

ADC128D818 12-Bit, 8-Channel, ADC System Monitor with Temperature Sensor, Internal/External Reference, and I²C Interface

Check for Samples: ADC128D818

FEATURES

- 12-bit Resolution Delta-Sigma ADC
- Local Temperature Sensing
- Configurable Single-Ended and/or Pseudo-Diff. Inputs
- +2.56V Internal VREF or Variable External VREF
- WATCHDOG Window Comparators with Status ٠ and Mask Registers of All Measured Values
- Independent Registers for Storing Measured • Values
- **INT** Output Notifies Microprocessor of Error Event
- I²C Serial Bus Interface Compatibility
- 9 Selectable Addresses
- TIMEOUT Reset Function to Prevent I²C Bus Lock-Up
- Individual Channel Shutdown to Limit Power Consumption
- **Deep Shutdown Mode to Minimize Power** Consumption
- **TSSOP 16-Lead Package**

APPLICATIONS

- **Communications Infrastructure**
- Thermal / Hardware Server Monitors
- System Monitors
- **Industrial and Medical Systems**
- **Electronic Test Equipment and** Instrumentation
- **Power Supply Monitoring / Supervision**

KEY SPECIFICATIONS

- **ADC Resolution 12-bit**
- Supply Voltage Range +3 to +5.5 V
- Total Unadjusted Error -0.45%/+0.2%
- Integral Non-Linearity ±1 LSb
- Differential Non-Linearity ±1 LSb
- Operating Current 0.56 mA
- Deep Shutdown Current 10 µA •
- Temperature Resolution °C/LSb •
- Temp. Accuracy (-40°C to 125°C) ±3°C •
- Temp. Accuracy (-25°C to 100°C) ±2°C

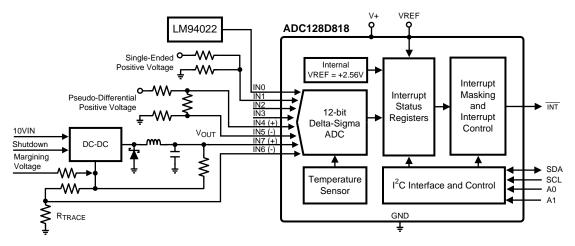
DESCRIPTION

The ADC128D818 I²C system monitor is designed for maximum flexibility. The system monitor can be configured for single-ended and/or pseudo-differential inputs. An on-board temperature sensor, combined with WATCHDOG window comparators, and an interrupt output pin, INT, allow easy monitoring and out-of-range alarms for every channel. A high performance internal reference is also available to provide for a complete solution in the most difficult operating conditions.

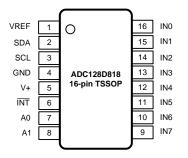
The ADC128D818's 12-bit delta-sigma ADC supports Standard Mode (Sm, 100 kbits/s) and Fast Mode (Fm, 400kbits/s) I²C interfaces. The ADC128D818 includes a sequencer to control channel conversions and stores all converted results in independent registers for easy microprocessor retrieval. Unused channels can be shut down independently to conserve power.

The ADC can use either an internal 2.56V reference or a variable external reference. An analog filter is included on the I²C digital control lines to provide improved noise immunity. The device also includes a TIMEOUT reset function on SDA and SCL to prevent I²C bus lock-up.

The ADC128D818 operates from +3.0 to +5.5V power supply voltage range, -40°C to 125°C temperature range, and the device is available in a 16-pin TSSOP package.


ÆÀ

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.



www.ti.com

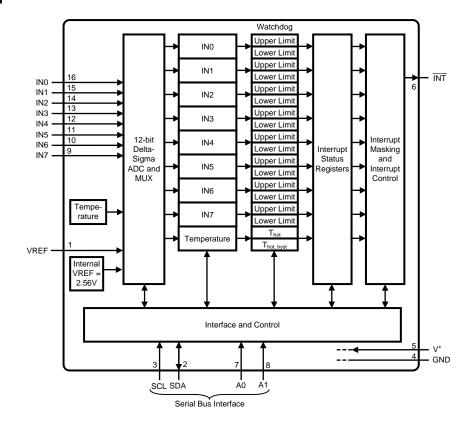
Typical Application

Connection Diagram

PIN DESCRIPTIONS

Pin Number	Pin Name(s)	ESD Structure	Туре	Description
1	VREF		Analog Input	ADC external reference. ADC128D818 allows two choices for sourcing VREF: internal or external. If the +2.56V internal VREF is used, leave this pin unconnected. If the external VREF is used, source this pin with a voltage between +1.25V and V+. At Power-On-Reset (POR), the default setting is the internal VREF. Bypass with the parallel combination of 1 μ F (electrolytic or tantalum) and 0.1 μ F (ceramic) capacitors.
2	SDA	□┬┐ ⋠₽⋼ ↓	Digital I/O	Serial Bus Bidirectional Data. NMOS open-drain output. Requires external pull-up resistor to function properly.
3	SCL	□┬┐ ⋠⋢⋼	Digital Input	Serial Bus Clock. Requires external pull-up resistor to function properly.
4	GND		GROUND	Internally connected to all of the circuitry.
5	V*		POWER	+3.0V to +5.5V power. Bypass with the parallel combination of 1 μF (electrolytic or tantalum) and 0.1 μF (ceramic) bypass capacitors.

ADC128D818


SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

www.ti.com

PIN DESCRIPTIONS (continued)

Pin Number	Pin Name(s)	ESD Structure	Туре	Description
6	ĪNT	□ Ţ ↓ ↓ ↓	Digital Output	Interrupt Request. Active Low, NMOS, open-drain. Requires external pull-up resistor to function properly.
7 - 8	A0 - A1	☐ ★ ₽ ₽ ₽	Tri-Level Inputs	Tri-Level Serial Address pins that allow 9 devices on a single I ² C bus.
9 - 16	IN7 - IN0		Analog Inputs	The full scale range will be controlled by the internal or external VREF. These inputs can be assigned as single- ended and/or pseudo-differential inputs.

Block Diagram

Product Highlights

The maximum number of channels that can be enabled for each input mode are shown in the table below. Unusued channels may be disabled through software.

Table 1. Input modes						
Modes of Operation	Single-Ended Inputs	Pseudo-Differential Inputs	Internal Temperature Measurement	Cycle Time with Maximum Number of Channels Enabled (ms - typ).		
0	7	-	1	88		
1	8	-	-	96		
2	-	4	1	52		
3	4	2	1	76		

Table 1. Input Modes

Table 2. Conversion Modes

Conversion Modes	Description
Continuous	Enabled channels are measured continuously.
Low Power	Enabled channels are measured, then the device is automatically placed into shutdown mode. This cycle is repeated every 728 ms.
One-Shot	When One-Shot Register (address 09h) is programmed while the device is in shutdown or deep shutdown mode, the device will initiate a single conversion and comparison cycle, after which the device returns to the respective mode it was in.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

www.ti.com

Absolute Maximum Ratings⁽¹⁾⁽²⁾⁽³⁾

Supply Voltage (V+)		6.0V
Voltage on SCL, SDA, A0, A1, INT		-0.3V to 6.0V
Voltage on IN0-IN7, VREF		$-0.3V$ to $(V^+ + 0.3)V$ and $\leq 6.0V$
Input Current at Any Pin ⁽⁴⁾		±5 mA
Package Input Current ⁽⁴⁾		±30 mA
Maximum Junction Temperature (T _{JMAX}) ⁽⁵⁾		150°C
	Human Body Model	3,000V
ESD Susceptibility ⁽⁶⁾	Machine Model	300V
	Charged Device Model	1,000V
Storage Temperature		–65°C to +150°C
For soldering specifications,		

http://www.ti.com/lit/SNOA549

- (1) All voltages are measured with respect to GND, unless otherwise specified.
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensured specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The specified specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (4) If the input voltage at any pin exceeds the power supply (that is, VIN < GND or VIN > V⁺) but is less than the absolute maximum ratings, then the current at that pin should be limited to 5mA. The 30 mA maximum package input current rating limits the number of pins that can safely exceed the power supply with an input current of 5mA to six pins. Parasitic components and/or ESD protection circuitry are shown in the Pin Descriptions table.
- (5) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA} and the ambient temperature, T_A. The maximum allowable power dissipation at any temperature is P_D = (T_{JMAX} T_A) / θ_{JA}.
 (6) Human body model (HBM) is a charged 100pF capacitor discharged into a 1.5kΩ resistor. Machine model (MM) is a charged 200pF
- (6) Human body model (HBM) is a charged 100pF capacitor discharged into a 1.5kΩ resistor. Machine model (MM) is a charged 200pF capacitor discharged directly into each pin. Charged Device Model (CDM) simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged.

Operating Ratings⁽¹⁾⁽²⁾

Supply Voltage (V+)	3.0V to 5.5V
Voltage on SCL, SDA, A0, A1, INT	-0.05V to 5.5V
Voltage on IN0-IN7, VREF	-0.05V to (V ⁺ + 0.05)V and ≤ 5.5V
Town on the Dames (or Electrical Observation)	$T_{MIN} = -40^{\circ}C$
Temperature Range for Electrical Characteristics	T _{MAX} = 125°C
Operating Temperature Range	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$
Junction to Ambient Thermal Resistance $(\theta_{JA})^{(3)}$	130°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensured specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The specified specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

(2) All voltages are measured with respect to GND, unless otherwise specified.

(3) For the given θ_{JA} , the device is on a 2-layer printed circuit board with 1 oz. copper foil and no airflow.

www.ti.com

DC Electrical Characteristics

The following specifications apply for +3.0 V_{DC} \leq V⁺ \leq +5.5 V_{DC}, External VREF = +2.56V, unless otherwise specified. Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C⁽¹⁾.

Symbol	Parameter	Conditions	Min ⁽²⁾	Typical ⁽³⁾	Max ⁽²⁾	Units
POWER S	SUPPLY CHARACTERISTICS	· · · · · ·		· 1		
V+	Supply Voltage		3.0	3.3 or 5.0	5.5	V
	External Reference Voltage		1.25	2.56	V+	V
VREF	Internal Deference Valtage			2.56		V
	Internal Reference Voltage			23		ppm/°C
		Interface Inactive, V+ = 5.5V, Mode 2			0.74	mA
	Supply Current (see the POWER	Interface Inactive, V+ = 3.6V, Mode 2			0.56	mA
I+	MANAGEMENT section for more	Shutdown Mode, V+ = 5.5V			0.65	mA
	information).	Shutdown Mode, V+ = 3.6V			0.48	mA
		Deep Shutdown Mode ⁽⁴⁾ .			10	μA
TEMPER	ATURE-to-DIGITAL CONVERTER C	HARACTERISTICS				
	Temperature Error	$-40^{\circ}C \le T_A \le +125^{\circ}C$			±3	°C
	Temperature Error	$-25^{\circ}C \le T_{A} \le +100^{\circ}C$			± 2	°C
	Resolution			0.5		°C
	-to-DIGITAL CONVERTER CHARAC	TERISTICS		•		
n	Resolution	12-bit with full-scale at VREF = 2.56V.		0.625		mV
	Integral Non-Linearity	External VREF = 1.25V, Pseudo- Differential, V+ = 3.0V to 3.3V. ⁽⁴⁾	-1	0.36	1	LSb
INL		External VREF = 2.56V, Pseudo- Differential	•	1.58	4	LSb
		External VREF = 5.0V, Pseudo- Differential, V+ = 5.0V to 5.5V.	-2			
DNL	Differential Non-Linearity	See ⁽⁵⁾	-1	±0.25	1	LSb
		Internal VREF, Single-Ended, V+ = 3.0V to 3.6V.				
		Internal VREF, Single-Ended, V+ = $4.5V$ to $5.5V^{(7)}$.	-0.5		0.5	% of FS
		Internal VREF, Pseudo-Differential, V+ = $3.0V$ to $3.6V$ or V+ = $4.5V$ to $5.5V^{(7)}$.	-0.3		0.5	% of FS
TUE	Total Unadjusted Error ⁽⁶⁾	External VREF = 1.25V, Single-Ended, V+ = 3.0V to 3.6V.			0.1	04 -4 50
		External VREF = $2.56V$, Single-Ended, V+ = $3.0V$ to $5.5V$.	-0.6		0.1	% of FS
		External VREF = 1.25V, Pseudo- Differential, V+ = 3.0V to 3.6V.	0.45			04 - 4 50
		External VREF = 2.56V, Pseudo- Differential, V+ = 3.0V to 5.5V.	-0.45		0.2	% of FS

(1) Each input and output is protected by an ESD structure to GND, as shown in the Pin Descriptions table. Input voltage magnitude up to 0.3V above V⁺ or 0.3V below GND will not damage the ADC128D818. There are diodes that exist between some inputs and the power supply rails. Errors in the ADC conversion can occur if these diodes are forward biased by more than 50mV. As an example, if V⁺ is 4.50 V_{DC} , INx (where $0 \le x \le 7$) must be $\le 4.55 V_{DC}$ to ensure accurate conversions.

- (2) Limits are ensured to AOQL (Average Outgoing Quality Level). (3) Typicals are at $T_J = T_A = 25^{\circ}C$ and represent most likely parametric normal.
- (4)Limit is specified by characterization.

(5) Limit is specified by design.

TUE (Total Unadjusted Error) includes Offset, Gain and Linearity errors of the ADC. (6)

The range is up to 7/8 of full scale. (7)

6 Submit Documentation Feedback

www.ti.com

DC Electrical Characteristics (continued)

The following specifications apply for +3.0 $V_{DC} \le V^+ \le +5.5 V_{DC}$, External VREF = +2.56V, unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C^{(1)}$.

Symbol	Parameter	Conditions	Min ⁽²⁾	Typical ⁽³⁾	Max ⁽²⁾	Units
-		Internal VREF, V+ = 3.0V to 3.6V.			a :-	
		Internal VREF, V+ = $4.5V$ to $5.5V^{(7)}$	-0.25		0.45	% of FS
GE	Gain Error	External VREF = 1.25V or 2.56V, V+ = 3.0V to 3.6V.	0.45			0/ - (F C
		External VREF = 2.56V or 5.0V, V+ = 4.5V to 5.5V.	0.45		0.2	% of FS
		Internal VREF, Pseudo-Differential,V+ = $4.5V$ to $5.5V^{(7)}$.	-0.15		0.2	% of FS
		External VREF = 1.25V or 2.56V, Single-Ended, V+ = 3.0V to 3.6V.	0.5		0.1	% of FS
OE	Offset Error	External VREF = $2.56V$ or $5.0V$, Single- Ended, V+ = $4.5V$ to $5.5V$	-0.5		0.1	% 01 F3
		External VREF = 1.25V or 2.56V, Pseudo-Differential, V+ = 3.0V to 3.6V.	0.2		0.15	% of FS
		External VREF = 2.56V or 5.0V, Pseudo-Differential, V+ = 4.5V to 5.5V	-0.2		0.15	70 UI FC
	Continuous Conversion Mode	Each Enabled Voltage Channel		12		ms
t _C	Continuous Conversion Mode	Internal Temperature Sensor		3.6		ms
ıر	Low Power Conversion Mode	Enabled Voltage Channel(s) and Internal Temperature Sensor		728		ms
MULTIPL	EXER / ADC INPUT CHARACTERIST	ICS				
R _{ON}	On Resistance			2	10	kΩ
I _{ON}	Input Current (On Channel Leakage Current)			±0.005		μA
I _{OFF}	Off Channel Leakage Current			±0.005		μA
	OUTPUTS: INT					
V _{OUT(0)}	Logical "0" Output Voltage	I _{OUT} = +5.0 mA at V ⁺ = +4.5V, I _{OUT} = +3.0 mA at V ⁺ = +3.0V			0.4	V
OPEN DR	AIN SERIAL BUS OUTPUT: SDA		1		1	
V _{OUT(0)}	Logical "0" Output Voltage	$I_{OUT} = +3.0 \text{ mA at } V^+ = +4.5V,$			0.4	V
I _{OH}	High Level Output Current	$V_{OUT} = V^+$		0.005	1	μA
DIGITAL	NPUTS: A0 and A1	1	1			1
V _{IN(1)}	Logical "1" Input Voltage		0.90 x V+		5.5	V
V_{IM}	Logical Middle Input Voltage		0.43 x V+		0.57 x V+	
V _{IN(0)}	Logical "0" Input Voltage		GND - 0.05		0.10 x V+	V
SERIAL E	SUS INPUTS: SCL and SDA					
V _{IN(1)}	Logical "1" Input Voltage		0.7 × V+		5.5	v
V _{IN(0)}	Logical "0" Input Voltage		GND - 0.05		0.3 × V+	V
V	Hystorosis Voltage	V ⁺ = +3.3V		0.67		V
V _{HYST}	Hysteresis Voltage	V ⁺ = +5.5V		1.45		V
ALL DIGI	TAL INPUTS: SCL, SDA, A0, A1	1	1		1	1
I _{IN(1)}	Logical "1" Input Current	$V_{IN} = V^+$	-1	- 0.005		μA
I _{IN(0)}	Logical "0" Input Current	$V_{IN} = 0 V_{DC}$		0.005	1	μA
CIN	Digital Input Capacitance			20		pF

www.ti.com

AC Electrical Characteristics

The following specifications apply for +3.0 $V_{DC} \le V^+ \le +5.5 V_{DC}$, unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.

Symbol	Parameter Conditions Min ⁽¹		Min ⁽¹⁾	Typical ⁽²⁾	Max ⁽¹⁾	Units
SERIAL BU	JS TIMING CHARACTERISTICS					
t ₁	SCL (Clock) Period		2.5		100	μs
t ₂	Data In Setup Time to SCL High		100			ns
t ₃	Data Out Stable After SCL Low		0			ns
t ₄	SDA Low Setup Time to SCL Low (start)		100			ns
t ₅	SDA High Hold Time After SCL High (stop)		100			ns
t _{TIMEOUT}	SCL or SDA time low for I ² C bus reset		25		35	ms

(1)

Limits are ensured to AOQL (Average Outgoing Quality Level). Typicals are at $T_J = T_A = 25^{\circ}$ C and represent most likely parametric normal. (2)

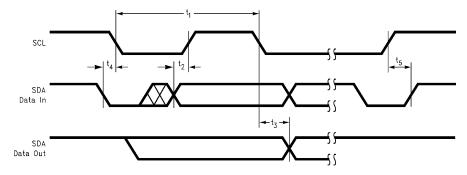


Figure 1. Serial Bus Timing Diagram

ADC128D818

2.7k

2.7k

Figure 5.

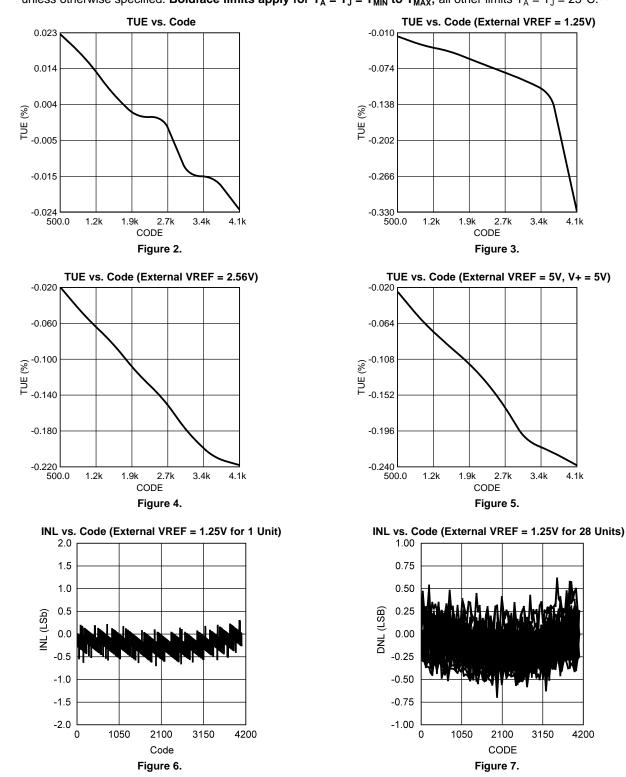
CODE

3.4k

4.1k

Figure 3.

CODE


3.4k

4.1k

www.ti.com

Typical Performance Characteristics

The following typical performance plots apply for the internal VREF = 2.56V, V+ = 3.3V, Pseudo-Differential connection, unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.⁽¹⁾

CODE Figure 7. Timing specifications are tested at the Serial Bus Input logic levels: $V_{IN(0)} = 0.3 \times V^+$ for a falling edge and $V_{IN(1)} = 0.7 \times V^+$ for a rising

edge if the SCL and SDA edge rates are similar.

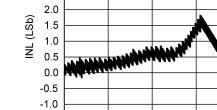
(1)

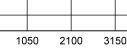
3150

4200

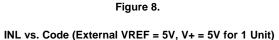
2100

3.0

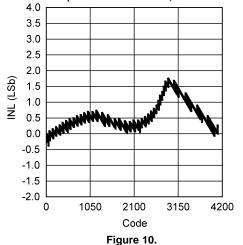

4.0

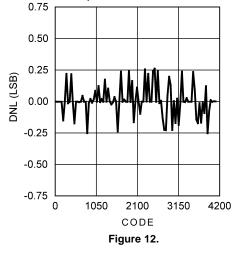

3.5

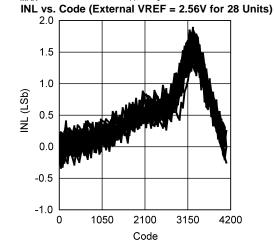
-1.5 -2.0


0

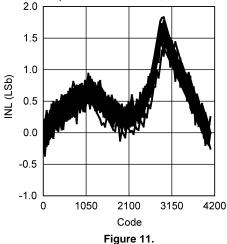
SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

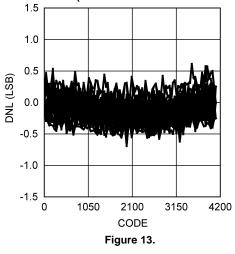



INL vs. Code (External VREF = 2.56V for 1 Unit)



Code


DNL vs. Code (External VREF = 2.56V for 1 Unit)



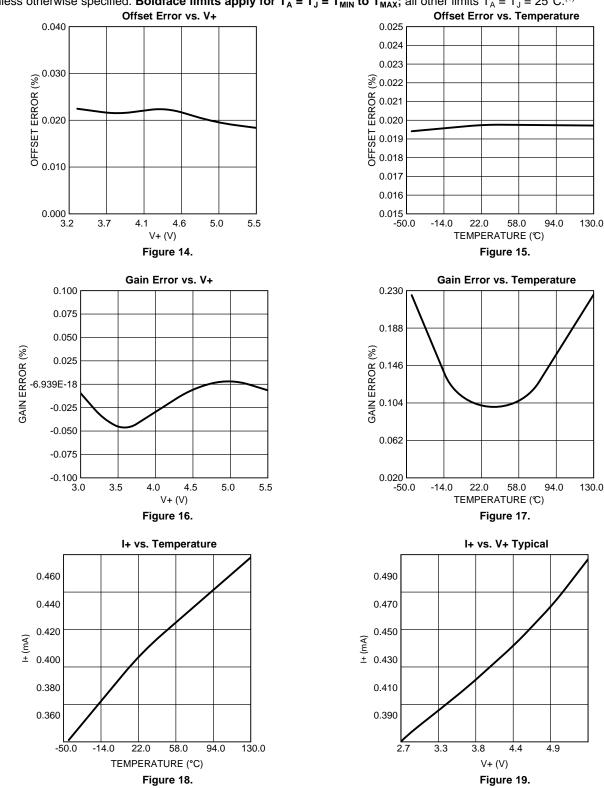
INL vs. Code (External VREF = 5V, V+ = 5V for 28 Units)

Typical Performance Characteristics (continued) The following typical performance plots apply for the internal VREF = 2.56V, V+ = 3.3V, Pseudo-Differential connection,

unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C.^{(1)}$

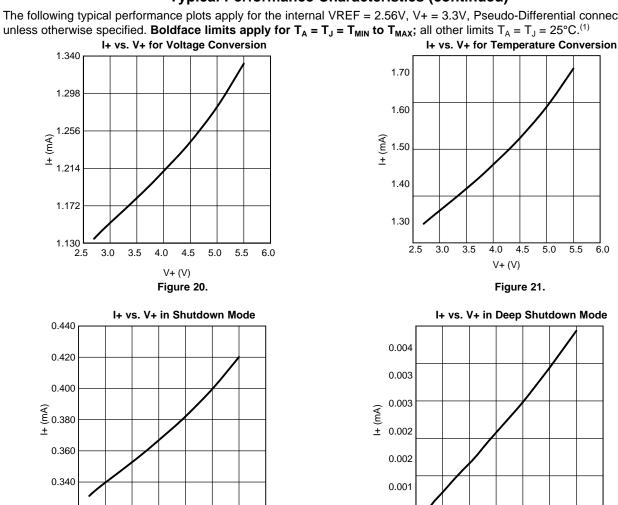
4200

www.ti.com


ADC128D818

www.ti.com

SNAS483E – FEBRUARY 2010 – REVISED MARCH 2013



The following typical performance plots apply for the internal VREF = 2.56V, V+ = 3.3V, Pseudo-Differential connection, unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C.^{(1)}$

EXAS ISTRUMENTS

www.ti.com

2.5 3.0 3.5

4.0 4.5

V+ (V)

Figure 23.

5.0

5.5 6.0

Typical Performance Characteristics (continued)

The following typical performance plots apply for the internal VREF = 2.56V, V+ = 3.3V, Pseudo-Differential connection,

0.320

2.5

3.0

3.5

4.0 4.5

V+ (V)

Figure 22.

5.0 5.5 6.0

Copyright © 2010-2013, Texas Instruments Incorporated

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

FUNCTIONAL DESCRIPTION

GENERAL DESCRIPTION

The ADC128D818 provides 8 analog inputs, a temperature sensor, a delta-sigma ADC, an external or internal VREF option, and WATCHDOG registers on a single chip. An I²C Serial Bus interface is also provided. The ADC128D818 can perform voltage and temperature monitoring for a variety of systems.

The ADC128D818 continuously converts the voltage input to 12-bit resolution with an internal VREF of 0.625mV LSb (Least Significant bit) weighting, yielding input range of 0V to 2.56V. There is also an external VREF option that ranges from 1.25V to V+. The analog inputs are intended to be connected to several power supplies present in a variety of systems. Eight inputs can be configured for single-ended and/or pseudo-differential channels. Temperature can be converted to a 9-bit two's complement word with resolutions of 0.5°C per LSb.

The ADC128D818 provides a number of internal registers. These registers are summarized in the Table 6 section.

The ADC128D818 supports Standard Mode (Sm, 100kbits/s) and Fast Mode (Fm, 400kbits/s) I²C interface modes of operation. ADC128D818 includes an analog filter on the I²C digital control lines that allows improved noise immunity. The device also supports TIMEOUT reset function on SDA and SCL to prevent I²C bus lock-up. Two tri-level address pins allow up to 9 devices on a single I²C bus.

At start-up, ADC128D818 cycles through each measurement in sequence and continuously loops through the sequence based on the Conversion Rate Register (address 07h) setting. Each measured value is compared to values stored in the Limit Registers (addresses 2Ah - 39h). When the measured value violates the programmed limit, the ADC128D818 will set a corresponding interrupt bit in the Interrupt Status Registers (address 01h). An interrupt output pin, INT, is also available and fully programmable.

SUPPLY VOLTAGE (V+)

The ADC128D818 operates with a supply voltage, V+, that has a range between +3.0V to +5.5V. Care must be taken to bypass this pin with a parallel combination of 1 μ F (electrolytic or tantalum) capacitor and 0.1 μ F (ceramic) bypass capacitor.

VOLTAGE REFERENCES (VREF)

The reference voltage (VREF) sets the analog input range. The ADC128D818 has two options for setting VREF. The first option is to use the internal VREF, which is equal to 2.56V. The second option is to source VREF externally via pin 1 of ADC128D818. In this case, the external VREF will operate in the range of 1.25V to V+. The default VREF selection is the internal VREF. If the external VREF is preferred, use the Advanced Configuration Register — Address 0Bh to change this setting.

VREF source must have a low output impedance and needs to be bypassed with a minimum capacitor value of 0.1 μ F. A larger capacitor value of 1 μ F placed in parallel with the 0.1 μ F is preferred. VREF of the ADC128D818, like all ADC converters, does not reject noise or voltage variations. Keep this in mind if VREF is derived from the power supply. Any noise and/or ripple from the supply that is not rejected by the external reference circuitry will appear in the digital results. The use of a reference source is recommended. The LM4040 and LM4050 shunt reference families as well as the LM4120 and LM4140 series reference families are excellent choices for a reference source.

ANALOG INPUTS (IN0 - IN7)

The ADC128D818 allows up to 8 single-ended inputs or 4 pseudo-differential inputs as selected by the modes of operation. The input types are described in the next subsections.

Single-Ended Input

ADC128D818 allows a maximum of 8 single-ended inputs, where the source's voltage is connected to INx ($0 \le x \le 7$). The source's ground should be connected to ADC128D818's GND pin. In theory, INx can be of any value between 0V and (VREF-3LSb/2), where LSb = VREF/2¹².

To use the device single-endedly, refer to the Modes of Operation section and to bits [2:1] of the Advanced Configuration Register — Address 0Bh. Figure 24 shows the appropriate configuration for a single-ended connection.

Copyright © 2010–2013, Texas Instruments Incorporated

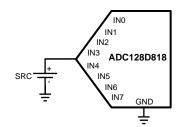


Figure 24. Single-Ended Configuration

Pseudo-Differential Input

Pseudo-differential mode is defined as the positive input voltage applied differentially to the ADC128D818, as shown in Figure 25. The input that is digitized is (Δ VIN = IN+ - IN-), where (IN+ - IN-) is (IN0-IN1), (IN3-IN2), (IN4-IN5), or (IN7-IN6). Be aware of this input configuration because the order is swapped. In theory, Δ VIN can be of any value between 0V and (VREF-3LSb/2),where LSb = VREF/2¹².

By using this pseudo-differential input, small signals common to both inputs are rejected. Thus, operation with a pseudo-differential input signal will provide better performance than with a single-ended input. Refer to the Table 3 section for more information.

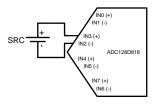


Figure 25. Pseudo-Differential Configuration

Modes of Operation

ADC128D818 allows 4 modes of operation, as summarized in the following table. Set the desired mode of operation using the Advanced Configuration Register — Address 0Bh, bits [2:1]).

Ch.	Mode 0	Mode 1	Mode 2	Mode 3	
1	INO	IN0	IN0 (+) & IN1 (-)	INO	
2	IN1	IN1	IN3 (+) & IN2 (-)	IN1	
3	IN2	IN2	IN4 (+) & IN5 (-)	IN2	
4	IN3	IN3	IN7 (+) & IN6 (-)	IN3	
5	IN4	IN4		IN4 (+) & IN5 (-)	
6	IN5	IN5		IN7 (+) & IN6 (-)	
7	IN6	IN6			
8	nc ⁽¹⁾	IN7			
Local Temp	Yes	No	Yes	Yes	

Table 3. Modes of Operation

(1) nc = No Connect

DIGITAL OUTPUT (D_{OUT})

The digital output code for a 12-bit ADC can be calculated as:

 $\mathsf{D}_{\mathsf{OUT}} = \left[\Delta \mathsf{VIN} \; / \; \mathsf{VREF} \right] \ge 2^{12}$

(1)

For the above equation, $\Delta VIN = INx - GND$, where $0 \le x \le 7$, for the single-ended configuration, and $\Delta VIN = (IN + IN - IN)$ for the pseudo-differential configuration. In theory, ΔVIN can be of any value between 0V and (VREF-3LSb/2). Any ΔVIN value outside of this range will produce a digital output code of 0 or 4095. Figure 26 shows a theoretical plot of D_{OUT} vs. ΔVIN and some sample D_{OUT} calculation using the equation above.

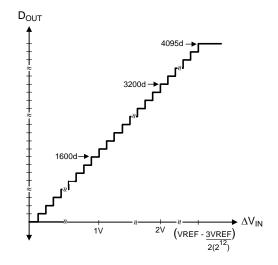


Figure 26. D_{OUT} vs Δ VIN for a 12-bit ADC assuming VREF = 2.56V.

POWER MANAGEMENT

To understand the average supply current (I+), the conversion rates must be introduced. ADC128D818 has three types of conversion rates: Continuous Conversion Mode, Low Power Conversion Mode, and One Shot Mode. In the Low Power Conversion Mode, the device converts all of the enabled channels then enters shutdown mode; this process takes approximately 728 ms to complete. (More information on the conversion rate will be discussed in the Conversion Rate Register — Address 07h and One-Shot Register — Address 09h sections).

Each type of conversion produces a different average supply current. The supply current for a voltage conversion will be referred to as I+_VOLTAGE, a temperature conversion as I+_TEMP, and the shutdown mode as I+_SHUTDOWN. These values can be obtained from Typical Performance Characteristics plots.

In general, I+ is the average supply current while ADC128D818 is operating in the Low Power Conversion Mode with all of the available channels enabled. Its plot can be seen in the Typical Performance Characteristics section and its equation is shown below.

I+ = [(0.0168)(b)(I⁺_VOLTAGE)] + [(4.932)(10⁻³)(a)(I⁺_TEMP)]

+ $[1 - (4.932)(10^{-3})(a) - 0.0168(b)](I^{+}SHUTDOWN)$

where

- "a" is the number of local temperature available.
- "b" is the number of ENABLED voltage channel.

(2)

Each mode of operation has a different "a" and "b" values. The following table shows the value for "a" and the maximum value for "b" for each mode.

	a	b (Max)			
Mode 0	1	7			
Mode 1	0	8			
Mode 2	1	4			
Mode 3	1	6			

Table	4.	"a"	and	"b"	Values
-------	----	-----	-----	-----	--------

INTERFACE

The Serial Bus control lines include the SDA (serial data), SCL (serial clock), and A0-A1 (Serial Bus Address) pins. The ADC128D818 can only operate as a slave. The SCL line only controls the serial interface, and all of other clock functions within ADC128D818 are done with a separate asynchronous internal clock.

When the Serial Bus Interface is used, a write will always consists of the ADC128D818 Serial Bus Address byte, followed by the Register Address byte, then the Data byte. Figure 27 and Figure 28 are two examples showing how to write to the ADC128D818.

There are two cases for a read:

- 1. If the Register Address is known to be at the desired address, simply read the ADC128D818 with the Serial Bus Address byte, followed by the Data byte read from the ADC128D818. Examples of this type of read can be seen in Figure 29 and Figure 30.
- 2. If the Register Address value is unknown, write to the ADC128D818 with the Serial Bus Address byte, followed by the desired Register Address byte. Then restart the Serial Communication with a Read consisting of the Serial Bus Address byte, followed by the Data byte read from the ADC128D818. See Figure 31 and Figure 32 for examples of this type of read.

The Serial Bus Address can be found in the next section, and the Register Address can be found in the REGISTER MAP section. For more information on the I²C Interface, refer to NXP's "I²C-Bus Specification and User Manual", rev. 03.

Serial Bus Address

There are nine different configurations for the ADC128D818 Serial Bus Address, thus nine devices are allowed on a single I²C bus. Examples to set each address bit low, high, or to midscale can be found in the EXAMPLE APPLICATIONS section. The Serial Bus Address can be set as follows:

A1	A0	Serial Bus Address [A6][A5][A4][A0]	Serial Bus Address (hex)
LOW	LOW	001_1101b	1Dh
LOW	MID	001_1110b	1Eh
LOW	HIGH	001_1111b	1Fh
MID	LOW	010_1101b	2Dh
MID	MID	010_1110b	2Eh
MID	HIGH	010_1111b	2Fh
HIGH	LOW	011_0101b	35h
HIGH	MID	011_0110b	36h
HIGH	HIGH	011_0111b	37h

Table	5.	Serial	Bus	Address	Table
Table	υ.	OCHAI	Dus	Augu 033	Table

Timeout

The ADC128D818 I²C state machine resets to its idle state if either SCL or SDA is held low for longer than 35ms. This feature also ensures that ADC128D818 will automatically release SDA after driving it low continuously for 25-35ms, hence preventing I²C bus lock-up. The TIMEOUT feature should not be used when the device is operating in deep shutdown mode.

Example Writes and Reads

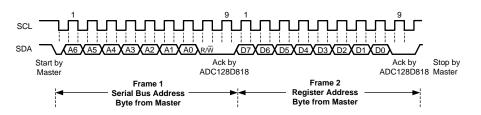
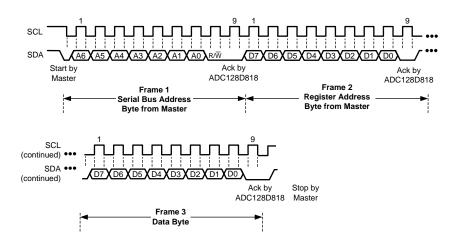



Figure 27. Serial Bus Interface Write Example 1 - Internal Address Register Set Only.

EXAS

NSTRUMENTS

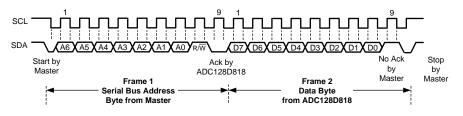


Figure 29. Serial Bus Interface Read Example 1 - Single Byte Read with Preset Internal Address Register.

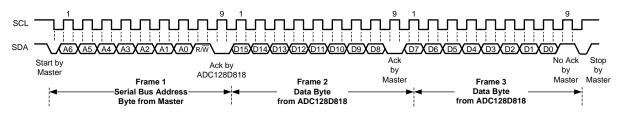
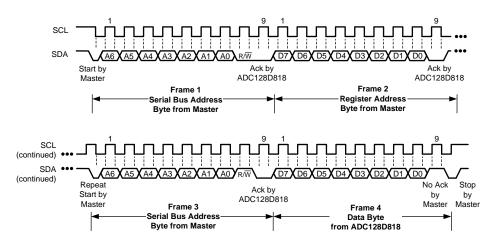
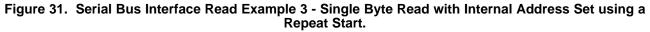




Figure 30. Serial Bus Interface Read Example 2 - Double Byte Read with Preset Internal Address Register.

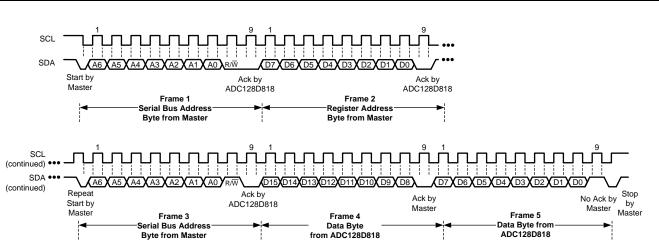


Figure 32. Serial Bus Interface Read Example 4 - Double Byte Read with Internal Address Set using a Repeat Start.

USING THE ADC128D818

Register Name	Read/ Write	Register Address (hex)	Default Value [7:0]	Register Description	Register Format
Configuration Register	R/W	00h	0000_1000	Provides control and configuration	8-bit
Interrupt Status Register	R	01h	0000_0000	Provides status of each WATCHDOG limit or interrupt event	8-bit
Interrupt Mask Register	R/W	03h	0000_0000	Masks the interrupt status from propagating to INT	8-bit
Conversion Rate Register	R/W	07h	0000_0000	Controls the conversion rate	8-bit
Channel Disable Register	R/W	08h	0000_0000	Disables conversion for each voltage or temperature channel	8-bit
One-Shot Register	W	09h	0000_0000	Initiates a single conversion of all enabled channels	8-bit
Deep Shutdown Register	R/W	0Ah	0000_0000	Enables deep shutdown mode	8-bit
Advanced Configuration Register	R/W	0Bh	0000_0000	Selects internal or external VREF and modes of operation	8-bit
Busy Status Register	R	0Ch	0000_0010	Reflects the ADC128D818 'Busy' and 'Not Ready' statuses	8-bit
Channel Readings Registers	R	20h - 27h		Report channels (voltage or temperature) readings	16-bit
Limit Registers	R/W	2Ah - 39h		Set the limits for the voltage and temperature channels	8-bit
Manufacturer ID Register	R	3Eh	0000_0001	Reports the manufacturer's ID	8-bit
Revision ID Register	R	3Fh	0000_1001	Reports the revision's ID	8-bit

Table 6. ADC128D818 Internal Registers

Quick Start

- 1. Power on the device, then wait for at least 33ms.
- Read the Busy Status Register (address 0Ch). If the 'Not Ready' bit = 1, then increase the wait time until 'Not Ready' bit = 0 before proceeding to the next step.
- 3. Program the Advanced Configuration Register Address 0Bh:
 - a. Choose to use the internal or external VREF (bit 0).
 - b. Choose the mode of operation (bits [2:1]).
- 4. Program the Conversion Rate Register (address 07h).
- 5. Choose to enable or disable the channels using the Channel Disable Register (address 08h).

Copyright © 2010–2013, Texas Instruments Incorporated

www.ti.com

- 6. Using the Interrupt Mask Register (address 03h), choose to mask or not to mask the interrupt status from propagating to the interrupt output pin, INT.
- 7. Program the Limit Registers (addresses 2Ah 39h).
- 8. Set the 'START' bit of the Configuration Register (address 00h, bit 0) to 1.
- 9. Set the 'INT_Clear' bit (address 00h, bit 3) to 0. If needed, program the 'INT_Enable' bit (address 00h, bit 1) to 1 to enable the INT output.

The ADC128D818 then performs a round-robin monitoring of enabled voltage and temperature channels. The sequence of items being monitored corresponds to locations in the Channel Readings Registers (except for the temperature reading). Detailed descriptions of the register map can be found at the end of this datasheet.

Power On Reset (POR)

When power is first applied, the ADC128D818 performs a power on reset (POR) on several of its registers, which sets the registers to their default values. These default values are shown in the table above or in the REGISTER MAP section.

Registers whose default values are not shown have power on conditions that are indeterminate.

Configuration Register (address 00h)

The Configuration Register (address 00h) provides all control to the ADC128D818. After POR, the 'START' bit (bit 0) is set low and the 'INT_Clear' bit (bit 3) is set high.

The Configuration Register has the ability to start and stop the ADC128D818, enable and disable the INT output, and set the registers to their default values.

- Bit 0, 'START', controls the monitoring loop of the ADC128D818. After POR, set this bit high to start conversion. Setting this bit low stops the ADC128D818 monitoring loop and puts the ADC128D818 in shutdown mode; thus, reducing power consumption. Even though this bit is set low, serial bus communication is possible with any register in the ADC128D818.
 - After an interrupt occurs, the INT pin will not be cleared if the user sets this bit low.
- Bit 1, 'INT_Enable', enables the interrupt output pin, INT, when this bit is set high.
- Bit 3, 'INT_Clear', clears the interrupt output pin, INT, when this bit is set high. When this bit is set high, the ADC128D818 monitoring function will stop. The content of the Interrupt Status Register (address 01h) will not be affected.
- Bit 7, 'INITIALIZATION', accomplishes the same function as POR, that is, it initializes some of the registers to their default values. This bit automatically clears after being set high. Setting this bit high, however, does not reset the Channel Readings Registers (addresses 20h - 27h) and the Limit Registers (addresses 2Ah - 39h). These registers will be indeterminate immediately after power on. If the Channel Readings Registers contain valid conversion results and/or the Limit Registers have been previously set, they will not be affected by this bit.

Interrupt Status Register (address 01h)

Each bit in this read-only register indicates whether the voltage reading > the voltage high limit or \leq the voltage low limit, or the temperature reading > the temperature high limit. For example, if "IN0 High Limit" register (address 2Ah) were set to 2V and if IN0 reading (address 20h) were 2.56V, then bit 'IN0 Error' would be 1, indicating that the voltage high limit has been exceeded.

Interrupt Mask Register (address 03h)

This register masks the interrupt status from propagating to the interrupt output pin, INT. For example, if bit 'INO Mask' = 1, then the interrupt output pin, INT, would not be pulled low even if an error event occurs at INO.

Conversion Rate Register (address 07h)

There are three options for controlling the conversion rate. The first option is called the Low Power Conversion Mode, where the device converts all of the enabled channels then enters shutdown mode. This process takes approximately 728 ms to complete.

Copyright © 2010–2013, Texas Instruments Incorporated

www.ti.com

The second option is the Continuous Conversion Mode, where the device continuously converts the enabled channels, thus never entering shutdown mode. A voltage conversion takes 12.2 ms, and a temperature conversion takes 3.6 ms. For example, if operating in mode 2 and three voltage channels were enabled, then each round-robin monitor would take 40.2 ms (3×12.2 ms + 3.6ms) to complete. Use the "Channel Disable Register" (address 08h) to disable the desired channel(s).

The third option is called the On-Shot mode, which will be discussed in the next subsection.

One-Shot Register (address 09h)

The One-Shot register is used to initiate a single conversion and comparison cycle when the device is in shutdown mode or deep shutdown mode, after which the device returns to the respective mode it was in. The obvious advantage of using this mode is lower power consumption because the device is operating in shutdown or deep shutdown mode.

This register is not a data register, and it is the write operation that causes the one-shot conversion. The data written to this address is irrelevant and is not stored. A zero will always be read from this register.

Deep Shutdown Register (address 0Ah)

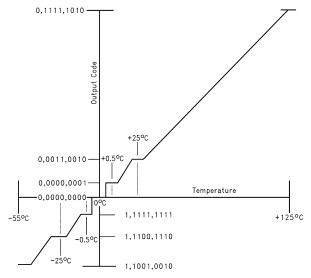
The ADC128D818 can be placed in deep shutdown mode, thus reducing more power consumption. The procedures for deep shutdown entrance are:

- 1. Enter shutdown by setting the 'START' bit of the "Configuration Register' (address 00h, bit 0) to 0.
- 2. Enter deep shutdown by setting the 'DEEP SHUTDOWN' bit (address 0Ah, bit 0) to 1.
- 3. A one-shot conversion can be triggered by writing any values to register address 09h.

Deep Shutdown Exit Procedure:

1. Set the 'DEEP SHUTDOWN' bit to 0.

Channel Readings Registers (addresses 20h - 27h)


The channel conversion readings are available in registers 20h to 27h. Each register is 16-bit wide to accommodate the 12-bit voltage reading or 9-bit temperature reading. Conversions can be read at any time and will provide the result of the last conversion. If a conversion is in progress while a communication is started, that conversion will be completed, and the Channel Reading Registers will not be updated until the communication is complete.

TEMPERATURE MEASUREMENT SYSTEM

The ADC128D818 delta-V_{BE} type temperature sensor and delta-sigma ADC perform 9-bit two's-complement conversions of the temperature. This temperature reading can be obtained at the Temperature Reading Register (address 27h). This register is 16-bit wide, and thus, all 9 bits of the temperature reading can be read using a double byte read (Figure 30 or Figure 32). The following Figure 33 and the table below it show the theoretical output code (D_{OUT}) vs. temperature and some typical temperature-to-code conversions.

(Non-Linear Scale for Clarity)

Tama	Digital Output (D _{OUT})						
Temp	Binary [MSbLSb]	Decimal	Hex				
+125°C	0 _1111_1010	250	0_FA				
+25°C	0_0011_0010	50	0_32				
+0.5°C	0_0000_0001	1	0_01				
+0°C	0_0000_0000	0	0_00				
-0.5°C	1_1111_1111	511	1_FF				
-25°C	1_1100_1110	462	1_CE				
-40°C	1_1011_0000	432	1_B0				

In general, the easiest way to calculate the temperature (°C) is to use the following formulas:

If $D_{OUT}[MSb] = 0$: +Temp(°C) = $D_{OUT}(dec) / 2$	(3)
If D _{OUT} [MSb] = 1: -Temp(°C) = [2 ⁹ - D _{OUT} (dec)] / 2	(4)

Temperature Limits

One of the ADC128D818 features is monitoring the temperature reading. This monitoring is accomplished by setting a temperature limit to the Temperature High Limit Register (T_{hot} , address 38h) and Temperature Hysteresis Limit Register (T_{hot_hyst} , address 39h). When the temperature reading > T_{hot} , an interrupt occurs. How this interrupt occurs will be explained in the Temperature Interrupt section.

Each temperature limit is represented by an 8-bit, two's complement word with an LSb (Least Significant bit) equal to 1°C. The table below shows some sample temperatures that can be programmed to the Temperature Limit Registers.

In general, use the following equations to calculate the digital code that represents the desired temperature limit:

If Temp Limit (°C) >= 0: Digital Code (dec) = Temp Limit(°C)

If Temp Limit (°C) < 0: Digital Code (dec) = 2⁸ - |Temp Limit(°C)|

Town Limit	Digital Code					
Temp Limit	Binary [MSbLSb]	Decimal	Hex			
+125°C	0111_1101	125	7D			
+25°C	0001_1001	25	19			
+1.0°C	0000_0001	1	01			

(5)

(6)

ADC128D818

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

Tomp Limit	Digital Code					
Temp Limit	Binary [MSbLSb]	Decimal	Hex			
+0°C	0000_0000	0	00			
-1.0°C	1111_1111	255	FF			
-25°C	1110_1111	231	E7			
-40°C	1101_1000	216	D8			

INTERRUPT STRUCTURE

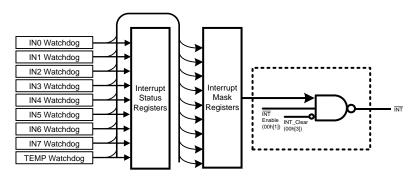


Figure 34. Interrupt Structure

Figure 34 shows the ADC128D818's Interrupt Structure. Note that the number next to each bit name represents its register address and bit number. For example, 'INT_Clear' (00h[3]) refers to bit 3 of register address 00h.

Interrupt Output (INT)

ADC128D818 generates an interrupt as a result of each of its internal WATCHDOG registers on the voltage and temperature channels. In general, INT becomes active when all three scenarios, as depicted in Figure 34, occur:

- 1. 'INT_Clear' (00h[3]) = 0.
- 2. 'INT_Enable' (00h[1]) = 1 to enable interrupt output.
- 3. The voltage reading > the voltage high limit or \leq the voltage low limit, or the temperature reading > T_{hot}.

Interrupt Clearing

Reading the Interrupt Status Register (addresses 01h) will output the contents of the register and clear the register. When the Interrupt Status Register clears, the interrupt output pin, INT, also clears until this register is updated by the round-robin monitoring loop.

Another method to clear the interrupt output pin, INT, is setting 'INT_Clear' bit (address 00h, bit 3) = 1. When this bit is high, the ADC128D818 round-robin monitoring loop will stop.

Temperature Interrupt

One of the ADC128D818 features is monitoring the temperature reading. This monitoring is accomplished by setting a temperature limit to the Temperature High Limit Register (T_{hot} , address 38h) and Temperature Hysteresis Limit Register (T_{hot_hyst} , address 39h). These limit registers have an interrupt mode, shown in Figure 35, that operates the the following way: if the temperature reading > T_{hot} , an interrupt will occur and will remain active indefinitely until reset by reading the Interrupt Status Register (address 01h) or cleared by the 'INT_Clear' bit.

Once an interrupt event has occurred by crossing T_{hot} , then reset, an interrupt will occur again once the next temperature conversion has completed. The interrupts will continue to occur in this manner until the temperature reading is $\leq T_{hot}$ hyst and a read of the Interrupt Status Register has occurred.

SNAS483E - FEBRUARY 2010-REVISED MARCH 2013

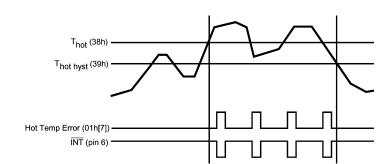


Figure 35. Tem<u>perature</u> Response Structure (Assuming the interrupt output pin, INT, is reset before the next temperature reading)

EXAMPLE APPLICATIONS

General Voltage Monitoring

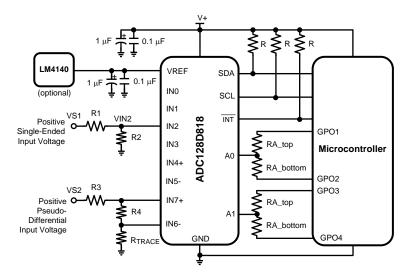


Figure 36. Typical Analog Input Application

A typical application for ADC128D818 is voltage monitoring. In this application, the inputs would most often be connected to linear power supplies of 2.5V, 3.3V, ±5V and ±12V inputs. These inputs should be attenuated with external resistors to any desired value within the input range. The attenuation is done with resistors R1 and R2 for the positive single-ended voltage, and R3 and R4 for the positive pseudo-differential voltage.

A typical single-ended application might select the input voltage divider to provide 1.9V at the analog input of the ADC128D818. This is sufficiently high for good resolution of the voltage, yet leaves headroom for upward excursions from the supply of about 25%. To simplify the process of resistor selection, set the value of R2 first. Select a value for R2 between 10 kOhm and 100 kOhm. This is low enough to avoid errors due to input leakage currents yet high enough to protect both the inputs under and overdrive conditions as well as minimize loading of the source. Finally, calculate R1 to provide a 1.9V input using simple voltage divider derived formula:

R1 = [(VS1 - VIN2) / VIN2] x R2

Care should be taken to bypass V+ with decoupling 0.1 μ F ceramic capacitor and 1 μ F tantalum capacitor. If using the external reference option, VREF should be connected to a voltage reference, such as the LM4140, and should also be decoupled to the ground plane by a 0.1 μ F ceramic capacitor and a 1 μ F tantalum capacitor. For both supplies, the 0.1 μ F capacitor should be located as close as possible to the ADC128D818.

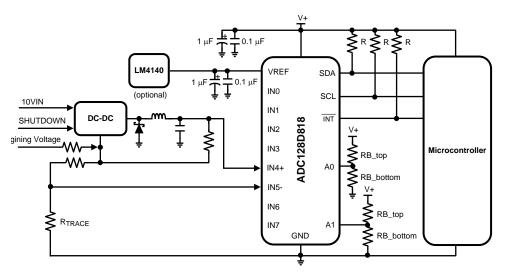
Copyright © 2010–2013, Texas Instruments Incorporated

(7)

Texas Instruments

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

www.ti.com


Since SDA, SCL, and INT are open-drain pins, they should have external pull-up resistors to ensure that the bus is pulled high until a master device or slave device sinks enough current to pull the bus low. A typical pull-up resistor, R, ranges from 1.1 kOhm to 10 kOhm. Refer to NXP's "I2C-Bus Specification and User Manual" for more information on sizing R.

Because there are two tri-level address pins (A0 and A1), up to 9 devices can share the same I²C bus. A trick to set these serial addresses utilizes four GPO (general purpose output) pins from the master device as shown in the example diagram. A table showing how to program these GPO pins can be seen below.

A1	A0	GPO1	GPO2	GPO3	GPO4
LOW	LOW	Z	LOW	Z	LOW
LOW	MID	Z	LOW	HIGH	LOW
LOW	HIGH	Z	LOW	HIGH	Z
MID	LOW	HIGH	LOW	Z	LOW
MID	MID	HIGH	LOW	HIGH	LOW
MID	HIGH	HIGH	LOW	HIGH	Z
HIGH	LOW	HIGH	Z	Z	LOW
HIGH	MID	HIGH	Z	HIGH	LOW
HIGH	HIGH	HIGH	Z	HIGH	Z

Table 7. Setting Serial Bus Address using GPO

Voltage Monitoring for Power Supplies

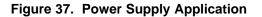


Figure 37 shows a more complete systems application using a DC/DC converter. Such configuration can be used in a power supply application. The point to make with this example diagram is the Serial Bus Address connections. The previous example shows A0 and A1 connected to four GPOs, but this example shows a simpler A0 and A1 connection using two resistor dividers. This connection accomplishes the same goal as the GPO connection, that is, it can set A0 and A1 high, low, or to midscale.

For example, to set A0 high, don't populate RB_bottom; to set A0 low, don't populate RB_top; and to set A0 to midscale, leave RB_top and RB_bottom as is and set them equal to each other. A typical RB value ranges from 1 kOhm to 10 kOhm.

(8)

SNAS483E - FEBRUARY 2010-REVISED MARCH 2013

www.ti.com

Temperature Sensors

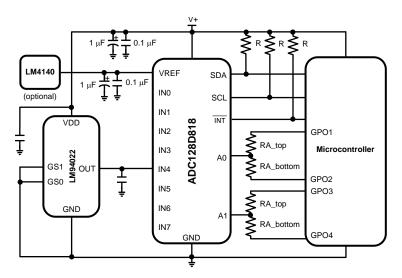


Figure 38. Temperature Sensor Applications

An external temperature sensor can be connected to any of ADC128D818's eight single-ended input for additional temperature sensing. One such temperature sensor can be TI's LM94022, a precision analog temperature sensor with selectable gains. The application diagram shows LM94022's gains (GS1 and GS0) both grounded indicating the lowest gain setting. Four possible gains can be set using these GS1 and GS0 pins.

According to the LM94022 datasheet, the voltage-to-temperature output plot can be determined using the method of linear approximation as follows:

$$V - V1 = (V2 - V1) / (T2 - T1) \times (T - T1)$$

Where V is in mV, T is in °C, V1 and T1 are the coordinates of the lowest temperature, and T2 and V2 are the coordinates of the highest temperature.

For example, to determine the equation of a line over a temperature range of 20°C to 50°C, first find V1 and V2 relative to those temperatures, then use the above equation to find the transfer function.

$$V - 925 \text{ mV} = (760 \text{ mV} - 925 \text{ mV}) / (50\text{C} - 20^{\circ}\text{C}) \times (\text{T} - 20^{\circ}\text{C})$$
(9)
$$V = (-5.50 \text{ mV} / ^{\circ}\text{C}) \times \text{T} + 1035 \text{ mV}$$
(10)

V = (-5.50 mV /°C) x T + 1035 mV

For more information and explanation of this example, refer to the LM94022 datasheet.

www.ti.com

Bridge Sensors

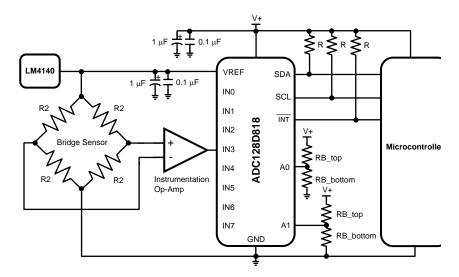


Figure 39. Bridge Sensor Application

ADC128D818 is perfect for transducer applications such as pressure sensors. These sensors measure pressure of gases or liquids and produce a pressure-equivalent voltage at their outputs. Figure 39 shows a typical connection of a pressure sensor, represented by the bridge sensor.

Most pressure sensor has a low sensitivity characteristic, which means its output is typically in the millivolts range. Because of that reason, an op-amp, such as an instrumentation amplifier, can be used for the gain stage.

The positive aspect of this configuration is its ratiometric connection. A ratiometric connection is when the ADC's VREF and GND are connected to the bridge sensor's voltage references. With a ratiometric configuration, external VREF accuracy can be ignored.

Layout and Grounding

Analog inputs will provide best accuracy when referred to the GND pin or a supply with low noise. A separate, low-impedance ground plane for analog ground, which provides a ground point for the voltage dividers and analog components, will provide best performance but is not mandatory. Analog components such as voltage dividers should be located physically as close as possible to the ADC128D818.

REGISTER MAP

ADC128D818 Internal Registers

				-	
Register Name	Read/ Write	Register Address (hex)	Default Value [7:0]	Register Description	Register Format
Configuration Register	R/W	00h	0000_1000	Provides control and configuration	8-bit
Interrupt Status Register	R	01h	0000_0000	Provides status of each WATCHDOG limit or interrupt event	8-bit
Interrupt Mask Register	R/W	03h	0000_0000	Masks the interrupt status from propagating to $\overline{\text{INT}}$	8-bit
Conversion Rate Register	R/W	07h	0000_0000	Controls the conversion rate	8-bit
Channel Disable Register	R/W	08h	0000_0000	Disables conversion for each voltage or temperature channel	8-bit
One-Shot Register	W	09h	0000_0000	Initiates a single conversion of all enabled channels	8-bit
Deep Shutdown Register	R/W	0Ah	0000_0000	Enables deep shutdown mode	8-bit

Table 8. ADC128D818 Internal Registers

www.ti.com

Table 8. ADC128D818 Internal Registers (continued)

Register Name	Read/ Write	Register Address (hex)	Default Value [7:0]	Register Description	Register Format
Advanced Configuration Register	R/W	0Bh	0000_0000	Selects internal or external VREF and modes of operation	8-bit
Busy Status Register	R	0Ch	0000_0010	Reflects ADC128D818 'Busy' and 'Not Ready' statuses	8-bit
Channel Readings Registers	R	20h - 27h		Report the channels (voltage or temperature) readings	16-bit
Limit Registers	R/W	2Ah - 39h		Set the limits for the voltage and temperature channels	8-bit
Manufacturer ID Register	R	3Eh	0000_0001	Reports the manufacturer's ID	8-bit
Revision ID Register	R	3Fh	0000_1001	Reports the revision's ID	8-bit

Configuration Register — Address 00h

Default Value [7:0] = 0000_1000 binary

Bit	Bit Name	Read/Write	Bit(s) Description			
ALL MODES						
0	Start	Read/Write	0: ADC128D818 in shutdown mode 1: Enable startup of monitoring operations			
1	INT_Enable	Read/Write	1: Enable the interrupt output pin, INT			
2	Reserved	Read Only				
3	INT_Clear	Read/Write	1: Clear the interrupt output pin, INT, without affecting the contents of Interrupt Status Registers. When this bit is set high, the device stops the round-robin monitoring loop.			
4	Reserved	Read Only				
5	Reserved	Read Only				
6	Reserved	Read Only				
7	Initialization	Read/Write	1: Restore default values to the following registers: Configuration, Interrupt Status, Interrupt Mask, Conversion Rate, Channel Disable, One-Shot, Deep Shutdown, Advanced Configuration, Busy Status, Channel Readings, Limit, Manufacturer ID, Revision ID. This bit clears itself			

Interrupt Status Register — Address 01h

Default Value [7:0] = 0000_0000 binary

Bit	Bit Name	Read/Write	Bit(s) Description
MODE 0)		
0	IN0 Error	Read Only	1: A High or Low limit has been exceeded
1	IN1 Error	Read Only	1: A High or Low limit has been exceeded
2	IN2 Error	Read Only	1: A High or Low limit has been exceeded
3	IN3 Error	Read Only	1: A High or Low limit has been exceeded
4	IN4 Error	Read Only	1: A High or Low limit has been exceeded
5	IN5 Error	Read Only	1: A High or Low limit has been exceeded
6	IN6 Error	Read Only	1: A High or Low limit has been exceeded
7	Hot Temperature Error	Read Only	1: A High limit has been exceeded
MODE 1			
0	IN0 Error	Read Only	1: A High or Low limit has been exceeded
1	IN1 Error	Read Only	1: A High or Low limit has been exceeded
2	IN2 Error	Read Only	1: A High or Low limit has been exceeded
3	IN3 Error	Read Only	1: A High or Low limit has been exceeded
4	IN4 Error	Read Only	1: A High or Low limit has been exceeded

Copyright © 2010–2013, Texas Instruments Incorporated

Bit	Bit Name	Read/Write	Bit(s) Description
5	IN5 Error	Read Only	1: A High or Low limit has been exceeded
6	IN6 Error	Read Only	1: A High or Low limit has been exceeded
7	IN7 Error	Read Only	1: A High or Low limit has been exceeded
MODE 2			
0	IN0(+) & IN1(-) Error	Read Only	1: A High or Low limit has been exceeded
1	IN3(+) & IN2(-) Error	Read Only	1: A High or Low limit has been exceeded
2	IN4(+) & IN5(-) Error	Read Only	1: A High or Low limit has been exceeded
3	IN7(+) & IN6(-) Error	Read Only	1: A High or Low limit has been exceeded
4	Reserved	Read Only	
5	Reserved	Read Only	
6	Reserved	Read Only	
7	Hot Temperature Error	Read Only	1: A High limit has been exceeded
MODE 3			
0	IN0 Error	Read Only	1: A High or Low limit has been exceeded
1	IN1 Error	Read Only	1: A High or Low limit has been exceeded
2	IN2 Error	Read Only	1: A High or Low limit has been exceeded
3	IN3 Error	Read Only	1: A High or Low limit has been exceeded
4	IN4(+) & IN5(-) Error	Read Only	1: A High or Low limit has been exceeded
5	IN7(+) & IN6(-) Error	Read Only	1: A High or Low limit has been exceeded
6	Reserved	Read Only	
7	Hot Temperature Error	Read Only	1: A High limit has been exceeded

Interrupt Mask Register — Address 03h

Default Value [7:0] = 0000_0000 binary

Submit Documentation Feedback

28

Bit	Bit Name	Read/Write	Bit(s) Description
MODE	0		
0	IN0 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$
1	IN1 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
2	IN2 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
3	IN3 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
4	IN4 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
5	IN5 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
6	IN6 Mask	Read/Write 1: Mask the corresponding interrupt status from propagating to the inte	
7	Temperature Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
MODE	1		•
0	IN0 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
1	IN1 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
2	IN2 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT
3	IN3 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT

www.ti.com

Submit Documenta	tion Feedback

ADC128D818

XAS

STRUMENTS

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

Bit	Bit Name	Read/Write	Bit(s) Description	
4	IN4 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
5	IN5 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
6	IN6 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
7	IN7 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
MODE	2			
0	IN0(+) & IN1(-) Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
1	IN3(+) & IN2(-) Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
2	IN4(+) & IN5(-) Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
3	IN7(+) & IN6(-) Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
4	Reserved	Read Only		
5	Reserved	Read Only		
6	Reserved	Read Only		
7	Temperature Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
MODE	3			
0	IN0 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
1	IN1 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
2	IN2 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
3	IN3 Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
4	IN4(+) & IN5(-) Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, $\overline{\text{INT}}$	
5	IN7(+) & IN6(-) Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	
6	Reserved	Read Only		
7	Temperature Mask	Read/Write	1: Mask the corresponding interrupt status from propagating to the interrupt output pin, INT	

Conversion Rate Register — Address 07h

Default Value [7:0] = 0000_0000 binary

Bit	Bit Name	Read/Write	Bit(s) Description
0	Conversion Rate	Read/Write	Controls the conversion rate: 0: Low Power Conversion Mode 1: Continuous Conversion Mode Note: This register must only be programmed when the device is in shutdown mode, that is, when the 'START' bit of the 'Configuration Register' (address 00h) = 0
1–7	Reserved	Read Only	

Channel Disable Register — Address 08h

Default Value [7:0] = 0000_0000 binary

- This register must only be programmed when the device is in shutdown mode, that is, when the 'START' bit of the "Configuration Register' (address 00h) = 0.
- Whenever this register is programmed, all of the values in the Channel Reading Registers and Interrupt Status Registers will return to their default values.

Bit	Bit Name	Read/Write	Bit(s) Description	
ODE 0				
0	IN0 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
1	IN1 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
2	IN2 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed	
3	IN3 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
4	IN4 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
5	IN5 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
6	IN6 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
7	Temperature Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
MODE 1				
0	IN0 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
1	IN1 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
2	IN2 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
3	IN3 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
4	IN4 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
5	IN5 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
6	IN6 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
7	IN7 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
MODE 2				
0	IN0(+) & IN1(-) Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
1	IN3(+) & IN2(-) Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
2	IN4(+) & IN5(-) Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
3	IN7(+) & IN6(-) Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.	
4	Reserved	Read Only		
5	Reserved	Read Only		
6	Reserved	Read Only		
	Temperature Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and	

ADC128D818

www.ti.com

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

Bit	Bit Name	Read/Write	Bit(s) Description
0	IN0 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.
1	IN1 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.
2	IN2 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.
3	IN3 Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.
4	IN4(+) & IN5(-) Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.
5	IN7(+) & IN6(-) Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.
6	Reserved	Read Only	
7	Temperature Disable	Read/Write	1: Conversions are skipped and disabled, value register reading will be 0, and error events will be suppressed.

One-Shot Register — Address 09h

Default Value [7:0] = 0000_0000 binary

Bit	Bit Name	Read/Write	Bit(s) Description
0	One-Shot	Write Only	1: Initiate a single conversion and comparison cycle when the device is in shutdown mode or deep shutdown mode, after which the device returns to the respective mode that it was in
1–7	Reserved	Read Only	

Deep Shutdown Register — Address 0Ah

Default Value [7:0] = 0000_0000 binary

Bit	Bit Name	Read/Write	Bit(s) Description
0	Deep Shutdown Enable	Read/Write	1: When 'START' = 0 (address 00h, bit 0), setting this bit high will place the device in deep shutdown mode
1–7	Reserved	Read Only	

Advanced Configuration Register — Address 0Bh

Default Value [7:0] = 0000_0000 binary

Note: Whenever the Advanced Configuration Register is programmed, all of the values in the Channel Reading Registers and Interrupt Status Registers will return to their default values.

Bit	Bit Name	Read/Write		Bit(s) Description	
0	External Reference Enable	Read/Write	0: Selects the 2.56V interna 1: Selects the variable exte		
1	Mode Select [0]	Read/Write	Mode Select [1]	Mode Select [0]	Mode
			0	0	Mode 0
			0	1	Mode 1
			1	0	Mode 2
2	Mode Select [1]		1	1	Mode 3
3–7	Reserved	Read Only			

Busy Status Register — Address 0Ch

Default Value [7:0] = 0000_0010 binary

Bit	Bit Name	Read/Write	Bit(s) Description
0	Busy	Read Only	1: ADC128D818 is converting
1	Not Ready	Read Only	1: Waiting for the power-up sequence to end
2–7	Reserved	Read Only	

Channel Readings Registers — Addresses 20h – 27h

Address	Register Name	Read/Write	Register Description
MODE 0	1		·
20h	IN0 Reading	Read Only	Reading for this perspective channel
21h	IN1 Reading	Read Only	Reading for this perspective channel
22h	IN2 Reading	Read Only	Reading for this perspective channel
23h	IN3 Reading	Read Only	Reading for this perspective channel
24h	IN4 Reading	Read Only	Reading for this perspective channel
25h	IN5 Reading	Read Only	Reading for this perspective channel
26h	IN6 Reading	Read Only	Reading for this perspective channel
27h	Temperature Reading	Read Only	Reading for this perspective channel
MODE 1			
20h	IN0 Reading	Read Only	Reading for this perspective channel
21h	IN1 Reading	Read Only	Reading for this perspective channel
22h	IN2 Reading	Read Only	Reading for this perspective channel
23h	IN3 Reading	Read Only	Reading for this perspective channel
24h	IN4 Reading	Read Only	Reading for this perspective channel
25h	IN5 Reading	Read Only	Reading for this perspective channel
26h	IN6 Reading	Read Only	Reading for this perspective channel
27h	IN7 Reading	Read Only	Reading for this perspective channel
MODE 2			
20h	IN0(+) & IN1(-) Reading	Read Only	Reading for this perspective channel
21h	IN3(+) & IN2(-) Reading	Read Only	Reading for this perspective channel
22h	IN4(+) & IN5(-) Reading	Read Only	Reading for this perspective channel
23h	IN7(+) & IN6(-) Reading	Read Only	Reading for this perspective channel
24h	Reserved	Read Only	
25h	Reserved	Read Only	
26h	Reserved	Read Only	
27h	Temperature Reading	Read Only	Reading for this perspective channel
MODE 3			
20h	IN0 Reading	Read Only	Reading for this perspective channel
21h	IN1 Reading	Read Only	Reading for this perspective channel
22h	IN2 Reading	Read Only	Reading for this perspective channel
23h	IN3 Reading	Read Only	Reading for this perspective channel
24h	IN4(+) & IN5(-) Reading	Read Only	Reading for this perspective channel
25h	IN7(+) & IN6(-) Reading	Read Only	Reading for this perspective channel
26h	Reserved	Read Only	
27h	Temperature Reading	Read Only	Reading for this perspective channel

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

Limit Registers — Addresses 2Ah – 39h

Address	Register Name	Read/	Register Description
MODE 0			
2Ah	IN0 High Limit	Read/Write	High Limit
2Bh	IN0 Low Limit	Read/Write	Low Limit
2Ch	IN1 High Limit	Read/Write	High Limit
2Dh	IN1 Low Limit	Read/Write	Low Limit
2Eh	IN2 High Limit	Read/Write	High Limit
2Fh	IN2 Low Limit	Read/Write	Low Limit
30h	IN3 High Limit	Read/Write	High Limit
31h	IN3 Low Limit	Read/Write	Low Limit
32h	IN4 High Limit	Read/Write	High Limit
33h	IN4 Low Limit	Read/Write	Low Limit
34h	IN5 High Limit	Read/Write	High Limit
35h	IN5 Low Limit	Read/Write	Low Limit
36h	IN6 High Limit	Read/Write	High Limit
37h	IN6 Low Limit	Read/Write	Low Limit
38h	Temperature High Limit	Read/Write	High Limit
39h	Temperature Hysteresis Limit	Read/Write	Hysteresis Limit
MODE 1		rtodd, mito	
2Ah	IN0 High Limit	Read/Write	High Limit
28h	INO Low Limit	Read/Write	Low Limit
2Ch	IN1 High Limit	Read/Write	High Limit
20h	IN1 Low Limit	Read/Write	Low Limit
2Eh	IN2 High Limit	Read/Write	High Limit
2Eh 2Fh	IN2 Low Limit	Read/Write	Low Limit
30h	IN3 High Limit	Read/Write	High Limit
30h	INS Fight Limit	Read/Write	Low Limit
31h 32h		Read/Write	High Limit
3211 33h	IN4 High Limit IN4 Low Limit	Read/Write	
34h	IN5 High Limit	Read/Write	High Limit
35h	IN5 Low Limit	Read/Write	Low Limit
36h	IN6 High Limit	Read/Write	High Limit
37h	IN6 Low Limit	Read/Write	
38h	IN7 High Limit	Read/Write	High Limit
39h	IN7 Low Limit	Read/Write	Low Limit
MODE 2			10-11-12-20
2Ah	IN0(+) & IN1(-) High Limit	Read/Write	High Limit
2Bh	IN0(+) & IN1(-) Low Limit	Read/Write	Low Limit
2Ch	IN3(+) & IN2(-) High Limit	Read/Write	High Limit
2Dh	IN3(+) & IN2(-) Low Limit	Read/Write	Low Limit
2Eh	IN4(+) & IN5(-) High Limit	Read/Write	High Limit
2Fh	IN4(+) & IN5(-) Low Limit	Read/Write	Low Limit
30h	IN7(+) & IN6(-) High Limit	Read/Write	High Limit
31h	IN7(+) & IN6(-) Low Limit	Read/Write	Low Limit
32h	Reserved	Read Only	
33h	Reserved	Read Only	-
34h	Reserved	Read Only	
35h	Reserved	Read Only	

Copyright © 2010–2013, Texas Instruments Incorporated

Address	Register Name	Read/	Register Description
36h	Reserved	Read Only	
37h	Reserved	Read Only	
38h	Temperature High Limit	Read/Write	High Limit
39h	Temperature Hysteresis Limit	Read/Write	Hysteresis Limit
ODE 3			
2Ah	IN0 High Limit	Read/Write	High Limit
2Bh	IN0 Low Limit	Read/Write	Low Limit
2Ch	IN1 High Limit	Read/Write	High Limit
2Dh	IN1 Low Limit	Read/Write	Low Limit
2Eh	IN2 High Limit	Read/Write	High Limit
2Fh	IN2 Low Limit	Read/Write	Low Limit
30h	IN3 High Limit	Read/Write	High Limit
31h	IN3 Low Limit	Read/Write	Low Limit
32h	IN4(+) & IN5(-) High Limit	Read/Write	High Limit
33h	IN4(+) & IN5(-) Low Limit	Read/Write	Low Limit
34h	IN7(+) & IN6(-) High Limit	Read/Write	High Limit
35h	IN7(+) & IN6(-) Low Limit	Read/Write	Low Limit
36h	Reserved	Read Only	
37h	Reserved	Read Only	
38h	Temperature High Limit	Read/Write	High Limit
39h	Temperature Hysteresis Limit	Read/Write	Hysteresis Limit

Manufacturer ID Register — Address 3Eh

Default Value [7:0] = 0000_0001 binary

Address	Register Name	Read/Write	Register Description
3Eh	Manufacturer ID	Read Only	Manufacturer's ID always defaults to 0000_0001.

Revision ID Register — Addresses 3Fh

Default Value [7:0] = 0000_1001 binary

Address	Register Name	Read/Write	Register Description
3Fh	Revision ID	Read Only	Revision's ID always defaults to 0000_1001.

SNAS483E - FEBRUARY 2010 - REVISED MARCH 2013

REVISION HISTORY

Cł	hanges from Revision D (March 2013) to Revision E	Page
•	Changed layout of National Data Sheet to TI format	34

19-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
ADC128D818CIMT/NOPB	ACTIVE	TSSOP	PW	16	92	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	128D818 CIMT	Samples
ADC128D818CIMTX/NOPB	ACTIVE	TSSOP	PW	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	128D818 CIMT	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

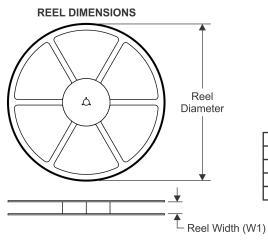
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

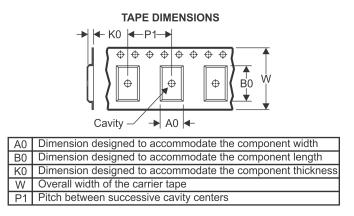
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

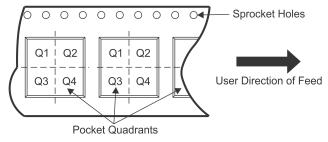
⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

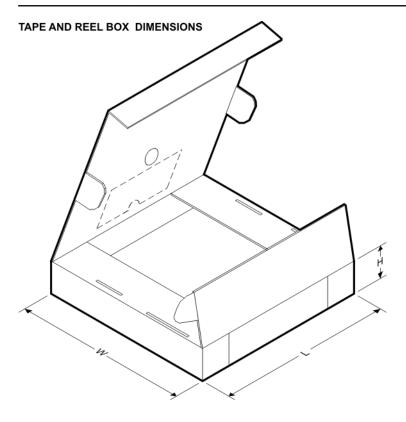
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are noming


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ADC128D818CIMTX/NOP B	TSSOP	PW	16	2500	330.0	12.4	6.95	8.3	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

21-Mar-2013



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADC128D818CIMTX/NOP B	TSSOP	PW	16	2500	349.0	337.0	45.0

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.