

1SP0635x2xx-DIM1000NSM33-TS000 Preliminary Data Sheet

Compact, high-performance, plug-and-play single-channel IGBT driver based on SCALE[™]-2 technology for individual and parallel-connected modules in 2-level, 3-level and multilevel converter topologies

Abstract

The SCALE™-2 plug-and-play driver 1SP0635x2xx-DIM1000NSM33-TS000 is a compact single-channel intelligent gate driver designed for Dynex IGBTs DIM1000NSM33-TS000 and TIM1000NSM33-TS000. The master driver 1SP0635x2Mx-DIM1000NSM33-TS000 features a fiber-optic interface with a built-in isolated DC/DC power supply. It can be used as stand-alone driver or in conjunction with up to three 1SP0635D2Sx-DIM1000NSM33-TS000 slaves to drive up to four parallel-connected IGBT modules of type DIM1000NSM33-TS000 or TIM1000NSM33-TS000.

For drivers adapted to other types of high-power and high-voltage IGBT modules, refer to:

www.IGBT-Driver.com/go/plug-and-play

Features

- ✓ Plug-and-play solution
- ✓ Allows parallel connection of IGBT modules
- ✓ For 2-level, 3-level and multilevel topologies
- ✓ Built-in isolated DC/DC power supply (master)
- ✓ Fiber-optic links (master)
- ✓ Built-in interface to 1SP0635D2Sx (slave)
- ✓ Duty cycle 0...100%
- ✓ Dynamic Advanced Active Clamping DA²C
- ✓ Dynamic IGBT short-circuit protection
- ✓ Monitoring of supply voltage
- Monitoring of gate voltage
- ✓ Extremely reliable; long service life
- ✓ Shortens application development time
- ✓ Suitable for DIM1000NSM33-TS000 and TIM1000NSM33-TS000

Applications

- ✓ Traction
- ✓ Railroad power supplies
- ✓ Light rail vehicles
- ✓ HVDC
- ✓ Flexible AC transmission systems (FACTS)
- ✓ Medium-voltage converters
- Industrial drives
- ✓ Wind-power converters
- Medical applications
- ✓ Research
- And many others

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and common data that apply to the whole series, please refer to the "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers" on www.IGBT-Driver.com/qo/1SP0635.

When applying SCALE-2 plug-and-play drivers, please note that these drivers are specifically adapted to a particular type of IGBT module. Therefore, the type designation of SCALE-2 plug-and-play drivers also includes the type designation of the corresponding IGBT module. These drivers are not valid for IGBT modules other than those specified. Incorrect use may result in failure.

Mechanical Dimensions

Dimensions: See the relevant "Description and Application Manual"

Mounting principle: Connected to IGBT module with screws

Fiber-Optic Interfaces (1SP0635x2Mx)

Interface	Remarks	Part type #
Drive signal input	1SP0635V, fiber-optic receiver (Notes 1, 2)	HFBR-2522ETZ
Drive signal input	1SP0635S, fiber-optic receiver (Notes 1, 2)	HFBR-2412Z
Status output	1SP0635V, fiber-optic transmitter (Notes 1, 3)	HFBR-1522ETZ
Status output	1SP0635S, fiber-optic transmitter (Notes 1, 3)	HFBR-1412Z

Electrical Connectors

Interface	Remarks	Part type #
Power supply connector X1 Bus connectors X2 and X3	1SP0635x2Mx, on-board connector (Note 4) On-board connectors (Note 5)	214012 214013

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V _{DC}	VDC to GND (1SP0635x2Mx)	0	16	V
Average supply current I_{DC}	1SP0635x2Mx only (Note 6)		400	mA
Average supply current I_{DC}	1SP0635x2Mx with three 1SP0635D2Sx (Note 6)		1130	mA
Gate output power	1SP0635x2Mx, Ta < 70°C (Note 7)		3	W
	$1SP0635x2Mx$, Ta = $85^{\circ}C$ (Note 7)		2.2	W
Gate output power	1SP0635D2Sx, Ta < 70°C (Note 8)		2.6	W
	1SP0635D2Sx, Ta = 85°C (Note 8)		2	W
Switching frequency F	1SP0635x2Mx, Ta < 70°C		9.5	kHz
	1SP0635x2Mx, Ta = 85°C		6.9	kHz
Switching frequency F	1SP0635D2Sx, Ta < 70°C		8.2	kHz
	1SP0635D2Sx, Ta = 85°C		6.3	kHz
Gate peak current I _{out}	Note 9	-35	+35	Α
Test voltage (50Hz/1min.)	1SP0635x2Mx, primary to secondary (Note 10)		6000	$V_{AC(eff)}$
DC-link voltage	Switching operation (Note 11)		2200	v
	Off state (Note 12)		2700	V
Operating voltage	Primary to secondary side		3300	V_{peak}
Max. emitter-emitter voltage	Between parallel connected drivers (Note 13)		200	V_{peak}
dV/dt	Between parallel connected drivers (Note 14)		50	kV/µs
Max. interface current	X2 and X3, total RMS value (Note 15)		4	A_{rms}
	X2 and X3, total peak value (Note 15)		20	A_{peak}
Operating temperature		-40	+85	°C
Storage temperature		-40	+90	°C

Recommended Operating Conditions

Power Supply	Remarks	Min	Тур	Max	Unit
Supply voltage V _{DC}	To GND	14.5	15	15.5	V

Electrical Characteristics

All data refer to $+25^{\circ}$ C and $V_{DC} = 15V$ unless otherwise specified

Power Supply	Remarks	Min	Тур	Max	Unit
Supply current I _{DC}	Without load, only 1SP0635x2Mx		120		mA
	Without load, per additional 1SP0635D2Sx		35		mA
Coupling capacitance C _{io}	1SP0635x2Mx, DC/DC converter		15		pF
Power Supply Monitoring	Remarks	Min	Тур	Max	Unit
Supply threshold V _{iso} -V _{ee}	Secondary side, clear fault	12.1	12.6	13.1	V
	Secondary side, set fault (Note 16)	11.5	12.0	12.5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.35			V
Supply threshold V _{ee} -V _{COM}	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 16)	4.7	4.85	5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.15			V
Bus to 1SP0635D2Sx	Remarks	Min	Тур	Max	Unit
Supply voltage	Without load		25		V
	With three slaves, full load		24		V
Turn-off command	To COM		0		V
Turn-on command	To COM		15		V
Gate Monitoring	Remarks	Min	Тур	Max	Unit
Turn-on threshold V _{GE,on,min}	G _{mean} to E, set fault (Note 17)		12.9		V
Turn-off threshold $V_{\text{GE,off,max}}$	G _{mean} to E, set fault (Note 17)		-7.6		V
Filter delay	Note 17		28		μs
Short-circuit Protection	Remarks	Min	Тур	Max	Unit
Static Vce-monitoring threshold	Between auxiliary terminals (Note 18)		143		V
Response time	DC-link voltage = 2200V (Note 19)		5.9		μs
	DC-link voltage = 1500V (Note 19)		6.0		μs
	DC-link voltage = 1100V (Note 19)		6.2		μs
	DC-link voltage = 800V (Note 19)		8.3		μs
Delay to IGBT turn-off	After the response time (Note 20)		0.3		μs
Timing Characteristics	Remarks	Min	Тур	Max	Unit
Turn-on delay t _{d(on)}	Note 21		190		ns
Turn-off delay t _{d(off)}	Note 21		185		ns

Timing Characteristics	Remarks	Min	Тур	Max	Unit
Output rise time t _{r(out)}	G to E (Note 22)		9		ns
Output fall time t _{f(out)}	G to E (Note 22)		30		ns
Timing Characteristics	Remarks	Min	Тур	Max	Unit
Transmission delay of fault state	Note 23		90		ns
Delay to clear fault state	After IGBT short circuit (Note 24)		9		μs
	After gate-monitoring fault (Notes 24, 30)		1		μs
Acknowledge delay time	Note 25		250		ns
Acknowledge pulse width	On host side	400	700	1050	ns
Gate Output	Remarks	Min	Тур	Max	Unit
Turn-on gate resistor R _{g(on)}	Note 26		2.2		Ω
Turn-off gate resistor R _{g(off)}	Note 26		2.2		Ω
Auxiliary gate capacitor C _{ge}			220		nF
Gate voltage at turn-on	Note 27		15		V
Gate-voltage at turn-off	Without load (Note 27)		-10.1		V
	$P_{DC/DC} = 3W$ (Note 27)		-9.8		V
	$P_{DC/DC} = 6W \text{ (Note 27)}$		-9.5		V
	$P_{DC/DC} = 12W \text{ (Note 27)}$		-9		V
Electrical Isolation	Remarks	Min	Тур	Max	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 10)	6000	6050	6100	V _{AC(eff)}
Partial discharge extinction volt.	Primary to secondary side (Note 28)	3630			V_{peak}
Creepage distance	Primary to secondary side (Note 29)	21			mm
- -	Primary to IGBT main emitter terminal	20			mm
Clearance distance	Primary to secondary side (Note 29)	21			mm
	Primary to IGBT main emitter terminal	13			mm

Footnotes to the Key Data

- 1) The transceivers required on the host controller side are not supplied with the gate driver. It is recommended to use the same types as used in the gate driver. For product information refer to www.IGBT-Driver.com/go/fiberoptics
- 2) The recommended transmitter current at the host controller is 20mA. A higher current may increase jitter or delay at turn-off.
- 3) The typical transmitter current at the gate driver is 18mA. In case of supply undervoltage, the minimum transmitter current at the gate driver is 12mA: this is suitable for adequate plastic optical fibers with a length of more than 10 meters.
- 4) This refers to the manufacturer ordering number, see www.igbt-driver.com/go/ext_erni. The customer-side connector as well as cables with different lengths can be supplied by CONCEPT. Refer to the "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers" for more information.
- 5) This refers to the manufacturer ordering number, see www.igbt-driver.com/go/ext erni. These connectors are to be used to connect 1SP0635x2Mx (master) or 1SP0635D2Sx (slave) to 1SP0635D2Sx (slave) if parallel connection of IGBT modules is required. Cables with different lengths

- can be supplied by CONCEPT. Refer to the "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers" for more information.
- 6) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload.
- 7) The given power can only be fully exploited without slaves 1SP0635D2Sx (no parallel connection of IGBT modules). If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data.
- 8) The given power can be fully exploited with slaves 1SP0635D2Sx (parallel connection of IGBT modules). If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data. Note that the DC/DC converter on the master 1SP0635x2Mx is dimensioned to supply the master as well as three connected slaves 1SP0635D2Sx at full load.
- 9) The gate current is limited by the gate resistors located on the driver.
- 10) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots. Excessive HiPot testing may lead to insulation degradation.
- 11) This limit is due to active clamping under switching conditions. Refer to the "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers".
- 12) Due to the Dynamic Active Advanced Clamping Function (DA²C) implemented on the driver, the DC-link voltage can be increased in the off-state condition (e.g. after emergency shut-down). This value is only valid when the IGBTs are in the off state (not switching). The time during which the voltage can be applied should be limited to short periods (< 60 seconds). Refer to the "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers".
- 13) The maximum dynamic voltage between auxiliary emitters of parallel-connected drivers due to asymmetrical operation at turn-on and turn-off must be limited to the given value.
- 14) Maximum allowed rate of change of auxiliary emitter voltage of parallel connected drivers. This specification guarantees that the drive information will be transferred reliably even with high rate of change of auxiliary emitter voltages (asymmetrical operation).
- 15) Dynamic voltages between auxiliary emitters of parallel connected drivers at turn-on and turn-off lead to equalizing currents over the X2 or X3 bus. The peak and RMS values of the resulting current must be limited to the given value.
- 16) Undervoltage monitoring of the secondary-side supply voltage (Viso to Vee and Vee to COM which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit on 1SP0635x2Mx (masters), all paralleled IGBTs (master and slaves) are switched off and a fault is transmitted to the status output. If the corresponding voltage drops below this limit on 1SP0635D2Sx (slaves), the corresponding IGBT is switched off. A fault will be generated by the gate-monitoring function on the master which will turn off all paralleled IGBTs after the corresponding delay.
- 17) The mean value $V_{GE,mean}$ of all gate voltages (master and all slaves) is filtered and compared to the given values at turn-on and turn-off. If the specified values are exceeded ($V_{GE,mean} < V_{GE,on,min}$ at turn-on resp. $V_{GE,mean} > V_{GE,off,max}$ at turn-off) after the given filter delay, the driver turns off all parallel-connected IGBTs and a fault is transmitted to the status output.
- 18) A dynamic Vce protection is implemented on the driver. The maximum allowed Vce voltage at turn-on is dynamically adjusted in order to better fit the IGBT characteristics at turn-on. At the end of the turn-on process, the given static value applies.
- 19) The resulting pulse width of the direct output of the gate drive unit for short-circuit type I (excluding the delay of the gate resistors) is the sum of the response time plus the delay to IGBT turn-off.
- 20) The turn-off event of the IGBT is delayed by the specified time after the response time.
- 21) Including the delay of the external fiber-optic links (cable length: 1m). Measured from the transition of the turn-on or turn-off command at the optical transmitter on the host controller side to the direct output of the gate drive unit (excluding the delay of the gate resistors).
- Output rise and fall times are measured between 10% and 90% of the nominal output swing. The values are given for the driver side of the gate resistors with $2\Omega/1$ uF load. The time constant of the

- output load in conjunction with the present gate resistors leads to an additional delay at their load side.
- 23) Delay of external fiber-optic links. Measured from the driver secondary side (ASIC output) to the optical receiver on the host controller.
- 24) Measured on the host side. The fault status on the secondary side is automatically reset after the specified time.
- 25) Including the delay of the external fiber-optic links. Measured from the transition of the turn-on or turn-off command at the optical transmitter on the host controller side to the transition of the acknowledge signal at the optical receiver on the host controller side.
- 26) The gate resistors can be leaded or surface mounted. CONCEPT reserves the right to determine which type will be used. Typically, higher quantities will be produced with SMD resistors and small quantities with leaded resistors.
- 27) The driver secondary side voltage is split into two distinct voltages on the driver. The first one is the turn-on voltage which is regulated at about 15V. The difference between the total secondary side voltage and the turn-on voltage is the turn-off voltage which is not regulated and mainly dependent on the driver input voltage VDC and the DC/DC converter power.
- 28) Partial discharge measurement is performed in accordance with IEC 60270.
- 29) Clearance and creepage distances are designed according to IEC 60077-1. Refer to the "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers" for more information.
- 30) The fault status is set as long as the gate monitoring fault is present. The given value applies if the driver goes from the "off state" to the "on state" and the gate-emitter voltage of one or more parallel connected drivers does not turn on. If the driver goes from the "on state" to the "off state" and the gate-emitter voltage of one or more parallel connected drivers does not turn off, the fault status is applied as long as the gate monitoring fault is present.

Legal Disclaimer

This data sheet specifies devices but cannot promise to deliver any specific characteristics. No warranty or guarantee is given – either expressly or implicitly – regarding delivery, performance or suitability.

CT-Concept Technologie GmbH reserves the right to make modifications to its technical data and product specifications at any time without prior notice. The general terms and conditions of delivery of CT-Concept Technologie GmbH apply.

Ordering Information

The general terms and conditions of delivery of CT-Concept Technologie GmbH apply.

Interface	CONCEPT Driver Type #	Related IGBT
Master, Fiber-Optic Interface ¹⁾ Master, Fiber-Optic Interface ²⁾ Slave, Electrical Interface	1SP0635V2M1-DIM1000NSM33-TS000 1SP0635S2M1-DIM1000NSM33-TS000 1SP0635D2S1-DIM1000NSM33-TS000	DIM1000NSM33-TS000 DIM1000NSM33-TS000 DIM1000NSM33-TS000
Master, Fiber-Optic Interface ¹⁾ Master, Fiber-Optic Interface ²⁾ Slave, Electrical Interface	1SP0635V2M1-DIM1000NSM33-TS000 1SP0635S2M1-DIM1000NSM33-TS000 1SP0635D2S1-DIM1000NSM33-TS000	TIM1000NSM33-TS000 TIM1000NSM33-TS000 TIM1000NSM33-TS000

- 1) Fiber-optic interface with versatile link (HFBR-2522ETZ and HFBR-1522ETZ)
- 2) Fiber-optic interface with ST (HFBR-2412Z and HFBR-1412Z)
 See "Description & Application Manual for 1SP0635 SCALE-2 IGBT Drivers"

Product home page: www.IGBT-Driver.com/go/1SP0635

Refer to www.IGBT-Driver.com/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, evaluation systems, product documentation and application support

Please click onto: www.IGBT-Driver.com

Manufacturer

CT-Concept Technologie GmbH A Power Integrations Company Johann-Renfer-Strasse 15 2504 Biel-Bienne Switzerland

Phone +41 - 32 - 344 47 47 Fax +41 - 32 - 344 47 40

E-mail <u>Info@IGBT-Driver.com</u> Internet <u>www.IGBT-Driver.com</u>

© 2010...2014 CT-Concept Technologie GmbH - Switzerland. All rights reserved. We reserve the right to make any technical modifications without prior notice. Version 1.0 from 2014-05-01

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Power Integrations:

1SP0635V2M1-DIM1000NSM33-TS000 1SP0635S2M1-DIM1000NSM33-TS000

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.