Is Now Part of # ON Semiconductor® # To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild <a href="general-regarding-numbers-n ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer August 2008 # FPF2100-FPF2107 IntelliMAX™ Advanced Load Management Products #### **Features** - 1.8 to 5.5V Input Voltage Range - Controlled Turn-On - 200mA and 400mA Current Limit Options - Undervoltage Lockout - Thermal Shutdown - <1µA Shutdown Current - Auto restart - Fast Current limit Response Time - 3µs to Moderate Over Currents - 20ns to Hard Shorts - Fault Blanking - RoHS Compliant ### **Applications** - PDAs - Cell Phones - GPS Devices - MP3 Players - Digital Cameras - Peripheral Ports - Hot Swap Supplies #### **General Description** The FPF2100 through FPF2107 is a family of load switches which provide full protection to systems and loads which may encounter large current conditions. These devices contain a 0.125Ω current-limited P-channel MOSFET which can operate over an input voltage range of 1.8-5.5V. Switch control is by a logic input (ON) capable of interfacing directly with low voltage control signals. Each part contains thermal shutdown protection which shuts off the switch to prevent damage to the part when a continuous over-current condition causes excessive heating. When the switch current reaches the current limit, the part operates in a constant-current mode to prohibit excessive currents from causing damage. For the FPF2100-FPF2102 and FPF2104-FPF2106, if the constant current condition still persists after 10ms, these parts will shut off the switch and pull the fault signal pin (FLAGB) low. The FPF2100, FPF2101, FPF2104 and FPF2105, have an auto-restart feature which will turn the switch on again after 160ms if the ON pin is still active. The FPF2102 and FPF2106 do not have this auto-restart feature so the switch will remain off until the ON pin is cycled. For the FPF2103 and FPF2107, a current limit condition will immediately pull the fault signal pin low and the part will remain in the constant-current mode until the switch current falls below the current limit. For the FPF2100 through FPF2103, the minimum current limit is 200mA while that for the FPF2104 through FPF2107 is 400mA. These parts are available in a space-saving 5 pin SOT23 package. **Ordering Information** | Part | Current Limit
[mA] | Current Limit
Blanking Time
[ms] | Auto-Restart
Time
[ms] | ON Pin
Activity | Top Mark | |---------|-----------------------|--|------------------------------|--------------------|----------| | FPF2100 | 200 | 10 | 160 | Active HI | 2100 | | FPF2101 | 200 | 10 | 160 | Active LO | 2101 | | FPF2102 | 200 | 10 | NA | Active HI | 2102 | | FPF2103 | 200 | 0 | NA | Active HI | 2103 | | FPF2104 | 400 | 10 | 160 | Active HI | 2104 | | FPF2105 | 400 | 10 | 160 | Active LO | 2105 | | FPF2106 | 400 | 10 | NA | Active HI | 2106 | | FPF2107 | 400 | 0 | NA | Active HI | 2107 | # **Typical Application Circuit** # **Functional Block Diagram** # **Pin Configuration** # **Pin Description** | Pin | Name | Function | |-----|------------------|---| | 1 | V_{IN} | Supply Input: Input to the power switch and the supply voltage for the IC | | 2 | GND | Ground | | 3 | ON | ON Control Input | | 4 | FLAGB | Fault Output: Active LO, open drain output which indicates an over current supply, under voltage or over temperature state. | | 5 | V _{OUT} | Switch Output: Output of the power switch | # **Absolute Maximum Ratings** | Parameter | Min | Max | Unit | | |---|------|------|------|------| | V _{IN} , V _{OUT} , ON, FLAGB to GND | -0.3 | 6 | V | | | Power Dissipation @ T _A = 25°C (note 1) | | | 667 | mW | | Operating Junction Temperature | | -40 | 125 | °C | | Storage Temperature | -65 | 150 | °C | | | Thermal Resistance, Junction to Ambient | | | 150 | °C/W | | Electrostatic Discharge Protection | НВМ | 4000 | | V | | | MM | 400 | | V | # **Recommended Operating Range** | Parameter | Min | Max | Unit | |---|-----|-----|------| | V _{IN} | 1.8 | 5.5 | V | | Ambient Operating Temperature, T _A | -40 | 85 | °C | ### **Electrical Characteristics** V_{IN} = 1.8 to 5.5V, T_A = -40 to +85°C unless otherwise noted. Typical values are at V_{IN} = 3.3V and T_A = 25°C. | Parameter | Symbol | Co | onditions | Min | Тур | Max | Units | | |---|-----------------------|--|---------------------------------------|------|------|-----|---------------------------------------|--| | Basic Operation | ı | 1 | | | I | l. | I | | | Operating Voltage | V _{IN} | | | 1.8 | | 5.5 | V | | | Ovices and Oversant | IQ | I _{OUT} = 0mA | V _{IN} = 1.8 to 3.3V | | 95 | | | | | Quiescent Current | | V _{ON} active | V _{IN} = 3.3 to 5.5V | | 110 | 200 | μA | | | Shutdown Current | I _{SHDN} | | | | | 1 | μΑ | | | Latch-Off Current (note 2) | I _{LATCHOFF} | V _{ON} = V _{IN} , after an | overcurrent fault | | 50 | | μA | | | | | V _{IN} = 3.3V, I _{OUT} = 50mA, T _A = 25°C | | | 125 | 160 | mΩ | | | On-Resistance | R _{ON} | V _{IN} = 3.3V, I _{OUT} = 50mA, T _A = 85°C | | | 150 | 200 | | | | | | $V_{IN} = 3.3V$, $I_{OUT} = 50$ mA, $T_A = -40$ °C to $+85$ °C | | 65 | | 200 | | | | ON Input Logic Lligh Voltage | V | V _{IN} = 1.8V | | 0.75 | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | ON Input Logic High Voltage V_{IH} $V_{IN} = 5.5V$ | | V _{IN} = 5.5V | | 1.30 | | | | | | ON Input Logic Lour Voltage | ., | V _{IN} = 1.8V | | | | 0.5 | V | | | ON Input Logic Low Voltage | V _{IL} | V _{IN} = 5.5V | | | | 1.0 | | | | ON Input Leakage | | V _{ON} = V _{IN} or GND | | | | 1 | μΑ | | | | | V _{ON} = 0V, V _{OUT} = 0V
@ V _{IN} = 5.5V, T _A = 85°C | | | | 1 | μΑ | | | Off Switch Leakage | Iswoff | V _{ON} = 0V, V _{OUT} = 0V
@ V _{IN} = 3.3V, T _A = 25°C | | | 10 | 100 | nA | | | FLACE Control of the | | V _{IN} = 5V, I _{SINK} = 10mA | | | 0.1 | 0.2 | ., | | | FLAGB Output Logic Low Voltage | | V _{IN} = 1.8V, I _{SINK} = 10mA | | | 0.15 | 0.3 | V | | | FLAGB Output High Leakage Current | | V _{IN} = 5V, Switch on | | | | 1 | μΑ | | | Protections | | | | | | • | • | | | Current Limit | I _{LIM} | V _{IN} = 3.3V,
V _{OUT} = 3.0V | FPF2100, FPF2101,
FPF2102, FPF2103 | 200 | 300 | 400 | A | | | Current Limit | | | FPF2104, FPF2105,
FPF2106, FPF2107 | 400 | 600 | 800 | mA | | | | | Shutdown Threshold | | | 140 | | | | | Thermal Shutdown | | Return from Shutdown Hysteresis | | | 130 | | °C | | | | | | | | 10 | | | | ### **Electrical Characteristics Cont.** V_{IN} = 1.8 to 5.5V, T_A = -40 to +85°C unless otherwise noted. Typical values are at V_{IN} = 3.3V and T_A = 25°C. | Parameter | Symbol | Conditions | Min | Тур | Max | Units | |-----------------------------------|--------------------|---|-----|-----|-----|-------| | Protections | <u> </u> | , | | ı | I | I | | Under Voltage Shutdown | UVLO | V _{IN} Increasing | 1.5 | 1.6 | 1.7 | V | | Under Voltage Shutdown Hysteresis | | | | 47 | | mV | | Dynamic | | | • | • | • | | | Turn on time | t _{ON} | $R_L = 500\Omega$, $C_L = 0.1\mu F$ | | 25 | | μs | | Turn off time | t _{OFF} | $R_L = 500\Omega, C_L = 0.1\mu F$ | | 50 | | μs | | V _{OUT} Rise Time | t _R | $R_L = 500\Omega$, $C_L = 0.1\mu F$ | | 12 | | μs | | V _{OUT} Fall Time | t _F | $R_L = 500\Omega$, $C_L = 0.1\mu F$ | | 136 | | μs | | Over Current Blanking Time | t _{BLANK} | FPF2100, FPF2101, FPF2102, FPF2104, FPF2105, FPF2106 | 5 | 10 | 20 | ms | | Auto-Restart Time | t _{RSTRT} | FPF2100, FPF2101, FPF2104, FPF2105 | 80 | 160 | 320 | ms | | Short Circuit Response Time | | V _{IN} = V _{ON} = 3.3V. Moderate
Over-Current Condition. | | 3 | | μs | | | | V _{IN} = V _{ON} = 3.3V. Hard Short. | | 20 | | ns | Note 1: Package power dissipation on 1 square inch pad, 2 oz. copper board. Note 2: Applicable only to FPF2102 and FPF2106. Latchoff current does not include current flowing into FLAGB. # **Typical Characteristics** Figure 1. Quiescent Current vs. Input Voltage Figure 2. Quiescent Current vs. Temperature Figure 3. $I_{SHUTDOWN}$ Current vs. Temperature Figure 4. $I_{SWITCH-OFF}$ Current vs. Temperature Figure 5. $I_{LATCHOFF}$ vs. Temperature Figure 6. V_{IH} vs. V_{IN} # **Typical Characteristics** Figure 7. Current Limit vs. Output Voltage Figure 8. Current Limit vs. Temperature Figure 9. $R_{(ON)}$ vs. V_{IN} Figure 10. $R_{(ON)}$ vs. Temperature Figure 11. T_{ON}/T_{OFF} vs. Temperature Figure 12. T_{RISE}/T_{FALL} vs. Temperature # **Typical Characteristics** Figure 19. Short Circuit Response Time (Output Shorted to GND) Figure 20. Current Limit Response (Switch power up to hard short) Figure 21. Current Limit Response Time (Output Shorted to GND by 10Ω , moderate short) Note 3: V_{DRV} signal forces the device to go into overcurrent condition. ## **Description of Operation** The FPF2100-FPF2107 are current limited switches that protect systems and loads which can be damaged or disrupted by the application of high currents. The core of each device is a 0.125 Ω P-channel MOSFET and a controller capable of functioning over a wide input operating range of 1.8-5.5V. The controller protects against system malfunctions through current limiting, under-voltage lockout and thermal shutdown. The current limit is preset for either 200mA or 400mA. #### On/Off Control The ON pin controls the state of the switch. Active HI and LO versions are available. Refer to the Ordering Information for details. Activating ON continuously holds the switch in the on state so long as there is no fault. For all versions, an undervoltage on V_{IN} or a junction temperature in excess of 150°C overrides the ON control to turn off the switch. In addition, excessive currents will cause the switch to turn off in FPF2100-FPF2102 and FPF2104-FPF2107. The FPF2100, FPF2101, FPF2104 and FPF2105 have an Auto-Restart feature which will automatically turn the switch on again after 160ms. For the FPF2102 and FPF2106, the ON pin must be toggled to turn-on the switch again. The FPF2103 and FPF2107 do not turn off in response to a over current condition but instead remain operating in a constant current mode so long as ON is active and the thermal shutdown or under-voltage lockout have not activated. #### **Fault Reporting** Upon the detection of an over-current, an input under-voltage, or an over-temperature condition, the FLAGB signals the fault mode by activating LO. For the FPF2100-FPF2102 and FPF2104-FPF2106, the FLAGB goes LO at the end of the blanking time while FLAGB goes LO immediately for the FPF2103 and FPF2107. FLAGB remains LO through the Auto-Restart Time for the FPF2100, FPF2101 FPF2104 and FPF2105. For the FPF2102 and FPF2106, FLAGB is latched LO and ON must be toggled to release it. With the FPF2103 and FPF2107, FLAGB is LO during the faults and immediately returns HI at the end of the fault condition. FLAGB is an opendrain MOSFET which requires a pull-up resistor between VIN and FLAGB. During shutdown, the pull-down on FLAGB is disabled to reduce current draw from the supply. #### **Current Limiting** The current limit ensures that the current through the switch doesn't exceed a maximum value while not limiting at less than a minimum value. For the FPF2100-FPF2103 the minimum current is 200mA and the maximum current is 400mA and for the FPF2104-FPF2107 the minimum current is 400mA and the maximum current is 800mA. The FPF2100-FPF2103 have a blanking time of 10ms, nominally, during which the switch will act as a constant current source. At the end of the blanking time, the switch will be turned-off and the FLAGB pin will activate to indicate that current limiting has occurred. The FPF2103 and FPF2107 have no current limit blanking period so immediately upon a current limit condition FLAGB is activated. These parts will remain in a constant current state until the ON pin is deactivated or the thermal shutdown turns-off the switch. #### **Reverse Voltage** If the voltage at the V_{OUT} pin is larger than the V_{IN} pin, large currents may flow and can cause permanent damage to the device. FPF2100-FPF2107 is designed to control current flow from V_{IN} to V_{OUT} . #### **Under-Voltage Lockout** The under-voltage lockout turns-off the switch if the input voltage drops below the under-voltage lockout threshold. With the ON pin active the input voltage rising above the under-voltage lockout threshold will cause a controlled turn on of the switch which limits current over-shoots. #### **Thermal Shutdown** The thermal shutdown protects the part from internally or externally generated excessive temperatures. During an over-temperature condition the FLAGB is activated and the switch is turned-off. The switch automatically turns-on again if the temperature of the die drops below the threshold temperature. ### **Application Information** #### **Typical Application** #### **Input Capacitor** To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns-on into a discharged load capacitor or a short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 4.7µF ceramic capacitor, C_{IN} , must be placed close to the V_{IN} pin. A higher value of C_{IN} can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load. #### **Output Capacitor** A 0.1uF capacitor C_{OUT} , should be placed between V_{OUT} and GND. This capacitor will prevent parasitic board inductances from forcing V_{OUT} below GND when the switch turns-off. For the FPF2100-FPF2102 and the FPF2104-FPF2106, the total output capacitance needs to be kept below a maximum value, C_{OUT} (max), to prevent the part from registering an over-current condition and turning off the switch. The maximum output capacitance can be determined from the following formula, $$C_{OUT(max)} = \frac{I_{LIM}(max) \times t_{BLANK}(min)}{V_{IN}}$$ (1) Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_{OUT} is highly recommended. A C_{OUT} greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} . #### **Power Dissipation** During normal operation as a switch, the power dissipation is small and has little effect on the operating temperature of the part. The parts with the higher current limits will dissipate the most power and that will only typically be, $$P = (I_{LIM})^2 \times R_{DS} = (0.2)^2 \times 0.125 = 80 \text{mW}$$ (2) If the part goes into current limit the maximum power dissipation will occur when the output is shorted to ground. For the FPF2100, FPF2101, FPF2104 and FPF2105, the power dissipation will scale by the Auto-Restart Time, t_{RSTRT} , and the Over Current Blanking Time, t_{BLANK} , so that the maximum power dissipated is typically, $$P(\text{max}) = \frac{t_{\text{BLANK}}}{t_{\text{RESTART}} + t_{\text{BLANK}}} v_{\text{IN(max)}} v_{\text{LIM(max)}}$$ $$= \frac{10}{10 + 160} v_{\text{S}} + v_{\text{BLANK}} v_{\text{IN(max)}} v_{\text{IN(max)}} v_{\text{LIM(max)}}$$ (3) When using the FPF2102 and FPF2106 attention must be given to the manual resetting of the part. Continuously resetting the part at a high duty cycle when a short on the output is present can cause the temperature of the part to increase. The junction temperature will only be allowed to increase to the thermal shutdown threshold. Once this temperature has been reached, toggling ON will not turn on the switch until the junction temperature drops. For the FPF2103 and FPF2107, a short on the output will cause the part to operate in a constant current state dissipating a worst case power as calculated in (3) until the thermal shutdown activates. It will then cycle in and out of thermal shutdown so long as the ON pin is active and the short is present. #### **Board Layout** For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for V_{IN} , V_{OUT} and GND will help minimize parasitic electrical effects along with minimizing the case to ambient thermal impedance. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ON Semiconductor: FPF2104 Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.