 5. Turn-On AC Line 230 VAC, full load (200 ms/div) CH1: Vin (400 V/div) CH2: PWOK_H (5 V/div) CH3: V1 (2 V/div) CH4: V_{SB} (2 V/div)

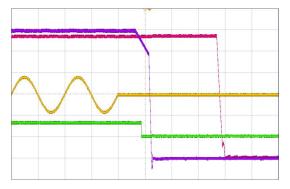


Figure 6 - Turn-Off AC Line 230 VAC, full load (10 ms/div) CH1: Vin (400 V/div) CH2: PWOK_H (5 V/div) CH3: V1 (2 V/div) CH4: V_{SB} (2 V/div)

⁵ In single power supply configuration.

tech.support@psbel.com belfuse.com/power-solutions

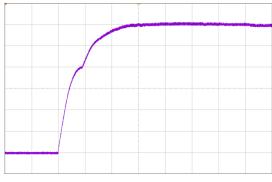


Figure 7. Turn-On AC Line 230 VAC, full load (2 ms/div) CH3: V1 (2 V/div)

Figure 9. Turn-On AC Line 230 VAC, full load (2 ms/div) CH4: V_{SB} (2 V/div)

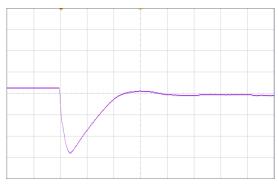


Figure 11. Load transient V₁, 133A to 67A (1 ms/div) CH3: V₁ (2 V/div) CH4: V_{SB} (2 V/div)

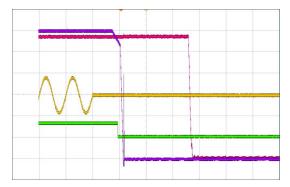


Figure 8. Turn-Off AC Line 230 VAC, half load (20 ms/div) CH1: Vin (400 V/div) CH2: PWOK_H (5 V/div) CH3: V₁ (2 V/div) CH4: V_{SB} (2 V/div)

Figure 10. Short circuit on V1 (10 ms/Div) CH3: V1 (2 V/div)

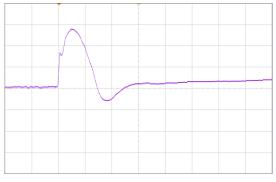


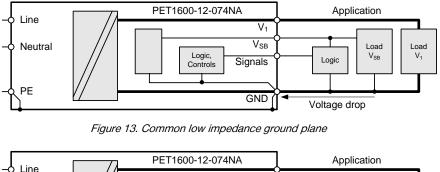
Figure 12. Load transient V₁, 67 A to 133 A (1 ms/div) CH3: V₁ (200 mV/div)

5.3 OUTPUT GROUND / CHASSIS CONNECTION

The output return path serves as power and signal ground. All output voltages and signals are referenced to these pins. To prevent a shift in signal and voltage levels due to ground wiring voltage drop a low impedance ground plane should be used as shown in *Figure 13*. Alternatively, separated ground signals can be used as shown in *Figure 14*. In this case the two ground planes should be connected together at the power supplies ground pins.

 Asia-Pacific
 Europe, Middle East

 +86 755 298 85888
 +353 61 225 977


North America +1 408 785 5200

BCD.00350_AJ1

7

NOTE:

Within the power supply the output GND pins are connected to the Chassis, which in turn is connected to the Protective Earth terminal on the AC inlet. Therefore, it is not possible to set the potential of the output return (GND) to any other than Protective Earth potential.

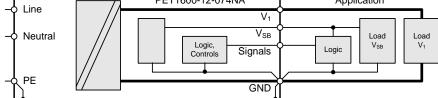


Figure 14. Separated power and signal ground

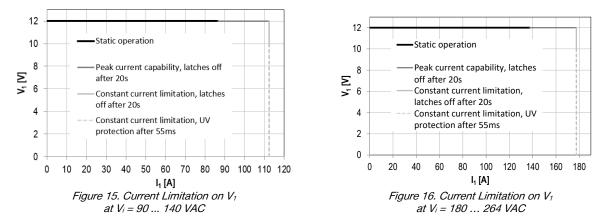
6. **PROTECTION**

PARAME	ſER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
F	Input fuse (L)	Not use accessible, time-lag (T)		16		А
V1 ov	OV Threshold V1	Over Veltere I/ Protection Lateh off Turc	13.3	13.9	14.5	VDC
tv1 ov	OV Trip Time V1	Over Voltage V ₇ Protection, Latch-off Type			1	ms
V _{VSB OV}	OV Threshold VSB	Over Voltage V_7 Protection, Automatic retry	13.3	13.9	14.5	VDC
t _{VSB} ov	OV Trip Time VSB	each 1s			1	ms
		Over Current Limitation, Latch-off, <i>Vi min HL</i> to <i>Vi max HI</i>	135		140	ADC
Iv1 OC Slow	OC Limit V1	Over Current Limitation, Latch-off, <i>V_{i min LL}</i> to <i>V_{i max LL}</i>	85		88	ADC
tv1 OC Slow	OC Trip time V_1	Over Current Limitation, Latch-off time	20			s
IV1 OC Fast	Fast OC Limit <i>V</i> ₁	Fast Over Current Limit., Latch-off, <i>V</i> _{i min HL} to <i>V</i> _{i max HL}	175		180	ADC
IVI OC Fast		Fast Over Current Limit., Latch-off, <i>Vimin LL</i> to <i>Vimax LL</i>	110		115	ADC
tv1 OC Fast	Fast OC Trip time V1	Fast Over Current Limitation, Latch-off time	50		60	ms
k₁ sc	Max Short Circuit Current V_1	$V_1 < 3 \text{ V}$			180	А
tv₁ sc	Short Circuit Regulation Time	V_1 < 3 V, time until k_{1} is limited to < $k_{1 \text{ sc}}$			2	ms
Ivsb oc	OC Limit VSB	Over Current Limitation, Constant-Current Type	4.1	4.5	4.9	А
tvsB oc	OC Trip time VSB	Over Current Limit., time until $k_{\rm SB}$ is limited to $k_{\rm SB OC}$			10	ms
T _{SD}	Over Temperature On Heat Sinks	See chapter 10.2				°C

6.1 OVERVOLTAGE PROTECTION

The PET1600-12-074NA front-end provides a fixed threshold overvoltage (OV) protection implemented with a HW comparator for both the main and the standby output. Once an OV condition has been triggered on the main output, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input. The standby output will continuously try to restart with a 1 s interval after OV condition has occurred.

6.2 UNDERVOLTAGE DETECTION


Both main and standby outputs are monitored. LED and PWOK_H pin signal if the output voltage exceeds ±5 % of its nominal voltage

The main output will latch off if the main output voltage V1 falls below 10 V (typically in an overload condition) for more than 55 ms. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input. If the standby output leaves its regulation bandwidth for more than 2 ms then the main output is disabled to protect the system.

6.3 CURRENT LIMITATION

MAIN OUTPUT

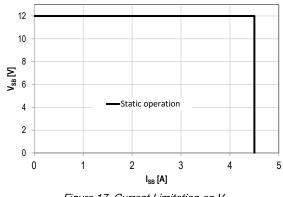
The main output exhibits a substantially rectangular output characteristic controlled by a software feedback loop. If output current exceeds Iv1 OC Fast it will reduce output voltage in order to keep output current at Iv1 OC Fast. If the output voltage drops below ~10.0 VDC for more than 55 ms, the output will latch off (standby remains on), see also Undervoltage Detection.

A second SW controlled current limit will latch off the main output if the power supply is operated for long duration in its peak current capability region. This protection trips as soon as the output current exceeds IV1 OC Slow for duration of more than 20 s. The third current limitation implemented as a fast hardware circuit will immediately switch off the main output if the output current increases beyond the peak current trip point, occurring mainly if a short circuit is applied to the output voltage. The supply will re-start 4 ms later with a soft start, if the short circuit persists ($V_1 < 10.0$ V for >55 ms) the output will latch off; otherwise it continuous to operate.

The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input. The main output current limitation thresholds for $I_{1 OC,Slow}$ and $I_{1 OC,Fast}$ depend on the actual input voltage range applied to the power supply. In addition, the threshold for I1 OC Slow is reduced when ambient temperature exceeds 55°C, see Error! Reference source not found ..

STANDBY OUTPUT

The standby output exhibits a substantially rectangular output characteristic down to 0 V (no hiccup mode / latch off). The current limitation of the standby output is independent of the AC input voltage.


Running in current limitation causes the output voltage to fall, this will trigger under voltage protection and disables the main output, see also Undervoltage_Detection.

Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

North America +1 408 785 5200

© 2019 Bel Power Solutions & Protection BCD.00350_AJ1

Figure 17. Current Limitation on VSB

7. MONITORING

The power supply operating parameters can be accessed through I²C interface. For more details refer to chapter *I2C / POWER MANAGEMENT BUS COMMUNICATION* and document URP.00234 (PET2000-12-074NA Power Management Bus Communication Manual).

PARAME	TER	DESCRIPTION / CONDITION	MIN NOM	MAX	UNIT
Vi mon	Input RMS Voltage	$V_{i \min LL} \leq V_i \leq V_{i \max HL}$	-2	+2	VAC
li mon	Input RMS Current	<i>li</i> > 6.7 Arms	-3	+3	%
li mon		<i>l</i> _i ≤ 6.7 Arms	-0.2	+0.2	Arms
<i>D</i> .	True Input Dower	$P_i > 250 \text{ W}$	-4	+4	%
Pimon	True Input Power	$P_i < 250 \text{ W}$	-10	+10	W
V _{1 mon}	V ₁ Voltage		-0.1	+0.1	VDC
l1 mon	V1 Current	<i>I</i> [†] > 25 A	-1	+1	%
I1 mon		$I_1 \leq 25 \text{ A}$	-0.25	+0.25	ADC
D		$P_i > 250 \text{ W}$	-2	+2	%
P1 nom	V ₁ Output Power	<i>P</i> _i < 250 W	-5	+5	W
VSB mon	VsB Voltage		-0.1	+0.1	VDC
ISB mon	VSB Current		-0.1	+0.1	ADC
T _A mon	Inlet Temperature	$T_{A\min} \leq T_A \leq T_{A\max}$	-2	+2	°C

8. SIGNALING AND CONTROL

8.1 ELECTRICAL CHARACTERISTICS

PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
PSON_H	I / HOTSTANDBYEN_L					
V/L Input Low Level Voltage V/H Input High Level Voltage		PSON_L: Main output enabled HOTSTANDBYEN_H: Hot Standby mode not allowed	-0.2		0.8	V
		PSON_L: Main output disabled HOTSTANDBYEN_H: Hot Standby mode allowed	2		3.5	V
ILL,H Maximum Input Sink or Source Current Rpull up Internal Pull up Resistor to internal 3.3V		<i>V</i> /= -0.2 V to +3.5 V	-1		1	mA
				10		kΩ
RLOW	Maximum external Pull down Resistance to GND to obtain Low Level				1	kΩ
Rhigh	Minimum external Pull down Resistance to GND to obtain High Level		50			kΩ
PWOK_I	Н					
Vol	Output Low Level Voltage	$Vi < V_{i \min LL}, V_{lsink} < 4 \text{ mA}$	0		0.4	V
Vон	Output High Level Voltage	Vi > Vi min LL, Isource < 0.5 mA	2.4		3.5	V
R _{pull up} Internal Pull up Resistor to internal 3.3V				1		kΩ
IOL	Maximum Sink Current	<i>V</i> ₀ < 0.4 V			4	mA

8.2 SENSE INPUTS

The main output has sense lines implemented to compensate for voltage drop on load wires in both positive and negative path. The maximum allowed voltage drop is 200 mV on the positive rail and 50 mV on the GND rail.

With open sense inputs the main output voltage will rise by 270 mV. Therefore if not used, these inputs should be connected to the power output and GND at the power supply connector. The sense inputs are protected against short circuit. In this case the power supply will shut down.

8.3 CURRENT SHARE

The PET front-ends have an active current share scheme implemented for V1. All ISHARE pins need to be interconnected in order to activate the current sharing functionality. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases.

The current share function uses an analog bus to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV.

The standby output uses a passive current share method (droop output voltage characteristic).

8.4 PSON_L INPUT

The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V1 of the front-end. With low level input the main output is enabled. Toggling this active-low pin is also used to clear any latched fault condition. The PSON_L can either be controlled by an open collector device or by a voltage source.

 Asia-Pacific
 Europe, Middle East

 +86 755 298 85888
 +353 61 225 977

East No 977 +1 4

North America +1 408 785 5200

BCD.00350_AJ1

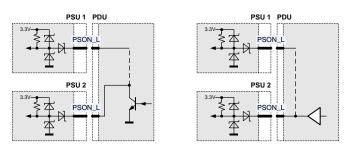


Figure 18. PSON_H connection

8.5 PWOK_H OUTPUT

The PWOK_H is an open drain output with an internal pull-up to 3.3 V indicating whether both VSB and V1 outputs are within regulation. This pin is active-low.

An external pull down resistor ensures low level when there is no power supply seated. When combining PWOK_H outputs of several power supplies, circuits as shown in *Figure 19* should be used.

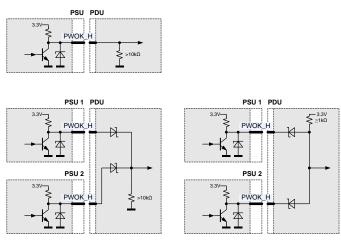


Figure 19. PWOK_H connection

8.6 HOT-STANDBY IN-/OUTPUT

The hot-standby operation is an operating mode allowing to further increase efficiency at light load conditions in a redundant power supply system. Under specific conditions one of the power supplies is allowed to disable its DC/DC stage. This will save the power losses associated with this power supply and at the same time the other power supply will operate in a load range having a better efficiency. In order to enable the hot standby operation, the HOTSTANDBYEN_H and the ISHARE pins need to be interconnected between the power supplies. A power supply will only be allowed to enter the hot-standby mode, when the HOTSTANDBYEN_H pin is high, the load current is low (see *Figure 20*) and the supply was allowed to enter the hot-standby mode by the system controller via the appropriate I²C command (by default disabled). The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode.

If a power supply is in a fault condition, it will pull low its active-high HOTSTANDBYEN_H pin which indicates to the other power supply that it is not allowed to enter the hot-standby mode or that it needs to return to normal operation should it already have been in the hot-standby mode.

NOTE:

The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode.

Figure 21 shows the achievable power loss savings when using the hot-standby mode operation. A total power loss reduction of approx. 10W is achievable.

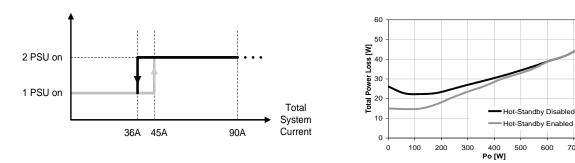


Figure 20. Hot-standby enable/disable current thresholds

Figure 21. PSU power losses with/without hot-standby mode

600 700 800

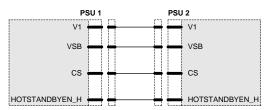


Figure 22. Recommended hot-standby configuration

8.7 PRESENT_L OUTPUT - AVAILABLE ONLY ON VERSION PET1600-12-074NAS311

The PRESENT_L pin is wired through a 100 Ohms resistor to internal GND within the power supply. This pin indicates that there is a power supply present in this system slot. An external pull-up resistor has to be added within the application. Current into the PRESENT_L pin should not exceed 5 mA to guarantee a low level voltage if power supply is seated.

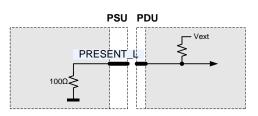


Figure 23. PRESENT_L connection

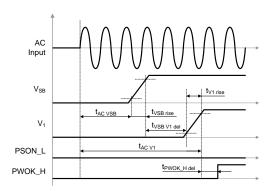


Figure 24. AC turn-on timing

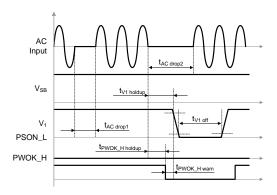


Figure 25. AC short dips

8.8 SIGNAL TIMING

Asia-Pacific +86 755 298 85888

Europe, Middle East +353 61 225 977

North America

+1 408 785 5200 BCD.00350_AJ1

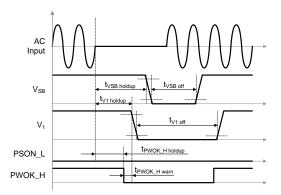


Figure 26. AC long dips

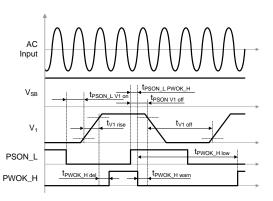


Figure 27. PSON_L turn-on/off timing

PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
tac vsb	AC Line to 90% VSB				3.5 ⁶	s
tac vi	AC Line to 90% V1	PSON_L = Low			4 6	s
tvsB V1 del	V_{SB} to V_1 delay	PSON_L = Low	50	250	1000	ms
tv1 rise	V ₁ rise time	See chapter Output				
t _{VSB rise}	V _{SB} rise time	See chapter Output				
t _{AC drop1}	AC drop without V_7 leaving regulation	I _{1 nom} , I _{SB nom}			10	ms
tAC drop2	AC drop without V_{SB} leaving regulation	It nom, ISB nom			70	ms
tv1 holdup	Loss of AC to V_7 leaving regulation	See chapter Input				
tvsB holdup	Loss of AC to V_7 leaving regulation	See chapter Input				
tpwok_H del	Outputs in regulation to PWOK_H asserted		100	250	200	ms
tpwok_H warn	Warning time from de-assertion of PWOK_H to V_7 leaving regulation		0.15			ms
tpwok_H holdup	Loss of AC to PWOK_H de-asserted	Vinom HL, I1 nom, ISB nom	10			ms
tpwok_H low	Time PWOK_H is kept low after being de- asserted		100			ms
tPSON_L V1 on	Delay PSON_L active to V_7 in regulation		5	10	20	ms
tpson_L V1 off	Delay PSON_L de-asserted to V_7 disabled		2	3	4	ms
tpson_l pwok_h	Delay PSON_L de-asserted to PWOK_H de- asserted			1	2	ms
tv1 off	Time V_7 is kept off after leaving regulation			1		S
tvsB off	Time V_{SB} is kept off after leaving regulation			1		s

 $^{\rm 6}$ At repeated ON-OFF cycles the start-up time can be increased by 1s

8.9 LED INDICATOR

The front-end has one front LED showing the status of the supply. The LED is bi-colored: green and amber, and indicates AC and DC power presence and warning or fault conditions. Table 1 lists the different LED status.

OPERATING CONDITION	LED SIGNALING
No AC or AC Line in UV condition, VSB not present from paralleled power supplies	Off
PSON_L High	Disking Groop 11
Hot-Standby Mode	Blinking Green 1Hz
No AC or AC Line in UV condition, V_{SB} present from paralleled power supplies	
V_1 or V_{SB} out of regulation	
Over temperature shutdown	Solid Amber
Output over voltage shutdown (V_1 or V_{SB})	Solid Amber
Output over current shutdown (V_1 or V_{SB})	
Fan error (>15%)	
Over temperature warning	Plinking Amber 11/2
Minor fan regulation error (>5%, <15%)	Blinking Amber 1Hz
Firmware boot loading in process	Blinking Green 2Hz
Outputs V_1 and V_{SB} in regulation	Solid Green

* The order of the criteria in the table corresponds to the testing precedence in the controller.

Table 1. LED Status

9. I²C / POWER MANAGEMENT BUS COMMUNICATION

The PET front-end is a communication Slave device only; it never initiates messages on the I2C/SMBus by itself. The communication bus voltage and timing is defined in Table 2 and further characterized through:

- The SDA/SCL IOs use 3.3 V logic levels
- External pull-up resistors on SDA/SCL required for correct signal edges
- Full SMBus clock speed of 100 kbps
- Clock stretching limited to 1 ms
- SCL low time-out of >25 with recovery within 10 ms
- Recognizes any time Start/Stop bus conditions

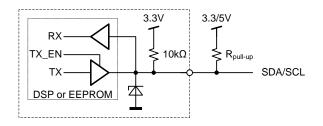


Figure 28. Physical layer of communication interface

Communication to the DSP or the EEPROM will be possible as long as the input AC voltage is provided. If no AC is present, communication to the unit is possible as long as it is connected to a life VSB output (provided e.g. by a redundant unit). If only V_1 is provided, communication is not possible.

Asia-Pacific Europe, Middle East +86 755 298 85888 +353 61 225 977

BCD.00350_AJ1

PARAMETER	DESCRIPTION	CONDITION	MIN	MAX	UNIT
SCL / SDA					
ViL	Input low voltage		-0.5	1.0	V
И _Н	Input high voltage		2.3	3.5	V
V _{hys}	Input hysteresis		0.15		V
VoL	Output low voltage	3 mA sink current	0	0.4	V
<i>t</i> r	Rise time for SDA and SCL		20+0.1Cb1	300	ns
tof	Output fall time ViHmin \rightarrow ViLmax	$10 \text{ pF} < C_b{}^1 < 400 \text{ pF}$	20+0.1Cb1	250	ns
k	Input current SCL/SDA	0.1 VDD < Vi < 0.9 VDD	-10	10	μA
Ci	Internal Capacitance for each SCL/SDA			50	pF
f SCL	SCL clock frequency		0	100	kHz
<i>R</i> _{pull-up}	External pull-up resistor	f _{SCL} ≤ 100 kHz		1000 ns / C _b 1	Ω
<i>t</i> HDSTA	Hold time (repeated) START	f _{SCL} ≤ 100 kHz	4.0		μs
t _{LOW}	Low period of the SCL clock	f _{SCL} ≤ 100 kHz	4.7		μs
<i>t</i> HIGH	High period of the SCL clock	f _{SCL} ≤ 100 kHz	4.0		μs
<i>t</i> susta	Setup time for a repeated START	f _{SCL} ≤ 100 kHz	4.7		μs
<i>t</i> HDDAT	Data hold time	f _{SCL} ≤ 100 kHz	0	3.45	μs
<i>t</i> sudat	Data setup time	f _{SCL} ≤ 100 kHz	250		ns
<i>t</i> susto	Setup time for STOP condition	f _{SCL} ≤ 100 kHz	4.0		μs
<i>t</i> BUF	Bus free time between STOP and START	f _{SCL} ≤ 100 kHz	5		ms

 1 Cb = Capacitance of bus line in pF, typically in the range of 10...400 pF

Table 2. PC / SMBus Specification

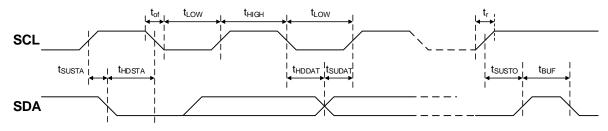


Figure 29. PC / SMBus Timing

ADDRESS SELECTION

The address for I²C communication can be configured by pulling address input pins A1 and A0 either to GND (logic low) or leave them open (logic high). An internal pull up resistor will cause the A1 / A0 pin to be in high level if left open. A fixed addressing offset exists between the Controller and the EEPROM.

A2 ²⁾	A1	A0	I2C Address ¹⁾		
A2 -7	~	AU	Controller	EEPROM	
0	0	0	0xB0	0xA0	
0	0	1	0xB2	0xA2	
0	1	0	0xB4	0xA4	
0	1	1	0xB6	0xA6	
1	0	0	0xB8	0xA8	
1	0	1	0xBA	0xAA	
1	1	0	0xBC	0xAC	
1	1	1	0xBE	0xAE	

¹⁾ The LSB of the address byte is the R/W bit.

 $^{2)}$ A2 is available only on model PET1600-12-074NAS311. If it is not available, A2 = 0.

Table 3. Address and protocol encoding

9.1 SMBALERT_L OUTPUT

The SMBALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is a logical OR of the Shutdown and Warning events. It is asserted (pulled Low) at Shutdown or Warning events such as reaching temperature warning/shutdown threshold of critical component, general failure, over-current, over-voltage, under-voltage or low-speed of a failed fan. This signal may also indicate the power supply is operating in an environment exceeding the specified limits.

The SMBAlert signal is asserted simultaneously with the LED turning to solid amber or blinking amber.

PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
SMB_AL	LERT_L					
Vext	Maximum External Pull up Voltage				12	V
Іон	Maximum High Level Leakage Current	No Failure or Warning condition, $V_O = 12 \text{ V}$			10	μA
Vol	Output Low Level Voltage	Failure or Warning condition, <i>Isink</i> < 4 mA	0		0.4	V
R pull up	Internal Pull up Resistor to internal 3.3 V			None		
IOL	Maximum Sink Current	<i>Vo</i> < 0.4 V			4	mA

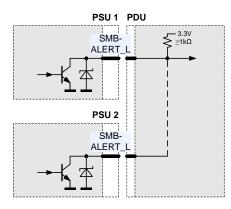


Figure 30. SMBALERT_L connection

 Asia-Pacific
 Europe, M

 +86 755 298 85888
 +353

Europe, Middle East +353 61 225 977 North America

+1 408 785 5200 BCD.00350_AJ1

9.2 CONTROLLER AND EEPROM ACCESS

The controller and the EEPROM in the power supply share the same I²C bus physical layer (see *Figure 31*) and can be accessed under different addresses, see ADDRESS SELECTION.

The SDA/SCL lines are connected directly to the controller and EEPROM which are supplied by internal 3.3 V.

The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply.

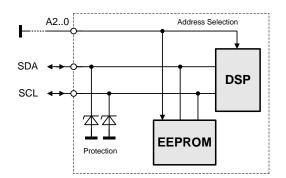
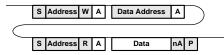


Figure 31. PC Bus to DSP and EEPROM

9.3 EEPROM PROTOCOL

The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands are defined, it is recommended to use the single byte write / read commands.


WRITE

The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only occur after 5ms of the last STOP condition to allow the EEPROM to write the data into its memory.

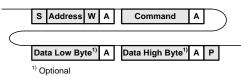
S Address W A Dat	a Address A	Data	Α	Ρ	
-------------------	-------------	------	---	---	--

READ

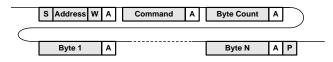
The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the specified location.

9.4 POWER MANAGEMENT BUS PROTOCOL

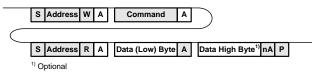
The Power Management Bus is an open standard protocol that defines means of communicating with power conversion and other devices. For more information, please see the System Management Interface Forum web site at <u>www.powerSIG.org</u>.


Power Management Bus command codes are not register addresses. They describe a specific command to be executed. The PET1600-12-074NA supply supports the following basic command structures:

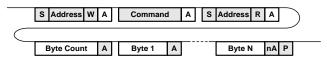
- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- Recognized any time Start/Stop bus conditions


WRITE

The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after the first data byte (Byte command) or then after sending 2 data bytes (Word command).



In addition, Block write commands are supported with a total maximum length of 255 bytes. See PET2000-12-074NA Power Management Bus Communication Manual URP.00234 for further information.



READ

The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word.

In addition, Block read commands are supported with a total maximum length of 255 bytes. See PET2000-12-074NA Power Management Bus Communication Manual URP.00234 for further information.

9.5 GRAPHICAL USER INTERFACE

Bel Power Solutions provides with its "I²C Utility" a Windows® XP/Vista/Win7 compatible graphical user interface allowing the programming and monitoring of the PET1600-12-074NA Front-End.

The utility can be downloaded from: <u>belfuse.com/power-solutions</u> and supports both the PSMI and Power Management Bus protocols.

The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the monitoring view the power supply can be controlled and monitored.

If the GUI is used in conjunction with the YTM.00045 Evaluation Board it is also possible to control the PSON_L pin(s) of the power supply.

NOTE:

The user of the GUI needs to ensure that only one of the power supplies have the hot-standby mode enabled.

 Asia-Pacific
 Europe, Middle East
 North

 +86 755 298 85888
 +353 61 225 977
 +1 408

© 2019 Bel Power Solutions & Protection

North America +1 408 785 5200 BCD.00350_AJ1

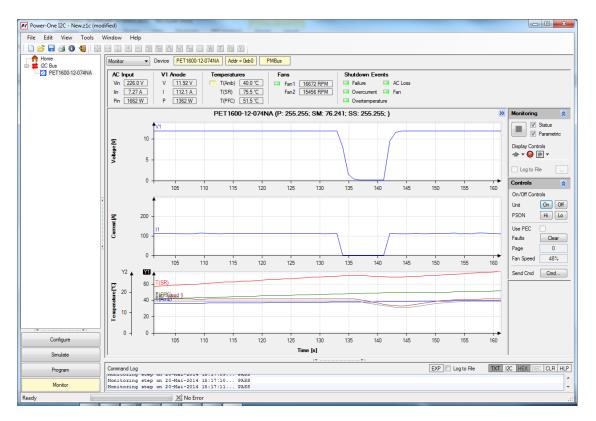


Figure 32. Monitoring dialog of the PC Utility

10. TEMPERATURE AND FAN CONTROL

10.1 FAN CONTROL

To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the air-flow at the rear of the supply by placing large objects directly at the output connector. The PET1600-12-074NA is provided with a rear to front airflow, which means the air enters through the DC-output of the supply and leaves at the AC-inlet. The PET1600-12-074NA supply has been designed for horizontal operation.

Figure 33. Airflow direction

The fan inside the supply is controlled by a microprocessor. The rpm of the fan is adjusted to ensure optimal supply cooling and is a function of output power. Three different curves are selected based on input voltage and inlet temperature. With standby output loaded the fan speed minimum is limited to ensure enough cooling of circuits providing standby power. *Figure 34* illustrates the programmed fan curves.

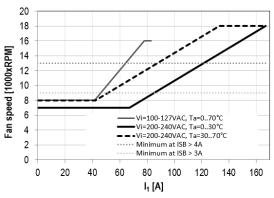


Figure 34. Fan speed vs. main output load

10.2 TEMPERATURE MONITOR AND OVER TEMPERATURE PROTECTION

The PET1600-12-074NA provides access via I^2C to the measured temperatures of in total 6 sensors within the power supply, see *Table 4*. The microprocessor is monitoring these temperatures and if warning threshold of one of these sensors is reached it will set fan to maximum speed. If temperatures continue to rise above shut down threshold the main output V_1 (or V_{SB} if auxiliary converter is affected) will be disabled. At the same time the warning or fault condition is signalized accordingly through LED, PWOK_H and SMBALERT_L.

TEMPERATURE SENSOR	DESCRIPTION / CONDITION	POWER MANAGEMENT BUS REGISTER	WARNING THRESHOLD	SHUTDOWN THRESHOLD
Inlet air temperature	Sensor located on control board close to DC end of power supply	8Dh	73°C	78°C
Synchronous rectifier	Sensor located on secondary side of DC/DC stage	8Eh	95°C	100°C
Primary heat sink	Sensor located on primary heat sink	8Fh	87°C	92°C
Output ORing element	Sensor located close to output	D2h	100°C	105°C
Auxiliary converter	Sensor located on secondary side on auxiliary rectifier	D3h	80°C	85°C
Bridge rectifier	Sensor located on heat sink for AC rectifier	D4h	86°C	91°C

Table 4 - Temperature sensor location and thresholds

11. ELECTROMAGNETIC COMPATIBILITY

11.1 IMMUNITY

PARAMETER	DESCRIPTION / CONDITION	CRITERION
ESD Contact Discharge	IEC / EN 61000-4-2, ±8 kV, 25+25 discharges per test point (metallic case, LED, connector body)	А
ESD Air Discharge	IEC / EN 61000-4-2, ±15 kV, 25+25 discharges per test point (non-metallic user accessible surfaces)	А
Radiated Electromagnetics Filed	IEC / EN 61000-4-3, 10 V/m, 1 kHz/80% Amplitude Modulation, 1µs Pulse Modulation, 10 kHz 2 GHz	А
Burst	IEC / EN 61000-4-4, Level 3 AC port ±2 kV, 1 minute	А
Surge	IEC / EN 61000-4-5, Level 3 Line to Earth: ±2 kV Line to Line: ±1 kV	А
RF Conducted Immunity	IEC / EN 61000-4-6, Level 3, 10 Vrms, CW, 0.1 80 MHz	А
Voltage Dips and Interruptions	 IEC / EN 61000-4-11 Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 10.6 ms Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 70 ms Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 100 ms 	<i>V1</i> : A, <i>V35</i> : A <i>V1</i> : B, <i>V35</i> : A <i>V1</i> : B, <i>V35</i> : B

 Asia-Pacific
 Europe, Middle East
 N

 +86 755 298 85888
 +353 61 225 977
 +1

North America

+1 408 785 5200 BCD.00350_AJ1

11.2 EMISSION

PARAMETER	DESCRIPTION / CONDITION	CRITERION
Conducted Emission	EN 55022 / CISPR 22: 0.15 30 MHz, QP and AVG, single power supply EN 55022 / CISPR 22: 0.15 30 MHz, QP and AVG, 2 power supplies in a system	Class A 6 dB margin Class A
Radiated Emission	EN 55022 / CISPR 22: 30 MHz … 1 GHz, QP, single power supply EN 55022 / CISPR 22: 30 MHz … 1 GHz, QP, 2 power supplies in a system	Class A 6 dB margin Class A
Harmonic Emissions	IEC 61000-3-2, Vi = 115 VAC / 60 Hz & 230 VAC / 50 Hz, 100% Load	Class A
AC Flicker	IEC 61000-3-3, Vi = 230 VAC / 50 Hz, 100% Load	Pass
Acoustical Noise	Distance 1 meter, 25°C, 50% Load	65 dBA

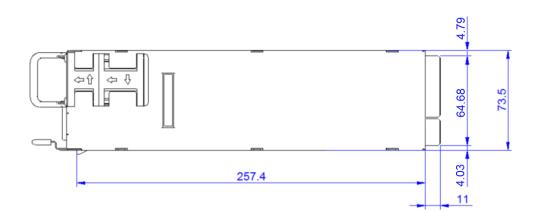
12. SAFETY / APPROVALS

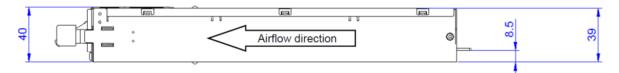
Maximum electric strength testing is performed in the factory according to IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.

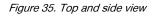
PARAMETER	DESCRIPTION / CONDITION	NOTES
Agency Approvals	Approved to latest edition of the following standards: UL/CSA60950-1, IEC60950-1 and EN60950-1, NEMKO NO86275, EAC NO 0230738, BSMI CNS14336-1 and CNS13438	
	Input (L/N) to chassis (PE)	Basic
Isolation Strength	Input (L/N) to output	Reinforced
	Output to chassis	None (Direct connection)
	Primary (L/N) to chassis (PE)	
Creepage / Clearance	Primary to secondary	
Electrical Strangth Test	Input to chassis	Min. 2121 VDC
Electrical Strength Test	Input to output (tested by manufacturer only)	4242 VDC

13. ENVIRONMENTAL

PARA	METER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
T	Ambiant Tomporatura	Up to 1'000m ASL	0		+55	°C
T_A	Ambient Temperature	Linear derating from 1'000 to 3'048m ASL			+45	°C/
TAext	Extended Temp. Range				TBD	°C
Ts	Storage Temperature	Non-operational	-20		+70	°C
	Altitude	Operational, above Sea Level	-		3'048	m
	Allitude	Non-operational, above Sea Level	-		10'600	m
	Shock, operational	Holf ains 11ms 10 shacks per direction 6 directions			1	g peak
	Shock, non-operational	Half sine, 11ms, 10 shocks per direction, 6 directions			30	g peak
	Vibration, sinusoidal, operational	IEC/EN 60068-2-6, sweep 5 to 500 to 5 Hz,			1	g peak
	Vibration, sinusoidal, non-operational	1 octave/min, 5 sweep per axis			4	g peak
	Vibration, random, non- operational	IEC/EN 60068-2-64, 5 to 500 Hz, 1 hour per axis			0.025	g²/Hz




14. RELIABILITY


PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
<i>MTBF</i> Mean time to failure	$T_A = 25^{\circ}$ C, according Telcordia SR-332, issue 3, GB, confidence level = 90%	860			kh

15. MECHANICAL

PARA	METER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
		Width		73.5		mm
	Dimensions	Heigth		40.0		mm
		Depth		265.0		mm
т	Weight			1.1		kg

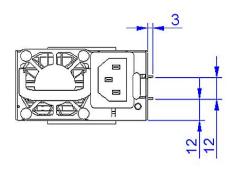
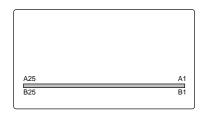
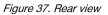




Figure 36. Front view

Asia-Pacific Europe, Middle East +86 755 298 85888

+353 61 225 977

North America

+1 408 785 5200 BCD.00350_AJ1

16. CONNECTORS

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
AC inlet	IEC 60320 C14				
AC cord requirement	Wire size		16		AWG
Output connector	25-Pin PCB card edge				
Mating output connector	FCI 10035388-106 or equivalent				

A1 ~ A9GND GNDPower and signal ground (return)B1 ~ B9GNDPower and signal ground (return)A10 ~ A18V1+12 VDC main outputB10 ~ B18V1+12 VDC main outputA19SDAI²C data signal lineA20SCLI²C clock signal lineA21PSON_LPower supply on input, active-lowA22SMB_ALERT_LSMB Alert signal output, active-lowA23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB21VSB+12 V Standby positive outputB23ISHAREAnalog current share busB24PRESENT_L 7)Power supply seated, active-low	PIN	SIGNAL NAME	DESCRIPTION
B1 ~ B9GNDC C C C C C C C C C C C C C C C C C C			Power and signal ground (return)
B10 ~ B18V1+12 VDC main outputA19SDAI²C data signal lineA20SCLI²C clock signal lineA21PSON_LPower supply on input, active-lowA22SMB_ALERT_LSMB Alert signal output, active-lowA23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	B1 ~ B9	GND	
B10 ~ B18V1A19SDAI²C data signal lineA20SCLI²C clock signal lineA21PSON_LPower supply on input, active-lowA22SMB_ALERT_LSMB Alert signal output, active-lowA23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	A10 ~ A18	V1	12 VDC main output
A20SCLI ² C clock signal lineA21PSON_LPower supply on input, active-lowA22SMB_ALERT_LSMB Alert signal output, active-lowA23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I ² C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	B10 ~ B18	V1	
A21PSON_LPower supply on input, active-lowA22SMB_ALERT_LSMB Alert signal output, active-lowA23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB20A1I²C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	A19	SDA	I ² C data signal line
A22SMB_ALERT_LSMB Alert signal output, active-lowA23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB20A1I²C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	A20	SCL	I ² C clock signal line
A23V1_SENSE_RMain output negative senseA24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB20A1I²C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	A21	PSON_L	Power supply on input, active-low
A24V1_SENSEMain output positive senseA25PWOK_HPower OK signal output, active-highB19A0I²C address selection inputB20A1I²C address selection inputB21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	A22	SMB_ALERT_L	SMB Alert signal output, active-low
A25 PWOK_H Power OK signal output, active-high B19 A0 I²C address selection input B20 A1 I²C address selection input B21 VSB +12 V Standby positive output B22 HOTSTANDBYEN_L Hot standby enable signal, active-high B23 ISHARE Analog current share bus	A23	V1_SENSE_R	Main output negative sense
B19 A0 I ² C address selection input B20 A1 I ² C address selection input B21 VSB +12 V Standby positive output B22 HOTSTANDBYEN_L Hot standby enable signal, active-high B23 ISHARE Analog current share bus	A24	V1_SENSE	Main output positive sense
B20A1B21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LB23ISHAREAnalog current share bus	A25	PWOK_H	Power OK signal output, active-high
B20A1B21VSB+12 V Standby positive outputB22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	B19	A0	I2C address selection input
B22HOTSTANDBYEN_LHot standby enable signal, active-highB23ISHAREAnalog current share bus	B20	A1	
B23 ISHARE Analog current share bus	B21	VSB	+12 V Standby positive output
	B22	HOTSTANDBYEN_L	Hot standby enable signal, active-high
B24 PRESENT_L ⁷ Power supply seated, active-low	B23	ISHARE	Analog current share bus
	B24	PRESENT_L ⁷⁾	Power supply seated, active-low
B25 A2 ⁷ I ² C address selection input	B25	A2 7)	I ² C address selection input

Table 5. Output connector pin assignment

⁷ Available only on model PET1600-12-074NAS311, open circuit on standard model PET1600-12-074NA

17. ACCESSORIES

ITEM	DESCRIPTION	ORDERING PART NUMBER	SOURCE
	I²C Utility Windows XP/Vista/7 compatible GUI to program, control and monitor PET1600-12-074NA Front- Ends (and other I ² C units)	ZS-00130	belfuse.com/power-solutions
	Evaluation Board Connector board to operate PET1600-12-074NA. Includes an on-board USB to I ² C converter (use I ² C Utility as desktop software).	YTM.00045	belfuse.com/power-solutions

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on

the date manufactured. Specifications are subject to change without notice.

 Asia-Pacific
 Europe, Middle East

 +86 755 298 85888
 +353 61 225 977

North America +1 408 785 5200

BCD.00350_AJ1

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.