

2SP0320x2Ax-FF1000R17IE4D_B2 Preliminary Data Sheet

Compact, high-performance, plug-and-play dual-channel IGBT driver based on SCALE-2 technology for individual and parallel-connected modules in 2-level, 3-level and multilevel converter topologies

Abstract

The SCALE-2 plug-and-play driver 2SP0320x2Ax-FF1000R17IE4D_B2 is a compact dual-channel intelligent gate driver designed for Infineon's PrimePACKTM IGBTs FF1000R17IE4D_B2. The driver features an electrical interface (2SP0320T) or a fiber-optic interface (2SP0320V and 2SP0320S) with a built-in DC/DC power supply.

For drivers adapted to other types of high-power and high-voltage IGBT modules, refer to

www.IGBT-Driver.com/go/plug-and-play

Features

- ✓ Plug-and-play solution
- ✓ Allows parallel connection of IGBT modules
- ✓ For 2-level, 3-level and multilevel topologies
- ✓ Shortens application development time
- ✓ Extremely reliable; long service life
- ✓ Built-in DC/DC power supply
- √ 20-pin flat cable interface (2SP0320T)
- ✓ Fiber-optic links (2SP0320V & 2SP0320S)
- ✓ Duty cycle 0... 100%
- ✓ Active clamping of V_{ce} at turn-off
- ✓ IGBT short-circuit protection
- ✓ Monitoring of supply voltage
- ✓ Safe isolation to EN 50178
- ✓ UL compliant
- ✓ Suitable for FF1000R17IE4D_B2

Applications

- ✓ Wind-power converters
- ✓ Industrial drives
- **✓** UPS
- ✓ Power-factor correctors
- ✓ Traction
- ✓ Railroad power supplies
- ✓ Welding
- ✓ SMPS
- ✓ Radiology and laser technology
- ✓ Research
- ✓ and many others

PrimePACK is a trademark of Infineon Technologies AG, Munich

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and common data that apply to the whole series, please refer to "Description & Application Manual for 2SP0320T SCALE-2 IGBT Drivers" (electrical interface) or "Description & Application Manual for 2SP0320V and 2SP0320S SCALE-2 IGBT Drivers" (fiber-optic interface) on www.igbt-driver.com/go/2SP0320.

When applying SCALE-2 plug-and-play drivers, please note that these drivers are specifically adapted to a particular type of IGBT module. Therefore, the type designation of SCALE-2 plug-and-play drivers also includes the type designation of the corresponding IGBT module. These drivers are not valid for IGBT modules other than those specified. Incorrect use may result in failure.

Mechanical Dimensions

Dimensions: See the relevant "Description and Application Manual"

Mounting principle: Connected to IGBT module with screws

Fiber-Optic Interfaces

	Interface	Remarks	Part type #
Drive signal input 2SP0320V, fiber-optic receiver (Notes 21, 22) HFBR-2522 Drive signal input 2SP0320S, fiber-optic receiver (Notes 21, 22) HFBR-2412Z Status output 2SP0320V, fiber-optic transmitter (Notes 21, 23) HFBR-1522 Status output 2SP0320S, fiber-optic transmitter (Notes 21, 23) HFBR-1412Z	Drive signal input	2SP0320S, fiber-optic receiver (Notes 21, 22)	HFBR-2412Z
	Status output	2SP0320V, fiber-optic transmitter (Notes 21, 23)	HFBR-1522

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V _{DC}	VDC to GND	0	16	V
Supply voltage V _{CC}	VCC to GND (Note 1)	0	16	V
Logic input and output voltages	To GND	-0.5	VCC+0.5	5 V
SO _x current	Fault condition, total current		20	mA
Gate peak current I _{out}	Note 2	-20	+20	Α
Average supply current I _{DC}	2SP0320T (Note 24)		600	mA
Average supply current I _{DC}	2SP0320V and 2SP0320S (Note 24)		690	mA
Output power per gate	Ambient temperature <70°C (Note 3)		3	W
	Ambient temperature 85°C (Note 3)		2	W
Switching frequency F			13	kHz
Test voltage (50Hz/1min.)	Primary to secondary (Note 19)		5000	$V_{AC(eff)}$
	Secondary to secondary (Note 19)		4000	$V_{AC(eff)}$
DC-link voltage	Note 4		1200	V
dV/dt	Rate of change of input to output voltage (Note 20)		50	kV/μs
Operating voltage	Primary/secondary, secondary/secondary		1700	V_{peak}
Operating temperature		-40	+85	°C
Storage temperature		-40	+90	°C

Recommended Operating Conditions

Power Supply	Remarks	Min	Тур	Max	Unit
Supply voltage V _{DC}	To GND (Note 1)	14.5	15	15.5	V
Supply voltage V _{CC}	To GND (Note 1)	14.5	15	15.5	V
Resistance from TB to GND	2SP0320T, blocking time≠0, ext. value	128		∞	kΩ
SO _x current	Fault condition, 3.3V logic			4	mA

Electrical Characteristics

Power Supply	Remarks	Min	Тур	Max	Unit
Supply current I _{DC}	2SP0320T, without load		37		mA
	2SP0320V and 2SP0320S, without load		145		mA
Efficiency η	Internal DC/DC converter		85		%
Supply current I _{CC}	Without load		19		mA
Coupling capacitance C _{io}	Primary side to secondary side, total, per channel				
	2SP0320T		20		pF
	2SP0320V and 2SP0320S		15		pF
Power Supply Monitoring	Remarks	Min	Тур	Max	Unit
Supply threshold V _{CC}	Primary side, clear fault	11.9	12.6	13.3	V
	Primary side, set fault (Note 5)	11.3	12.0	12.7	V
Monitoring hysteresis	Primary side, set/clear fault	0.35			V
Supply threshold V _{isox} -V _{eex}	Secondary side, clear fault	12.1	12.6	13.1	V
	Secondary side, set fault (Note 26)	11.5	12.0	12.5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.35			V
Supply threshold V _{eex} -V _{COMx}	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 26)	4.7	4.85	5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.15			V
Logic Inputs and Outputs	Remarks	Min	Тур	Max	Unit
Input impedance	2SP0320T, V(INx) > 3V (Note 6)	3.5	4.1	4.6	kΩ
Turn-on threshold	2SP0320T, V(INx) (Note 7)		2.6		V
Turn-off threshold	2SP0320T, V(INx) (Note 7)		1.3		V
SOx output voltage	Fault condition, I(SOx)<8mA			0.7	V
Short-circuit Protection	Remarks	Min	Тур	Max	Unit
Vce-monitoring threshold	Between auxiliary terminals		10.2		V
Response time	DC-link voltage > 550V (Note 8)		6.9		μs
Delay to IGBT turn-off	After the response time (Note 9)		1.4		μs
Blocking time	2SP0320T, after fault (Note 10)		90		ms

Timing Characteristics	Remarks	Min	Тур	Max	Unit
Turn-on delay t _{d(on)}	2SP0320T (Note 11)		90		ns
Turn-off delay t _{d(off)}	2SP0320T (Note 11)		90		ns
Jitter of turn-on delay	2SP0320T (Note 28)		±2		ns
Jitter of turn-off delay	2SP0320T (Note 28)		±2		ns
Turn-on delay t _{d(on)}	2SP0320V and 2SP0320S (Note 12)		120		ns
Turn-off delay $t_{d(off)}$	2SP0320V and 2SP0320S (Note 12)		100		ns
Output rise time $t_{r(out)}$	G_x to E_x (Note 13)		7		ns
Output fall time $t_{f(out)}$	G_x to E_x (Note 13)		25		ns
Dead time between outputs	2SP0320T, half-bridge mode		3		μs
Jitter of dead time	2SP0320T, half-bridge mode		±100		ns
Transmission delay of fault state	2SP0320T (Note 14)		450		ns
Transmission delay of fault state	2SP0320V and 2SP0320S (Note 25)		90		ns
Delay to clear fault state	2SP0320V and 2SP0320S (Note 15)		11		μs
Acknowledge delay time	2SP0320V and 2SP0320S (Note 16)		220		ns
Acknowledge pulse width	2SP0320V and 2SP0320S (on host side)		700	1050	ns
Outputs	Remarks	Min	Тур	Max	Unit
Turn-on gate resistor R _{g(on)}	Note 17		0.3		Ω
Turn-off gate resistor $R_{g(off)}$	Note 17		2.3		Ω
Gate voltage at turn-on			15		V
Gate-voltage at turn-off	2SP0320T / (2SP0320V & 2SP0320S)				
	P = 0W		10.4/-9.		V
	P = 0.3W		10.2/-9.		V
	P = 2.1W		-9.7/-9.		V
Gate resistance to COMx	P = 3W	-	-9.6/-9. ₄ 4.7	4	V kΩ
dV/dt Feedback	Remarks	Im	plemen	tation	
dV/dt feedback	Note 18	No			
Electrical Isolation	Remarks	Min	Тур	Max	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 19)	5000	5050	5100	V _{eff}
. 630 Voltage (301 12/ 13)	Secondary to secondary side (Note 19)	4000	4050	4100	V eff V _{eff}
Partial discharge extinction volt.	Primary to secondary side (Note 27)	1768	.030	.100	V _{peak}
. a. dar discharge extinction voice	Secondary to secondary side (Note 27)	1700			V_{peak}
Creepage distance	Primary to secondary side (Note 27)	20			mm
arecpage distance	Secondary to secondary side	20 17			mm
All data refer to +25°C and V_{CC} =	V_{DC} = 15V unless otherwise specified				

Footnotes to the Key Data

- 1) Both supply voltages V_{DC} and V_{CC} should be applied in parallel.
- 2) The gate current is limited by the gate resistors located on the driver.
- 3) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data.
- 4) This limit is due to active clamping. Refer to "Description & Application Manual for 2SP0320T SCALE-2 IGBT Drivers" (electrical interface) or "Description & Application Manual for 2SP0320V and 2SP0320S SCALE-2 IGBT Drivers" (fiber-optic interface).
- 5) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to the corresponding output(s) (2SP0320T/2SP0320V/2SP0320S) and the IGBTs are switched off (only 2SP0320T).
- 6) The input impedance can be modified to values < 18 kΩ (customer-specific solution).
- 7) Turn-on and turn-off threshold values can be increased (customer-specific solution).
- 8) The resulting pulse width of the direct output of the gate drive unit for short-circuit type I (excluding the delay of the gate resistors) is the sum of response time plus delay to IGBT turn-off.
- 9) The turn-off event of the IGBT is delayed by the specified time after the response time.
- 10) Factory set value. The blocking time can be reduced with an external resistor. Refer to "Description & Application Manual for 2SP0320T SCALE-2 IGBT Drivers".
- 11) Measured from the transition of the turn-on or turn-off command at the driver input to direct output of the gate drive unit (excluding the delay of the gate resistors).
- 12) Including the delay of the external fiber-optic links. Measured from the transition of the turn-on or turn-off command at the optical transmitter on the host controller side to the direct output of the gate drive unit (excluding the delay of the gate resistors).
- 13) Refers to the direct output of the gate drive unit (excluding the delay of the gate resistors).
- 14) Transmission delay of the fault state from the secondary side to the primary status outputs.
- 15) Measured on the host side. The fault status on the secondary side is automatically reset after the specified time.
- 16) Including the delay of the external fiber-optic links. Measured from the transition of the turn-on or turn-off command at the optical transmitter on the host controller side to the transition of the acknowledge signal at the optical receiver on the host controller side.
- 17) The gate resistors can be leaded or surface mounted. CONCEPT reserves the right to determine which type will be used. Typically, higher quantities will be produced with SMD resistors and small quantities with leaded resistors.
- 18) A dV/dt feedback can optionally be implemented in order to reduce the rate of rise of the collector emitter voltage of the IGBTs at turn-off (customer-specific solution).
- 19) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than $1200V_{AC(eff)}$ may lead to insulation degradation. No degradation has been observed over 1min. testing at $5000V_{AC(eff)}$. Every production sample shipped to customers has undergone 100% testing at the given value for 1s.
- 20) This specification guarantees that the drive information will be transferred reliably even at a high DC-link voltage and with ultra-fast switching operations.
- 21) The transceivers required on the host controller side are not supplied with the gate driver. It is recommended to use the same types as used in the gate driver. For product information refer to www.IGBT-Driver.com/go/fiberoptics
- 22) The recommended transmitter current at the host controller is 20mA. A higher current may increase jitter or delay at turn-off.
- 23) The typical transmitter current at the gate driver is 18mA. In case of supply undervoltage, the minimum transmitter current at the gate driver is 12mA: this is suitable for adequate plastic optical fibers with a length of more than 10 meters.
- 24) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload.

- 25) Delay of external fiber-optic links. Measured from the driver secondary side (ASIC output) to the optical receiver on the host controller.
- 26) Undervoltage monitoring of the secondary-side supply voltage (Visox to Veex and Veex to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding output.
- 27) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.
- 28) Jitter measurements are performed with input signals INx switching between 0V and 15V referred to GND, with a corresponding rise time and fall time of 8ns.

Legal Disclaimer

This data sheet specifies devices but cannot promise to deliver any specific characteristics. No warranty or guarantee is given – either expressly or implicitly – regarding delivery, performance or suitability.

CT-Concept Technologie AG reserves the right to make modifications to its technical data and product specifications at any time without prior notice. The general terms and conditions of delivery of CT-Concept Technologie AG apply.

Ordering Information

The general terms and conditions of delivery of CT-Concept Technologie AG apply.

Interface	CONCEPT Driver Type #	Related IGBT
Electrical Interface Fiber-Optic Interface ¹⁾ Fiber-Optic Interface ²⁾	2SP0320T2A0-FF1000R17IE4D_B2 2SP0320V2A0-FF1000R17IE4D_B2 2SP0320S2A0-FF1000R17IE4D_B2	FF1000R17IE4D_B2 FF1000R17IE4D_B2 FF1000R17IE4D_B2

- 1) Fiber-optic interface with versatile link (HFBR-2522 and HFBR-1522)
- 2) Fiber-optic interface with ST (HFBR-2412Z and HFBR-1412Z)
 See "Description & Application Manual for 2SP0320V and 2SP0320S SCALE-2 IGBT Drivers"

Product home page: www.IGBT-Driver.com/go/2SP0320

Refer to www.IGBT-Driver.com/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, evaluation systems product documentation and application support

Please click: www.IGBT-Driver.com

Manufacturer

CT-Concept Technologie AG Intelligent Power Electronics Renferstrasse 15 CH-2504 Biel-Bienne Switzerland

Tel. +41 - 32 - 344 47 47 Fax +41 - 32 - 344 47 40

E-mail <u>Info@IGBT-Driver.com</u>
Internet <u>www.IGBT-Driver.com</u>

 $\hbox{\Large \textcircled{C}}$ 2008...2010 CT-Concept Technologie AG - Switzerland.

All rights reserved.

We reserve the right to make any technical modifications without prior notice.

Version from 2010-11-23

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Power Integrations:

2SP0320V2A0-FF1000R17IE4D_B2 2SP0320T2A0-FF1000R17IE4D_B2 2SP0320S2A0-FF1000R17IE4D_B2

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.