CCS C Compiler Manual

PCB /PCM/PCH

A= = 0
A)\

May 2015

inc

ALL RIGHTS RESERVED.
Copyright Custom Computer Services, Inc. 2015

CCSC Manual

Table of Contents

(@ ST Y=Y SRR

C COMPIIET..eeiiiiccicciiee e
PCB, PCM and PCH Overview
Installationcccooviieeiiiie e
Technical Support
D 11T ox (0] £ TPt
1= 0 0 =1 PPt
Invoking the Command Line Compiler
OV @ = T PPt
/T 0 L PP USPPPPRPINN
Editor Tabscccccevvvieens

Slide Out Windows

Editor .oveeeeeiiieeeeee

Debugging Windows
Status Bar..........oeeeeeiiinne

OULPUL IMESSEGES -...veeieeeeeiiiiieee et e e ettt e e e e ettt e e e e e ettt e e e e e s st e et e e e e e e et s e et e e e e e e e e s s e e e e e e e e e e e s nnn e e e e e e e eaassnnnneeeeenannnnns

PrOQIAIM SYNTAX ...ttt ettt oo e et e e e e e et e et e e e e e e e ae et e e e e e e s sen s et e e e e e e asnnn et e e e e e e annrnneeeeeneas

Overall Structure
(01114413 | PP PO TP PP
Trigraph Sequences
Multiple Project Files
Multiple Compilation Units
FUIT EXAMPIE PIOGIAIM ...ttt ekt e et e e ettt e e bt e e sa e e e e b bt e e e st et e e e sn et e e anb e e e e nnnes

StatementS......ccoeeeeviiieeeiinnnnns

Expressions

Data Definitions

Statements ..
|

Constants
Identifiers.....
(©]01=] =101 1= T PP OP TP U PP U TP PPUPPR
Operator Precedence

D= =W D= 1] 11T L PO PUPTT PO
DY LS oL 1 =] T TP PU TS UTTPPPRPTN
Type Qualifiers
Enumerated Types.............
Structures and Unions

Using Program Memory for Data
Named Registers

Function Definition

[[aTe o] g B LY {1011 o] o PSRRIt
Overloaded Functions
Reference Parameters
(D1 = UL =T =T L1 (=] €T
VArTADIE ATGUIMENT LISES ...eeiiiiiiiiiiiiiee ittt ettt ettt e sttt e e st e e ettt e e sttt o1 ab bt e e ek bt e e aab b e e e e bb e e e e asbr e e e anbeeeeennnes

Table of Contents

(D2 1= =T o] (0] o KU PP PPPPPPPPPPPPPPPPPPRE
(Do e B [o gt 1Y oo (U F=1 (o] TP UPRPPPPRPI
External Memory
GENETAI PUIPOSE /Ot ettt ettt e e e oo et et e e e e e e st b bt s et e e e e e e sataaeeeeeeseaasbbaeeaeeeaansstbaseeaeeeaansees
101 (= g =T X PRSP PPPRP
Internal Oscillator...............

INterruptsooevvvvvveiiiiiiiinns

Low Voltage Detect
PMP/EPMP.......cccccevvreens
Power PWM..........covvvveiinns
Program Eeprom................
PSP .

QEI

TimerA
TimerB

Voltage Reference
WDT OF WALCH DOG TIMEN ..ottt et ekttt e e bt e et e et b e e e s b et e e et et e e s nb e e e e asbr e e e anbreeeennne s
[1e1 T g0 oI =TT o] [=To [TP UPPT S TOPPPPPRPPO:
Stream 1/O
PreProcessor
PRE-PROCESSOR DIRECTORY
_AdAreSS__ .o
_attribute_X.....oooooiieiiiniiene
#asm #endasm #asm asis

__buildcount__..................
#build

e £ PP O PSP PP PP P PPPPR
20 =11 0 1= T PR SRPERR
definedinc....
20 1Yot SRS UPPERP
I 0 L= T = PPN
#if expr #else #elif #endif ...

#export (options)................
_file
_ filename__ ...

CCSC Manual

Built-in Functions

HIF eXPr #elSe Helif FENUIf ... e ettt e e e e e et e e e e e e e n bt e e e e e e e nnaeaeeaaaean
#ifdef #ifndef #else #elif #endif
#ignore_warnings
#import (options)................
#include
#inline..........

#separate
#serialize

B0 1 (olo Lo [T O PP PP PP PUPPPPPPPP
#use capture....
#use delay
FEUSE AYNAMIC_IMEIMOIY .eiiiiiiiiitti et e e ettt e e e e et b ettt e e e e e st bt ettt e e a4 e e s a b b e et e e e e e e s abb s et e e e e e e e nbbb e e e e e e e e sanbbbbeeeeeeesannneneeeas
#use fast_io
[T D= o [T RPN
FEUSE 12 ettt ettt e oo oL b E e et e e e oo e e A h et e et e e e oo e AR E b et e e e e e e e AR b e ettt e e e e e e hbaereeee e e e e nnnrneeeas
#use profile().....ccceevvrennnnn
H#USE PWM .o
#USE IS232....cccoviviiiiiien
HUSE IMOS...vvei e
H#USE SPI .o
D LYY = g Lo £V o [T T RPN
UL S U] 0 0= TP UPTT PP

#zero_ram

BUILT-IN FUNGCTIONS ...ttt ettt ettt ettt etttk b ekt b et et a2 bt ek et ettt e ket et et e be e e bt e e be e et e e ebne et
E= 1] () IO UPPPTR

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()
adc_done()
assert()
atoe
=1 (o] {0 TP PP TP PP PPPPP
pin_select()
atoi() atol() atoi32()
at_clear_interrupts()

Table of Contents

=L o [ST= o [) (=T g (] o] () RPN 134
L= aF= L] ST 01 (=T (0T o] (= () PR PRSP 135
=L o [A o= T o LU =T () R RPPSURTPRRP 136
at_get MISSING _PUISE_AEIAY() ..vvieeiiiiiiiiiiie e ettt e et e e e e et e e e e s e et e e e e e e s e s atb et e eeeeessasbaaeeeaeeessnbaraeaaaeanan 136
= Ao =10 o<1 1 Lo [TP PP PRSP PPRPR 137
= Ao [T o] T YT oo 10 [(=1 () IR EPR S OPPRPR 137
= Ao [T (=110 (V1o o T TR P PPP SO 138
e o [= A o Jo] (OO TR R PUPR 138
e o [1= A oJo T | A =T (o (PO PP PP PPPR 139
oL o [A1 r= LU () P PR PRSP 139
= L (= 0 o A= oA Y= (O T RPN 140
Ly A w01 101 o T V=T (1 1LY () PP PPR O PPRPR 141
at_Set_MISSING_PUISE _AEIAY() ..evieeiiiiiiiiii ettt e et e et e e e e e e et e e e e e s e s bt et e eeeeessasbbaeeaaeeesansaraeeaaeaaan 141
LY A (1o LU o] (P EP PSP 142
LY A= L= o101 0 (P EPP OO PRPR 142
=LY< (0] o T o o () SRRSO 143
o] 1 Aol (== 1 () T SRR PRRRRRN 143
oL (O T T ST PP PPOUPPPPPII 144
oL (=21 () O T T ST PP PT PP PUPPPPPIRN 144
o] 01N aToTU =T F=1 o] =T (T SRR 145
L 1SY<T: 1o o PRSPPI 145
(o= 1] (o Tod () PRSP 146
(o7 1 [T PP 146
clcl_setup_gate() clc2_setup_gate() clc3_setup_gate() clcd_Setup_gate() ..evveeeeeeeeiiiiieiieeeeeiiiiieiee e e e seiieiee e 147
clel_setup_input() clc2_setup_input() clc3_setup_input() clcd_Setup_iNPUL()...ceeeeeeeiieiriiieeeeeiiiiiee e eeiieiee e 148
(o[- T [(=T (V] o] () IO PO PP P TP TPPPPPI 148
[oloTo JES1 v= 11U () PO PP PTP PP PPPPT 149
(oo o I (=151 7= Ly () T PSR 149
o] (o - [(O PR 150
o] (o - [< () PR 150
o] (o - o3 (PSR 150
OO P PP UPP TR 150
(o o o111 o =) TR OO PO PP PP PTP PP PPPPP 151
(o T =L U1 () IO P PP TP PP PPPP 151
(o T (=S £= L 1 () PP PP P TP PPPP 151
[0 Lo (=T () P PP PP P TP PPPP 152
(o L= F= Y oY =] (O TP PP PPP R UOPPUPPRPRN 152
(o L= F= Y 1T (O T T PP P PP OPTPPPRPTN 153
(o L= F= YT] () TR PP PPP T OPPUPPRPRN 153
(o [t o (T a 1 (=T f U o1 £ () TP PPP PP 154
(o LV I (o 1Y O PSSR URT PR 155
[T aE Lol a1 (=T (AU o1] (I O P PP P PP PPPPP 155
(=] e R SR =T= o (o] 1 4 () TP PP P PP PPPPP 156
[T SR o (o To = Ta I =T=T o1 (] 0 11 () F O P PP P PP PPPPP 156
1] (O IR PPP R TOPPUPPRPP 157
L LA =To (o [T (O P TP P PP OPPPPPRPRN 158
L= 10 () I PSP UPTT SRR 158
(o2 (ol @ o [=] (o o[e = (o oV (R {11 (o () TP P PP OPPPPPRPRN 159
(o= 1@ I (0[] & (O T o OO PO PP P TP PPPPT 159
L0 To T (O I ST TP TR PP PPPPP 160
L1000 Te [T ST TP PP PPPPP 160
oL EL i @ I L1111 P TP PSSP P TP T PP OUPPPPPTI 161
(101t @ I o 1U 1 (o] g P= () I 1 1V (o (PSR PPPPRTPN 162
(101 T I 010 1] () I ST PPPPTTRN 163
LTS T PSP ETTT O 163
L1220 o1 () T PO ERT T 164
o= 101 () PO PO PP TP PP PPPPP 164
(o= A or= 1o (V] 1= (O O P TP TP PP PPPPP 166
(o= A or= o1 (8] (SR =AY o (TP PP TP PP PPPP 167
(o= A or= Vo1 (8] (IR (100 LT TP PP PP PP PPPP 167
Lo o= o (] (I 12) I P PPP PPN 168
Lo S o1V g T =T oL LN | £ (O P PPP PP 168

CCSC Manual

Vi

[o <) aToTo J= To o [o [U1F= o] () P EPT SRR 169
(o< A o Tt o Lo TV 1 (VT (O I RPN 169
Lo < G (11T () PR PP 170
Lo L A 10 LT 7Y RPN PP PPRPR 170
Lo L A 101141 T PP PRSP PPRPR 170
Lo L A 101 0 (D PRSPPI 171
Lo L A LD () P PPP OO PPRPR 172
[0 T<3 (=] 0 1V () TR PP PPRP 172
(o 1<) Y (e [£ () I RPN 176
[oTo] (o T o [0 [=53] () PO TP PT PR PPRP 176
[a1To] oS o TST=To I Vo (oo (o] =T () TSR PRRRRPN 177
[122oR 1011 () TR PPPPRRN 177
(P22 T) c= L= (ST PPPPRRN 178
[12Zog o Lo [() SRR PPPRRRRN 179
(2o (Y= (o [() TP ST PPPPRRRN 179
(24 oAV To (o | () I SRR PURRRRN 180
(P24 o 1= 1= [() ST PRRRRRRN 180
Lo - U () T O T T ST PP PT PP PUPPPPPIIN 181
(LR (o] o () O T T S TP P PP T PP PUPPPPPIRN 181
2o 41 T P SUPR 182
1] o111 PSR 183
1g] o1 UL Aot = U o [T T PR SPR 183
1] o101 A= - L= () T PRSP RP 184
1] o101 () TP ST U PP P T PP PUPPPPPIRN 185
YT U o] A= To1 Y= G T PSP P PP P T PP OUPPPPPIRN 185
iSAINUM(ChAr) ISAIPNA(CHEAI) ... ettt e et n e e e ee s 186
(1o g g [W ST [T L { (o] T) O T T SO PP PPOOPPPPPTR 186
isgraph(x) islower(char) isspace(char) isupper(char) isxdigit(char) isprint(x) iISPUNC(X)ceeevivrireiniiieiiieee e, 186
157z 10 3T] o () T PRSP R 187
100 T () ISR 187
L8 LT o (o T] () TP RRPPR 188
(0] 71 PP UPRTPRRTPRTPI 188
E=T o1 = To [0 [(TS () OO T T ST P UPEPPPTP P OUPPPPPIRN 189
F=T o) T T ST PP PPPU PP OUPPPPPTR 189
(oo [l ol0 01 1= 1] { () F PO TSP PP PUPPPPPIRN 190
(oo [(o To [O T T PSP P P T PP UUPPPPPIIN 190
[[odo JE=3Y/ 141 o To [() IO PTT OO PP PPPPTTN 191
(o= o1 () PP TR PPPPPPPPPTN 191
(oo PP PTR T POPPPPPPTPN 192
[[oTo 0 () P U PTU PO PPPPPPPPTN 192
(o] aTo 14T o1 () E P T O SO PP PUPPPPPIRN 193
00T LTS () T T T O PP P PP UPPPPPPII 193
00T L T () T T T S TP T PP PUPPPPPIR 194
0E L A () I T T SO PP PP T PP PUPPPPPIIN 194
[00F= 11 (o To] (0 TP PP PPPPPPTTN 195
MEMCPY() MEMIMOVE() .utttiitieeei ittt ettt e e ettt et e e e e e e sttt et e e e e e e s st b e et e e e e e e o s bbbt e e e e e e e aaabbb e e e e e e e e e e snbbbeeeeeesaasnbbneeeeeeeaaanntns 195
(01T 14K () T PP ST TP PP PPPPPTN 196
(0010 o | {0 T PP TR TP PP PPPPPPN 196

L0010][TP T PP PSP P PP POPPPP O 197
0T 1o <1 () I T T ST PP P PP PUPPPPPIR 197
OffSELOf() OFFSELOTDIT() ..veeeeeee e e e e 198
(010110101 () IO P PSP TP PPPP 199
(o011 o] U1 A o1 IO PP PP PTPPRPRN 199
Lo TUL i o101 o 1Y = (P PPR RO PPRPRN 200
(o011 o] U] A 1 (o = L{ () PP TPP ORI 201
(o011 o101 A o TTo] o1 PP PPP TP PPRPTN 201
(o101 101U Y [0V () O P TP TP PP PPPPP 202
(o101 101U Y (oo [o] [T (0 IO P TP TP PP PPPP 202
LT o] (O I T ST P TP PPTROUPPPPTII 203
o]0 I o013 Y () P O SO U PO U PP OUPPPPTII 203
1o I (= A (TS UL () TR PSR PPPPPTTRN 204
1o J == Vo [) TP STR PP PPPPTTN 204

Table of Contents

1[0 I 11 (= () ST PURRTTRN 205
[0 T A G o1V L 1FT o T (SRR PRRRRN 206
[0 1Y I o1 () ST RRRRTRN 207
(oL gLaLn (IRl TP STR PP PPPPRRN 207
o1 o111 =To 10 TP ST PPPPRRRN 208
psp_output_full() psp_input_full() PSP_OVEITIOW()uviiiiiee et e e e e e e e e e e anens 209
(o101 (ot @ I o 10 (o] o F= () I 1V (o (ST PPPPRPN 210
101 (oY= oo () ST PRRRTRN 211
L 018 LCoE =10 o [() PSSR 211
[0 10 LT I 010 1] () I SRR PURRTRN 211
011170 0 T o (ST PRRRRRN 212
(0111 L oL o 1 ISR ST PPPPRRN 212
[Y=L Ao LV 1Y/ ISR PPPPRRRIN 213
(O Y= Ao L8 1A 0 T=1 (o =] | TR PPPPRPN 213
[IR A (=T [0 1= o3 ST PPPPPRPN 214
Lo =TI o =] T 1V 1 () TP EPP U 215
Lo =TI~ A oo 10 o () TP EPR OO 215
(o LTS = LU () PO PO PP P TP PPPPP 215
[0 ETo] £ () PO PO PSP P PP PPPP O 216
7= 0T [PR SPR 217
(o o 01 {=T o) V4 (=TT () TR 217
oAV o 1= 011 PRSP 218
=T Yo = Vo (o (O ISR 218
(=TT I o= T | (O IO T T ST EP P PT PP OUPPPPPIRN 219
[=T=To B o= 1] o 2= LA (o] 1 () ST T T S TP PPOUPPPPPIRN 219
read_CONfIGUIALION_IMEMOIY(). ...eeeiiiiee ittt e e ettt ea et e e e st e e sk b et e e st e e sa b et e e ebb et e s annneeeannneeeas 220
[=T=To I =TT o] (0] 1 1 () F O T T O PP P T PP POPPPPPIIN 220
=TT I =) =T oo [=To I 2= 4o () TSR 221
== To I o] ol |-V o T 4 aT=T 0010) V() PR 221
o To I T g g T U 1T o] Y/ (R SUPR 221
=TT I 1o | TRSY o =T To [To (o] () PSR 222
[ToTo B o] doTo [=T (=TT o] £o10 o1 I T T ST PP T PP PUPPPPTI 223
(=T To B (o 00 M 00 L=T 010 oY/ (O T T ST PP P T UOPPPPPTR 224
(=TT JETo [E= To (o] (O O T T S SO TP PP OUPPP PPN 224
=T 11 (o o] (O T T ST PP T PP OUPPP PP 224
1[I To) T T T ST PP PT PP PUPPPPPIIN 225
(21T o] o TU T PP TR UOPPPPPPPPN 225
(1S = T o= 10 L= () IO P PTT T OPPPPPPPPTN 226
[(SS] 7= T Yo | { () PSP PPPPPPPPPTN 226
(01 e= LT =] 1 () IO PP PTT PP PPPPTTN 227
o) -1 (=R 1o] 01U () T OO O TP U PP PP T OUPPPPPIIN 228
(o= b=V (= o [() I O T T ST PP PP T PP OUPPP PP 228
(o= E= T 1 (=T () O T T S TP PU PP PUPPPPPIRN 229
(o (== Vo [() T TSP P PP OUPPPPPIIN 229
(o 11 T () T PP PTR TP PPPPPPPTN 230
(0TI V= 1 { () PP PSP PO PP PPPPPTN 230
(0o T o (5= T] [T () TP PTR PP PPPPPTN 231
(00T =T = o] L= () O P PP TR PP PPPPPTN 231
(o T 14 1o T o Lo [() O T S PP T PP OUPPPPPIIN 231
(o T 14 1o T =7 To [O T T SO EPPPT PP PUPPPPPIIN 232
(o I 14 1o ST =T o o [O T T SO PPPT PP PUPPPPPIIN 232
L1Co T o)V T 1 (UL o TSP P U PP OUPPPPTIR 233
(100 TSI (0 o T P PSP UPPRTTRN 233
(100 TSI T [o= 1 ST PPPRTTN 234
(00 TSRS = L] () TR PSR PPPUPPTTN 234
(00T (=T a0 10 F= L= () R PSP OPPUPPPRTTRN 235
L1 Co TV () P T SO PU PP OUPPPPPII 235
L0 Co T =1 (o [() PSSP T PP PU PP OUPPPPPIR 236
= A= Lo (o ol o= Lo T = [I P PP P PP PPPP 236
A= L =1 (o To T o110 T () I PO PP TP PP PPPP 237
LS {or= T | () TP TPP PP 237
ST oo To [l o] F= Va1 (Tl [P PPP PP 239

Vii

CCSC Manual

(= oo To [l (== To [o= T o [TR PR UOPPRPR 240
(I oo To [l o] g F= T=1=T () TP EPR OO 240
Sl ool aa] o= T (1401 () TP EEP SRR 241
I T Y e [0 1Y/ () IR EPP SRR 241
S NSPWIMI_EVENE() 1rrieiieiiiiitiii et e e e ettt e e e e ettt e e e e e st e e e e e e e e s e ta e et e e e e e e e e sateseeeeeeseasasbaaeeaeesessasbaaseeaeessnnstbraeeaaeenan 242
S NSPWIM_OVEITIAE() 1ieeiiitiiiee e e et ettt e e e e ettt e e e e e st e e e e e e s e b e et e e e e e e s e aabeeeeeeeeseasasbaaeeaaeeessasbaaseeaeessanssnraeeaaeenan 243
S NSPWIM_PRASE() 1ereiieiiiiiiiiie et e e et e e e e e s et e e e e e e e e ——— e e e e e e e e e —t—ateaeeeaantbrateeaeeeaatbrraaaaaaaan 243
(L o (oo I T [o V= [N = RPN 244
SEt_POWET_PWIM_OVEITIAE() .evrieiereeeiiitieeeeie ittt ettt e et e e st e e ekt e e et e e s s et e e as et e e e ane e e e s nne e e e s ne e e e nanneeesnnees 245
L A o o1V C=T oY ¢ o 111 Y/ () RPN 245
LT A o101 [N o (P ERP S URPRRP 246
set_pwml_duty() set_pwm2_duty() set_pwm3_duty() set_pwm4_duty() set_pwm5_duty()ccccceeevriirrieerennnnn 246
set_rtcc() set_timerO() set_timerl() set_timer2() set_timer3() set_timer4() set_timer5() .c.ccccccovvvvvvveeeeenn. 247
= (o Y (3 PR PRSP PPRPR 248
= 0o J=To I Lo (o o= 1To] = o] | (3 PO PP PR OPPPRPR 248
LS o I Vo o ol g - T 0 U= (O SRRSO 249
LT A 0 0 =T A) RPN 249
S O (110 =T 1 =T P PP P TP PPPP 250
A (110 =T ot PO PP PP P TP PPPPP 250
set_rtcc() set_timerO() set timerl() set_timer2() set timer3() set timerd() set_timer5()cccccvvvvrennnnen. 251
LT O (ST PR 251
LY A L= L A o1<T= T [() T PRSP 252
L3101 o PP 253
U0 o JE=To (ol (g ToTo o) B TP PP PTP PP PPPPO 253
U0 oJE=To (ol oo 4 T () OO PP TR PP PPPPP 254
U0 oI Vo (ol (=] (=T =T o of =T () I TP PP PTP PP PPPPP 254
U0 oI L () IO P PP P TP PPPP 255
setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5() SEUP_CCPB()uvrrrrrvvreeriueeeeriieeeriieeeeienee 255
setup_clcl() setup_clc2() setup_CIC3() SEIUP_CICA() . .ueeeiureeeeiieieeiiie ettt ettt e e e e e sreee e e s e e e neeas 257
=0 o T oTo] 1 g = =1 (o] () I PRI 257
L= 0 o T oo 0] 1 (=T] (PP 258
=10 o T oo o | (O TP PP PTP PP PPPPT 259
=10 o T ol (o () TP PP PP P TP PPPPPI 259
U0 o oo G P PP P TP PPPPPI 260
=10 o T - Tod () T O P PP P PP PPPP 261
SELUP_EXIEINAI_IMEIMOIY() euutttteiiteee ittt ettt ettt et e ettt e st e e st ee ek bt e e eab et e e s b et e e ab b et e e eab e e e e s nne e e e s be e e e enbne e e s nnnes 261
ST oI a1l | TS o J=T=To = To (o (O TP PP TOPTPPPRPR 262
SIS oI a1l | TS o [=T=To HE= Vo (ol o F= V1 { () I PP P PP TOPTP PPN 262
SEtUP_NSPWM_BIANKING(). eeeeeeeieee ittt e e oo et et e e e e e aan bbbttt e e e e e anbb b e e e e e e e e s nbbbeeeaeeeaaan 263
SetUP_NSPWM_CROP_CIOCK() -.eeeeiieeiiiit ittt e e e e ettt e e e e e e bbbt e e e e e e e s annbareeeeeeenan 264
S0 TS o)V T o To =T (PP TP P TP PPPPP 264
SELUP_NSPWIM_UNIT() 1ottete ettt ettt e st e e st e e ek bt e e sttt e s b et e ekt et e e e b et e e e nn e e e e s be e e e nanre e e e nane s 265
U0 T TS o)V o PP P PP PP PPPPPI 266
SetUP_NSPWM_UNIT_CNOP_CIOCK() +eeiiirieeiiiiie ettt et et e e e e s e e e s e e e nabne e e s nnees 266
ST LU o (oo [TP TP PP PP OPPUPPRPRN 267
ST o (oYY oL o (= =T o { () TP PP PP OPPTPPRPR 268
ST (E | o g (oo T () TP TP PPP R TOPPPPPRPRN 268
Setup_opPamPL() SETUP_OPAIMPZ2() «ouuerreeieeeaiiiettet e e e e e e atbe et e e e e e s bbbttt eee e e s e aaee e eeeeeeeaaanbbe e et aeesaanbbseeeeeeeeaannbbeeeaaeeaaan 269
Setup_opampPL() SELUP_OPAIMP2 () «oiiurreeeiireeeiiteee et ee e ettt e sttt e e sne e e e et b et e s aabe e e e s b e et e e as b et e e abe e e e anre e e e asbr e e e abre e e s nnes 269
U0 o ST = Lo (O IO PP P TP PPPPP 270
=00 oI oo [T PP P TP PPPPP 270
setup_pmpP(OPLoN,adadreSS_MEASK)ueiiiiiiie ittt e e e et 271
ST o o T)V o111 o o P PPP PP 272
ST o o TNV 111 o ¢ T o1 Y (P TPT TP 273
ST oI o XS] o] (o] o] (Lo g 1= To [0 [=1L o 4 F=] 1 PP PPR PPN 273
setup_pwm1() setup_pwm2() setup_pwWm3() SEIUP_PWIMZA() .oiiuiiriieiieei it et e e e et e e e e e e eeaneeeeaae e s 274
=00 oI (=TT () T O PP P TP TPPPPP 275
L= 0 o T (ol () TP O P PP O TP PPPP 275
U0 o (o= = g0 o1 () IO PP TP PP PPPP 276
=0 o T To = Lo (ol PO PP TP PP PPPPP 276
ST L I 001 v () PP PRSP 277
S oI 1T BEST=1 0] o TR o124 (O I P PPT PP 278

viii

Table of Contents

ST (U o (10 T () I RPN 278
ST (U o (0o LT = T SRRSO 279
LT (U] o (100 LT G O (O TP EPP PP 279
= LU oI (a0 LY G () TP EPR OO PPRPR 280
= oI a0 LY (A (O PP OO PPRPR 280
oI a0 L G T () PP OO PPRPR 281
= oI a0 LT G T (O PP OPPPRPR 281
L (U o (100 LT T () TSR PP 282
L1 (U] o T U= U { () I PR PP 282
1L T = () I RPN 283
L1 (U] T o L { (PR PP 283
=00 o I o1 (TSP P PRSPPI 284
] 111 0 1= (O DO T O O PO PO T O O PSP R O U POV ST T PP PPRPTN 284
L a1 o 01 () TP PPP OO PPRPR 285
L (=TT o IR UPR S OPPPRPR 285
LS =TT o JT L1 Y IR EPP SRR 286
L] 410G (Y= Uo [TP EPP OO 287
S e T A 11011 () T PO P PP PPPPT 288
] 1 = 14 () T O TP P PP P PP PPPPPI 288
L]] T= LU () I PP 288
L] 1)] (o] o () TP 289
L] 1)1 (= I RSP 289
L] 1) e] Lo F= L (=T () TSP 290
Spi_data_iS_iN() SPI_0aAtA_IS_TN2(1) ..eivreeeiirieeiiiiie ettt ettt e et 290
L] T L OO PP P TP PPPP 291
S T LA gL G (o = L) O PO PP PP PP PPPPP 291
S T Vo [T o (oT= Lo V2 () IR PO PP PTP PP PPPPP 292
LSy oI (== Vo [IR 292
LSy oI (== Vo P2 T PP RR 292
LSy oI (== Vo T T PSR 292
LSy oI (== Vo L S T R RPRR 292
S oI o 1=T=To T OO PO PP TP PP PPPPP 293
SPI_WITEE () SPI_WITEEZ2 (1) +eeeeuteiieiiteee sttt ettt e bt e sttt e e st e e ek et e e sttt e s b et e e ek bt e e eab et e e s nn e e e e s be e e e anbee e e s nnnes 293
S T =T () T PO P PP P TP PPPP 294
ST [= = S | I PP STURP PR 295
o110 11 1 (PO PPPPTP PP PPPP 295
Lo | £ () PP T PP PPP ORI 296
L] =T [o [() I TP PPP R UOPPUPPRPR 296

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr() stremp() streoll()
strespn() strerror() stricmp() strlen(') strlwr(') strncat() strncmp() strncpy() strpbrk() strrchr()

SESPN() SIISTI() SEIXITITI() 1eiteiieeit ettt ekt e e ettt e s b et e e bt e e eab e e e s b e e e e s bn e e e eabne e e s nnnes 297
S o 0) Y @ I L oTe])Y/ () T PO PP P TP PPPPPI 298
LS 17 (oo [() TR O PP P PP PPPP 298
LS 11 (] () I OO PP TP PP PPPP 299
L] 1 (o] TP P PP UOPPPPPRPR 300
L] 1 0] U] [() TP PPP O PPRPT 300
LSV o] () PP PPP T TOPTPPPRPR 301
(0] (01N =T (IR e 10T o] o 1= () TP OO UPPTRTOPP 301
[roT0Tet gl o= To I o =] (o () T O OO P TR PPPP 302
[roT0 Tt o] o= To I 11 {3 S OO TP PP PPPP 303
[roT0[et gl o= To JES] r= Y =T (O T O TSP TP PP PPPP 303
Lo o101 =T o\ 11 o o T T OO O PSP TP PPPP 304
[1011 (=T g o)V (=] TP ERT TR 304
[e 1011 =T o 011 T TP ETT TR 305
[= L | () PP ERT TR 306
(2 =1 o [TP PR 306
VAL_STAIT. ..ottt et a e 307
gL C I o T= gL TS OSSO TP PPPP 307
WHte_CONFIGUIALION_MEIMOIY() «eeiitiieiiiiit ittt ettt ettt e et e e s bt e ekt e e ea et e e s ab e e e e bb et e e ab e e e e snbn e e e aabne e e s nnnes 308
gL C=R=T=To] o] 1o TR SO PP TP PPPP 308
LRI et U (=10 T oY/ () TP ERT RO 309
LI =T To (=T I = T o1 TR TP ERTT RO 310

CCSC Manual

gL o] (e e =T A T=T=1 o) o] o 1T () ISR
write_program_memory()
zde_status() ...oooeveeeeeeneenninnns

Standard C Include Files.......
ermo.N ..o
float.h...........

locale.h........
setimp.h.......

Error Messages
(0fe] 1] o] | LT g ol Y (=TT T= T = P EPR OO

Compiler Warning Messages......................
Compiler Warning Messages

Common Questions & Answers
How are type conversions handled?............ccccccoovinnen.
How can a constant data table be placed in ROM?...........cccceeiiiieens
How can | use two or more RS-232 ports on one PIC®?
How can the RB interrupt be used to detect a button press?
How do | directly read/write to internal registers?ccccccoeveveeivieeens
HOW dO | dO @ PrINTf 10 @ SHING? ..ottt ettt e ettt e e e sttt e e ettt e e s ae e e e e esbeeeeansteeesneeeeeanneeeeane 330
How do | get getc() to timeout after a SPECIfied tIMEP ... 330
How do | put a NOP at location O for the ICD?
How do | wait only a specified time for a8 DULLON PreSS?.........evi i 331
How do | write variables to EEPROM that are NOt @ DYE?cviiiiiiiiiiiiie e 331
How does one map a variable to an I/O port?ccoccceevivieevniene e,
How does the compiler determine TRUE and FALSE on expressions? ..
How does the PIC® connectto a PC?........cccocvvvieennen.
How does the PIC® connect to an 12C device?.............
How much time do math operations take?
Instead of 800, the cOMPIlEr CAlIS 0. WYoiiiiiiiiie ettt e et e e e s e e e 335
Instead of A0, the compiler is using register 20. WRY?........oiii i 335
What can be done about an OUT OF RAM €IT0r?.........ccocvvveeiivneennn.
What is an easy way for two or more PICS® t0 COMMUNICAIE?eviiiiiieeiiiiee ettt 336
What is an easy way for two or more PICS® t0 COMMUNICALE?ccuuuiiiiieeiiiiiiiiie e e ettt e e e e e 337
What is the format of floating point nUMbers?cccccoviiiieiiennnnns
Why does the .LST file [00K QUL OF OFO@I?......ooi it e e e e e e e e e e e e e aneneneeeas 339
Why does the compiler show less RAM than there really iS? ... 339
Why does the compiler use the obsolete TRIS?........cccccoviiieeiiiieennne
Why is the RS-232 not working right?cccocevvennne.

Example Programs.........cccccovcvveeriieeeninnenn.
EXAMPLE PROGRAMS........

Software License Agreement
SOFTWARE LICENSE AGREEMENT ..ottt ittt ettt ettt ss e st s bt e san e e s e e naneensneenanee e

OVERVIEW

C Compiler

PCB, PCM and PCH Overview

Technical Support

Directories
File Formats

Invoking the Command Line Compiler

PCB, PCM and PCH Overview

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for 14-bit opcodes, and PCH is
for 16-bit opcode PIC® microcontrollers. Due to many similarities, all three compilers are covered in this reference
manual. Features and limitations that apply to only specific microcontrollers are indicated within. These compilers are
specifically designed to meet the unique needs of the PIC® microcontroller. This allows developers to quickly design
applications software in a more readable, high-level language.

IDE Compilers (PCW, PCWH and PCWHD) have the exclusive C Aware integrated development environment for
compiling, analyzing and debugging in real-time. Other features and integrated tools can be viewed here.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some limitations. As an example of the
limitations, function recursion is not allowed. This is due to the fact that the PIC® has no stack to push variables onto,
and also because of the way the compilers optimize the code. The compilers can efficiently implement normal C

constructs, input/output operations, and bit twiddling operations. All normal C data types are supported along with
pointers to constant arrays, fixed point decimal, and arrays of bits.

Installation

Insert the CD ROM, select each of the programs you wish to install and follow the on-screen instructions.
If the CD does not auto start run the setup program in the root directory.
For help answering the version questions see the "Directories" Help topic.

Key Questions that may come up:

http://www.ccsinfo.com/content.php?page=ideoverview

CCSC Manual

Keep Settings- Unless you are having trouble select this

Link Compiler Extensions- If you select this the file extensions like .c will start

the compiler IDE when you double click on files with that extension. .hex files start
the CCSLOAD program. This selection can be change in the IDE.

Install MP LAB Plug In- If you plan to use MPLAB and you don't select this you
will need to download and manually install the Plug-In.

Install ICD2, ICD3...drivers-select if you use these microchip ICD units.
Delete Demo Files- Always a good idea

Install WIN8 APP- Allows you to start the IDE from the WIN8 Start Menu.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year maintenance plans may be
purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and minimal, if any, transition
difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to send an email to:
support@ccsinfo.com or use the Technical Support Wizard in PCW. Include the version of the compiler, an outline of
the problem and attach any files with the email request. CCS strives to answer technical support timely and
thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email responses are not
adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
. Directories listed on the command line
o Directories specified in the .CCSPJT file
o The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the example programs are in
\PICC\EXAMPLES. The include files are in PICC\drivers. The device header files are in
PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in \PICC\DLL.

It is sometimes helpful to maintain multiple compiler versions. For example, a project was tested with a specific
version, but newer projects use a newer version. When installing the compiler you are prompted for what version to
keep on the PC. IDE users can change versions using Help>about and clicking "other versions." Command Line
users use start>all programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all programs>PIC-C.

http://www.ccsinfo.com/downloads.php

Overview

1.) A project directory as a default location for your projects. By default put in "My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in %APPDATA%\PICC

File Formats

.c This is the source file containing user C source code.

h These are standard or custom header files used to define pins, register, register bits, functions and preprocessor
' directives.

.pjt This is the older pre- Version 5 project file which contains information related to the project.

.ccspjt This is the project file which contains information related to the project.
This is the listing file which shows each C source line and the associated assembly code generated for that line.

The elements in the .LST file may be selected in PCW under Options>Project>Output Files

Ist CCS Basic Standard assembly instructions
with Opcodes Includes the HEX opcode for each instruction
Old Standard
Symbolic Shows variable names instead of addresses

.sym This is the symbol map which shows each register location and what program variables are stored in each location.
The statistics file shows the RAM, ROM, and STACK usage. It provides information on the source codes structural

sta and textual complexities using Halstead and McCabe metrics.

tre The tree file shows the call tree. It details each function and what functions it calls along with the ROM and RAM
usage for each function.
The compiler generates standard HEX files that are compatible with all programmers.

.hex

The compiler can output 8-bet hex, 16-bit hex, and binary files.
This is a binary containing machine code and debugging information.

.cof The debug files may be output as Microchip .COD file for MPLAB 1-5, Advanced Transdata .MAP file, expanded
.COD file for CCS debugging or MPLAB 6 and up .xx .COF file. All file formats and extensions may be selected via
Options File Associations option in Windows IDE.

.cod This is a binary file containing debug information.

The output of the Documentation Generator is exported in a Rich Text File format which can be viewed using the
RTF editor or Wordpad.

rvf The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text File.

.dgr The .DGR file is the output of the flowchart maker.

.esym These files are generated for the IDE users. The file contains Identifiers and Comment information. This data can be
.Xsym used for automatic documentation generation and for the IDE helpers.

rtf

.0 Relocatable object file

osym This file is generated when the compiler is set to export a relocatable object file. This file is a .sym file for just the
one unit.

.err Compiler error file

.ccsload used to link Windows 8 apps to CCSLoad
.ccssiow used to link Windows 8 apps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:
CCSsC [options] [cfilename]

CCSC Manual

Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18XXX) +DM .MAP format debug file
+YX Optimization level x (0-9) +DC Expanded .COD format debug file
+DF Enables the output of an COFF debug file.
+FS Select SXC (SX) +EO Old error file format
+ES Standard error file -T Do not generate a tree file
+T Create call tree (.TRE) -A Do not create stats file ((STA)
+A Create stats file (.STA) -EW Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error
+EA Show all error messages and all warnings +EX Error/warning message format uses GCC's

"brief format" (compatible with GCC editor
environments)

The xxx in the following are optional. If included it sets the file extension:

+LNXXX Normal list file +0O8xxx 8-bit Intel HEX output file
+LSXxXx MPASM format list file +OWxxx 16-bit Intel HEX output file
+LOXXX Old MPASM list file +OBxxx Binary output file

+LY XXX Symbolic list file -0 Do not create object file
-L Do not create list file

+P Keep compile status window up after compile

+Pxx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile

+DF COFF Debug file

[+=".." Same as |="..." Except the path list is appended to the current list

[=".." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"
If no I= appears on the command line the .PJT file will be used to supply the include file paths.

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

-J Do not create PJT file

+ICD Compile for use with an ICD

#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:

#debug="true"

+Gxxx="yyy" Same as #xxx="yyy"
+? Brings up a help file
-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)

+SETUP Install CCSC into MPLAB (no compile is done)

sourceline= Allows a source line to be injected at the start of the source file.
Example: CCSC +FM myfile.c sourceline="#include <16F887.h>"

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:

Overview

+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the specified
file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters are read from that file
before they are processed on the command line.

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

CCSC Manual

PCW Overview

The PCW IDE provides the user an easy to use editor and environment for developing microcontroller
applications. The IDE comprises of many components, which are summarized below. For more

information and details, use the Help>PCW in the compiler..

Many of these windows can be re-arranged and docked into different positions.

Options Compile View Tools Debug Document Usertoolbar
 Clit) Unindent ~ N ® Record
N N r r#From File N selection A
Copy U J Load
Undo Redo Paste To Fil Indent =15}
| Select All P ToFile Selection Format Source Playback hed Save
History Edit Indent Macro
- |[Zcex_usb_mouse.c | =pex usb_commonh | =|;24F1256GB206.n | = 18F4550.n | % | Debug a
= N ; " ; " " " " " I
3 L 2 ; //j/',///////////////////////////U//////////////////////!///////////: C‘ ’ r W @I
o T = [R&M | ROM | DataEE | Breaks | Stack
'-g* 4 / /:, / - ’ Watches l Peripherals l Eval l Monitor
-;— 5 //// An example of creating a USB mouse. LUses your operating BreakLog | RTOS Tasks
& 6 //// system's HID drivers, which on most systems should already b ' Debug Configure
7 //// installed.
g |7 E@@lﬁcv-vse :
';'? | //// If everything is working, the mouse cursor will move in a Compile Reload o~
= 10 //// circle when connected to a PC. Mouse over eval Tlue E |
,}’f 1 111 Timeout Mouse over True
3 12 //// This file is part of CCS's PIC USB driver code. See USB.H s
i3 //// Tor more documentation and a list of examples. Mouse over radix Defauit
14 1117 Userstream enabled False
15 LILEIRRLLLLII LI EL R EL LT 2L P 2L L LR R L E LI L e Echo on Monitor True
117/
=5 111 : " o . - Maonitor Font Size 9
17 //// NOTE ABOUT ENDPOINT BUFFER SIZE:
18 /111 ICD FAw CCS 2.96 -
19 //// Although this application sends 4 bytes to the PC, this demc | When TRUE the target will be reloaded after every
20 //// defines USB_EP1_TX_SIZE to 8 to allocate 8 bytes for this
na 170 IR Py P, FP= ool #UC SRS WSy G Sl Sy | Apply I I Cancel |
< n | '
111 Insert Pjt: ex_usb_mouse | Ci\...\examples\ex_usb_mouse.c PC=0001 'W=00 gl
- |nfo 3IJIJ ‘ex_ush_mouse.c” Line 133[1 1) More info: - Timer 1 tick time is 682,39 us
>>> Warning 216" ex_usb_mouse.c" Line 218(1.2): Interrupts disabled during call to prevent re-entrancy: (usb_toker|
>»> Warning 216 "ex_usb_mouse.c" Line 218(1,2): Interrupts disabled during call to prevent re-entrancy: [usb_tbe] RAM:
>»> Warhing 216 "ex_ usb mouse.c' Line 218(1,2): Interrupts disabled during call to prevent re-entrancy: [usb_flush |
Memory usage: ROM=15% RaM=10%-12% u 12% ’
0Enors, 3Warnings. o
Build Successful. 5
> ROM:
1 —
A [T}
3 i b2
o =
= 43 Compiler | #%Find |

Overview

Menu

All of the IDE's functions are on the main menu. The main menu is divided into
separate sections, click on a section title ('Edit', 'Search’, etc) to change the
section. Double clicking on the section, or clicking on the chevron on the right,
will cause the menu to minimize and take less space.

m Edit | Search Options Compile View Tools Debug Document User toolbar

3 Unindant —
F Cut <) From File = ® Record
) 7 W . — &**
Cop = e o
Unda Rf Paste e =
|| Select All R3S DE Selection Format Source Playbach bed Save
History Edit Indent Macro

(click on image to go to link)

Editor Tabs

All of the open files are listed here. The active file, which is the file currently
being edited, is given a different highlight than the other files. Clicking on the X
on the right closes the active file. Right clicking on a tab gives a menu of useful
actions for that file.

[' ;.-:?q ex_usb__mouse.c“ (hex_usb_common.h- l = h 24FJ256GB206.h | X

Slide Out Windows

'Files' shows all the active files in the current project. 'Projects' shows all the
recent projects worked on. ‘ldentifiers' shows all the variables, definitions,
% prototypes and identifiers in your current project.
wn

-

$323[0.4d

i
——

sial1uapr

CCSC Manual

Editor

The editor is the main work area of the IDE and the place where the user enters
and edits source code. Right clicking in this area gives a menu of useful actions
for the code being edited.

El #if defined(USB_HW CCS PIC18F4550)

#include <18F4550.h>

#fuses HSPLL,NOWDT,NOPROTECT ,NOLVP,NODEBUG,USBDIV,PLLS,CPUDIV1,VREGEN
#use delay(clock=48000000)

//leds ordered from bottom to top
#DEFINE LED1 PIN_AS //green

Debug ' (% _ _
C’ P ¢ tyy@| Debugging Windows

RaM | ROM | DataEE | Breaks | Stack Debugger control is done in
Watches | Peripherals | Eval | Monitor | the debugging windows.
Break Log | RTOS Tasks These windows allow you set
SFR] Debug Configure breakpoin_ts, single step,
watch variables and more.
@@@[ICD-USB "]
Compile Reload True x| A
Mouse over eval True E'
Timeout Mouse over True
Mouse over radiz Default
Userstream enabled False
Echo on Monitor True
Monitor Font Size 9
ICD FAw CCS 296 -
When TRUE the target will be reloaded after every
I Apply | | Cancel l
PC=0001 | W=00 :]

Overview

Status Bar

The status bar gives the user helpful information like the cursor position, project
open and file being edited.

1210 Isset Modfed PR:DG SNCCSC Projeds| 1 EFSK22800kiD3\EG L i

Output Messages

Output messages are displayed here. This includes messages from the compiler
during a build, messages from the programmer tool during programming or the
results from find and searching.

228 '©3 c"Line 11115 797 Bwarang [Te & ma)

1 Eaorz, T Wanngs
Dt Faded

5
g & Cooder | awFnd |

PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition
Statements
Expressions

Every C program must contain a main function which is the starting point of the program execution. The program can
be split into multiple functions according to the their purpose and the functions could be called from main or the sub-
functions. In a large project functions can also be placed in different C files or header files that can be included in the
main C file to group the related functions by their category. CCS C also requires to include the appropriate device file
using #include directive to include the device specific functionality. There are also some preprocessor directives like
#fuses to specify the fuses for the chip and #use delay to specify the clock speed. The functions contain the data
declarations,definitions,statements and expressions. The compiler also provides a large number of standard C
libraries as well as other device drivers that can be included and used in the programs. CCS also provides a large
number of built-in functions to access the various peripherals included in the PIC microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters between /* and */ are
ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The compiler recognizes these
special types of comments that can be later exported for use in the documentation generator. The documentation
generator utility uses a user selectable template to export these comments and create a formatted output document
in Rich Text File Format. This utility is only available in the IDE version of the compiler. The source code markups are
as follows.

Global Comments

These are named comments that appear at the top of your source code. The comment names are case sensitive
and they must match the case used in the documentation template.

For example:

/I*PURPOSE This program implements a Bootloader.

/I*AUTHOR John Doe

A'/l' followed by an * will tell the compiler that the keyword which follows it will be the named comment. The actual
comment that follows it will be exported as a paragraph to the documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not concatenate the comments
that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

05/27.06 Fixed Flashing problem
*/

11

CCSC Manual

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration. For example:
int seconds; // Number of seconds since last entry

long day, /I Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For example:
/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

Function Named Comments

The named comments can be used for functions in a similar manner to the Global Comments. These comments
appear before the function, and the names are exported as-is to the documentation generator.

For example:

/I"PURPOSE This function displays data in BCD format

void display_BCD(byte n)

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not available on
all keyboards as follows:
Sequence Same as
7=
27(
??
??)
??
?7<
?7?!
77>
?7?-

| o~ — A D> e — — f

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the main file or
the sub-files to use the automatic linker included in the compiler. All the header files, standard
libraries and driver files can be included using this method to automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you can say in:
#include <device header file>

#include<x.c>
#include<y.c>

main.c

12

Program Syntax

#include <z.c>

X.C #include <x.h>

y.c #include <y.h>

Z.C .
#include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.
Note that the #module directive can be used in any include file to limit the visibility of the symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH, PCHWD and
PCDIDE. When using multiple compilation units, care must be given that pre-processor commands
that control the compilation are compatible across all units. It is recommended that directives such as
#FUSES, #USE and the device header file all put in an include file included by all units. When a unit is
compiled it will output a relocatable object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these methods and
example projects are included in the MCU.zip in the examples directory of the compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over rs232:

L1170 777077777777 7777 777777777777 777777777777
/117777177

/// This program displays the min and max of
30, /17

/// comments that explains what the program
does, ///

/// and A/D samples over the RS-232
interface. /17

L1717 7777777077 777777777777 777777777777777777777
/11777777

#include <16F887.h> //
preprocessor directive that

//
selects the chip PIC16F887
#fuses NOPROTECT //
Code protection turned off
#use delay(crystal=20mhz) //
preprocessor directive that

13

CCSC Manual

//
specifies the clock type and speed

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7)
preprocessor directive that

//
includes the rs232 libraries
void main() { //
main function
int i, value, min, max; //
local variable declaration
printf ("Sampling:"); //
printf function included in the
//
RS232 library
setup port a(ALL ANALOG); //
A/D setup functions- built-in
setup_adc(ADC_ CLOCK_ INTERNAL) ; //
Internal clock always works
set _adc channel(0); //
Set channel to ANO
do { //
forever statement
min=255;
max=0;
for (i=0; i<=30; ++i) { //
Take 30 samples
delay ms (100); //
Wait for a tenth of a second
value = read adc(); //
A/D read functions- built-in
if (value<min) //

Find smallest sample
min=value;
if (value>max) //
Find largest sample
max=value;
}
printf ("\n\rMin: %2X Max:
%2X\n\r",min, max) ;
} while (TRUE);
}

14

/7

do

STATEMENTS

Statements

STATEMENT

if (expr) stmt; [else stmt;]

while (expr) stmt;
do stmt while (expr);
for (exprl;expr2;expr3) stmt;

switch (expr) {
case cexpr: stmt; //one or more case
[default:stmt]

2}

return [expr];
goto label;
label: stmt;
break;
continue;
expr;

{Istmt}

Zero or more
declaration;

Note: Itemsin [] are optional

if

if-else
The if-else statement is used to make decisions.
The syntax is:

if (expr)
stmt-1;
[else

Example

if (x==25)
x=0;

else
x=x+1;

while (get rtcc() !=0)
putc('n’);

do {
putc (c=getc());

} while (c!=0);

for (i=1;1i<=10;++1)
printf (“su\r\n”,i);

switch (cmd) {
case 0: printf(“cmd 0”);break;
case 1l: printf(“cmd 1”);break;
default: printf (“bad

cmd”) ;break;

}

return (5);

goto loop;

loop: i++;

break;

continue;

i=1;

{a=1;

b=1;}

int 1i;

15

CCSC Manual

stmt-2;]
The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:

if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]

The expressions are evaluated in order; if any expression is true, the statement associated with it is executed and it
terminates the chain. If none of the conditions are satisfied the last else part is executed.

Example:

if (x==25)
x=1;

else
x=x+1;

Also See: Statements

while

While is used as a loop/iteration statement.
The syntax is:

while (expr)
statement

The expression is evaluated and the statement is executed until it becomes false in which case the execution
continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

do-while

do-while: Differs from while and for loop in that the termination condition is
checked at the bottom of the loop rather than at the top and so the body of the
loop is always executed at least once. The syntax is:

do
statement

16

Statements

while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated
and when it becomes false the loop terminates.

Also See: Statements , While

for

For is also used as a loop/iteration statement.
The syntax is:

for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the initialization, expr2 is
the termination check and expr3 is re-initialization. Any of them can be
omitted.

Example:
for (i=1;i<=10;++1)
printf ("Su\r\n",1i);

Also See: Statements

switch

Switch is also a special multi-way decision maker.
The syntax is

switch (expr) {
case constl: stmt sequence;
break;

[d efault:stmt]
}

This tests whether the expression matches one of the constant values and branches accordingly.
If none of the cases are satisfied the default case is executed. The break causes an immediate exit, otherwise control
falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd") ;
break; }

Also See: Statements

17

CCSC Manual

return

return
A return statement allows an immediate exit from a switch or a loop or function and also returns a value.

The syntax is:
return(expr);

Example:
return (5);

Also See: Statements

goto

goto
The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon. The goto's are used
sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

label

The label a goto jumps to.
The syntax is:

label: stmnt;

Example:
loop: i++;

Also See: Statements

break

break.

18

Statements

The break statement is used to exit out of a control loop. It provides an early exit from while, for ,do and
switch.
The syntax is
break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to begin.
The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control passes the
re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

Statement: ;

Example:

14

Also See: Statements

19

CCSC Manual

stmt

Zero or more semi-colon separated.
The syntax is:

{[stmt]}

Example:

{a=1;
b=1;}

Also See: Statements

20

EXPRESSIONS

Constants

123 Decimal

123L Forces type to & long (UL also allowed)

123LL Forces type to & int32;

0123 Octal

0x123 Hex

0b010010 Binary

123.456 Floating Point

123F Floating Point (FL also allowed)

123.4E-5 Floating Point in scientific notation

X' Character

010 Octal Character

"\xA5’ Hex Character

‘\c' Special Character. Where c is one of:
\n Line Feed - Same as \x0a
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
\f Form Feed - Same as x0c
\a Bell - Same as \x07
\v Vertical Space - Same as \x0b
\? Question Mark - Same as \x3f
\' Single Quote - Same as \x22
\" " Double Quote - Same as \x22
\\ A Single Backslash - Same as \x5¢

"abcdef" String (null is added to the end)

21

CCSC Manual

Identifiers
ABCDE Up to 32 characters beginning with a non-numeric. Valid characters are
and _ (underscore). By default not case sensitive Use #CASE to turn on
ID[X] Single Subscript
ID[X][X] Multiple Subscripts
ID.ID Structure or union reference
ID->ID Structure or union reference
Operators
+ Addition Operator
+= Addition assignment operator, x+=y, is the same as
X=Xty
[] Array subscrip operator
&= Bitwise and assignment operator, X&=y, is the same as
X=X&Y
& Address operator
& Bitwise and operator
Nz Bitwise exclusive or assignment operator, x"=y, is the
same as x=x"‘y
A Bitwise exclusive or operator
I= Bitwise inclusive or assignment operator, xl=y, is the
same as x=xly
I Bitwise inclusive or operator
?: Conditional Expression operator
-- Decrement
/= Division assignment operator, x/=y, is the same as
X=x/y
/ Division operator
== Equality
> Greater than operator
>= Greater than or equal to operator
++ Increment
* Indirection operator
1= Inequality
<<= Left shift assignment operator, x<<=y, is the same as
X=X<<y
< Less than operator
<< Left Shift operator
<= Less than or equal to operator
&& Logical AND operator

22

Expressions

! Logical negation operator
[l Logical OR operator
Member operator for structures and unions

%= Modules assignment operator x%-=y, is the same as
X=x%y

% Modules operator

= Multiplication assignment operator, x=y, is the same as
X=xX*y

* Multiplication operator

~ One's complement operator

>>= Right shift assignment, x>>=y, is the same as x=x>>y

>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator, x-=y, is the same as
X=X-y

- Subtraction operator

sizeof Determines size in bytes of operand

See also: Operator Precedence

Operator Precedence

PIN DESCENDING PRECEDENCE Associativity

(expr) exor++ expr->expr expr.expr Left to Right
++expr expr++ - =expr expr - - Left to Right
lexpr ~expr +expr -expr Right to Left
(type)expr *expr &value sizeof(type) Rightto

Left
expr*expr expr[expr expryexpr Left to Right
expr+expr expr=-expr Left to Right
expr<<exp expr>>expr Left to Right
r
expr<expr expr<=expr expr>expr expr>=expr Left to Right
expr==exp exprl=expr Left to Right
r
expr&expr Left to Right
expriexpr Left to Right
expr I expr Left to nght
expr&& Left to Right
expr
expr] Left to nght
expr
expr ? Right to

23

CCSC Manual

expr: expr Left

lvalue = Ivalue+=expr Ivalue-=expr Right to
expr Left
lvalue*=ex Ivalue/=expr Ivalue%=expr Right to

pr Left
lvalue>>= lvalue<<=expr Ivalue&=expr Right to
expr Left
lvalueA=e Ivalue|=expr Right to

Xpr Left

expr, expr Left to Right

(Operators on the same line are equal in precedence)

24

DATA DEFINITIONS

Data Definitions

This section describes what the basic data types and specifiers are and how variables can be declared
using those types. In C all the variables should be declared before they are used. They can be defined
inside a function (local) or outside all functions (global). This will affect the visibility and life of the
variables.

A declaration consists of a type qualifier and a type specifier, and is followed by a list of one or more
variables of that type.
For example:
int a,b,c,d;
mybit e, f£;
mybyte g[3][2];
char *h;
colors j;
struct data record data[l0];
static int i;
extern long 7j;

Variables can also be declared along with the definitions of the special types.
For example:
enum colors{red, green=2,blue}i,]j,k; // colors is the enum type and
i,3,k
//are variables of that type

SEE ALSO:

Type Specifiers/ Basic Types
Type Qualifiers

Enumerated Types
Structures & Unions

typedef

Named Reqisters

Type Specifiers

Basic Types
Type-Specifier Range

Size Unsigned Signed Digits
intl 1 bit number Otol N/A 1/2
int8 8 bit number 0 to 255 -128 to 127 2-3
intl6 16 bit number 0 to 65535 -32768 to 32767 4-5
int32 32 bit number 0 to 4294967295 -2147483648 to 2147483647 9-10

25

CCSC Manual

float32 -1.5x 10" to 3.4x10% 7-8
C Standard Type Default Type
short intl

char unsigned int8

int int8

long intl6

long long int32

float float32

double N/A

Note: All types, except float char , by default are un-signed; however, may be preceded by unsigned or
signed (Except int64 may only be signed) . Short and long may have the keyword INT following them
with no effect. Also see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and I/O. Arrays of
bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are not permitted. The device
header files contain defines for BYTE as an int8 and BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float formats are

described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions, typedef, Named

Registers

Type Qualifiers

Type-Qualifier

static

auto

double

extern

register

_ fixed(n)

unsigned
signed

volatile

const

Variable is globally active and initialized to 0. Only accessible from this
compilation unit.

Variable exists only while the procedure is active. This is the default and AUTO
need not be used.

Is a reserved word but is not a supported data type.

External variable used with multiple compilation units. No storage is allocated. Is
used to make otherwise out of scope data accessible. there must be a non-extern
definition at the global level in some compilation unit.

Is allowed as a qualifier however, has no effect.

Creates a fixed point decimal number where n is how many decimal places to
implement.

Data is always positive. This is the default data type if not specified.
Data can be negative or positive.

Tells the compiler optimizer that this variable can be changed at any point during
execution.

Data is read-only. Depending on compiler configuration, this qualifier may just
make the data read-only -AND/OR- it may place the data into program memory to
save space. (see #DEVICE const=)

26

Data Definitions

rom Forces data into program memory. Pointers may be used to this data but they
can not be mixed with RAM pointers.
void Built-in basic type. Type void is used to indicate no specific type in places where

a type is required.

readonly Writes to this variable should be dis-allowed
_ bif Used for compiler built in function prototypes on the same line
__attribute__ Sets various attributes

SEE ALSO: Declarations, Type Specifiers, Enumerated Types, Structures & Unions, typedef, Named Regqisters

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum (id] {[id[=cexpr]] }

One or more comma separated

The id after enum is created as a type large enough to the largest constant in
the list. The ids in the list are each created as a constant. By default the first id
is set to zero and they increment by one. If a = cexpr follows an id that id will
have the value of the constant expression an d the following list will increment
by one.

For example:
enum colors{red, green=2, blue}; // red will be 0, green will be 2 and

// blue will be 3

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, typedef, Named Registers

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of
different types, grouped together as a single unit.

struct[*] [id] type-qualifier [*]id [:bits]; }Hid]
{

1T 1)

One or more, Zero
semi-colon or more
separated

For example:

struct data_record {

int al[2];

27

CCSC Manual

int b : 2; /*2 bits
*/

int c : 3; /*3
bits*/

int d;
} data var;

//data record is a structure type
//data_var is a variable

Union type: holds objects of different types and sizes, with the compiler keeping
track of size and alignment requirements. They provide a way to manipulate
different kinds of data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; }Hid]
One or more, Zero
semi-colon or more
separated

For example:

union u_tab {

int ival;

long 1lval;
float fval;
}i

//u_tag is a union type that can hold a float

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Enumerated Types, typedef, Named

Reqisters

typedef

If typedef is used with any of the basic or special types it creates a new type
name that can be used in declarations. The identifier does not allocate space but
rather may be used as a type specifier in other data definitions.

typedef

For example:

[type-qualifier] [type-specifier] [declarator];

typedef int mybyte;

// mybyte can be used in
declaration to

typedef short mybit;

typedef enum {red,
green=2,blue}colors;

// specify the int type
// mybyte can be used in
declaration to

// specify the int type

//colors can be used to declare

//variable of this enum type

28

Data Definitions

SEE ALSO: Declarations, Type Specifiers, Type Qualifiers, Structures & Unions, Enumerated Types,
Named Reqisters

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to
define a memory region that can be RAM, program eeprom, data eeprom or external
memory. Addressmod replaces the older typemod (with a different syntax).

The usage is :

addressmod

(name, read function,write function,start address,end address,
share) ;

Where the read_function and write_function should be blank for RAM, or for other
memory should be the following prototype:

// read procedure for reading n bytes from the memory starting at
location addr

void read function(int32 addr,int8 *ram, int nbytes) {

}

//write procedure for writing n bytes to the memory starting at
location addr
void write function(int32 addr,int8 *ram, int nbytes) {

}

For RAM the share argument may be true if unused RAM in this area can be used by the
compiler for standard variables.

Example:
void DataEE Read(int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;

}

void DataEE Write (int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write_eeprom(addr,*ram);

}

addressmod (DataEE,DataEE read,DatakEE write, 5, 0xff);
// would define a region called DataEE between
// 0x5 and Oxff in the chip data EEprom.

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

29

CCSC Manual

Note: If the area is defined in RAM then read and write functions are not required, the
variables assigned in the memory region defined by the addressmod can be treated as a
regular variable in all valid expressions. Any structure or data type can be used with an
addressmod. Pointers can also be made to an addressmod data type. The #type
directive can be used to make this memory region as default for variable allocations.

The syntax is :

#type default=addressmodname // all the variable declarations
that

// follow will use this memory
region
#type default= // goes back to the default mode
For example:
Type default=emi //emi is the addressmod name
defined

char buffer([8192];
#include <memoryhog.h>
#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different ways are discussed
below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is used before the identifier,
the identifier is treated as a constant. Constants should be initialized and may not be changed at run-time. This is an
easy way to create lookup tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The address used for ROM data
is not a physical address but rather a true byte address. The & operator can be used on ROM variables however the
address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:
Placing data into ROM
const int table[l6]={0,1,2...15}
Placing a string into ROM
const char cstring[6]={"hello"}
Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG 0x1C00, 0x1COF
CONST CHAR ID[10]= {"123456789"};

Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant variable can be accessed
in the code. This is a great way of storing constant data in large programs. Variable length constant strings can be
stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code at the start of the
structure as does constant.

For example:
char rom commands|[] = {“put|get|status|shutdown”};

30

Data Definitions

The compiler allows a non-standard C feature to implement a constant array of variable length strings.

The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {data, data, .. , data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
o write program eeprom(address,data);
- Writes data to program memory
o write program memory (address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.

Please refer to the help of these functions to get more details on their usage and limitations regarding erase
procedures. These functions can be used only on chips that allow writes to program memory. The compiler uses the
flash memory erase and write routines to implement the functionality.

The data placed in program memory using the methods listed above can be read from width the following functions:

® read program memory ((address, dataptr, count)
- Reads count bytes from program memory at address to RAM at dataptr.

These functions can be used only on chips that allow reads from program memory. The compiler uses the flash
memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a processor register.
This syntax is being proposed as a C extension for embedded use. The same functionality is provided
with the non-standard #byte, #word, #bit and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

name is a valid SFR name with an underscore before it.
Examples:
register _status int8 status_reg;

register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

31

FUNCTION DEFINITION

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id] { [stmt] }
Optional See Below Zero or more comma Zero or more Semi-colon
separated. separated. See Statements.

See Data Types

The qualifiers for a function are as follows:
e VOID

o type-specifier

e #sSeparate

e #inline

o #int_..

When one of the above are used and the function has a prototype (forward declaration of the function before it is

defined) you must include the qualifier on both the prototype and function definition.

A (non-standard) feature has been added to the compiler to help get around the problems created by the fact that
pointers cannot be created to constant strings. A function that has one CHAR parameter will accept a constant string
where it is called. The compiler will generate a loop that will call the function once for each character in the string.

Example:
void lcd _putc(char c) {

}

lcd putc ("Hi There.");

SEE ALSO:
Overloaded Functions
Reference Parameters
Default Parameters
Variable Parameters

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but they must accept different
parameters.

Here is an example of function overloading: Two functions have the same name but differ in the types of parameters.
The compiler determines which data type is being passed as a parameter and calls the proper function.

This function finds the square root of a long integer variable.

33

CCSC Manual

long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.

float FindSquareRoot (float n) {
}

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot() example. If variable is of
float type, it will call the second FindSquareRoot() example.

result=FindSquareRoot (variable) ;

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability of code and the efficiency of
some inline procedures. The following two procedures are the same. The one with reference parameters will be
implemented with greater efficiency when it is inline.

funct_a (int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;
}

funct_a(&a, &b) ;

funct b (inte&x, intéay) {
/*Reference params*/
if(x!=5)
y=x+3;
}

funct b (a,b);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when called.
int mygetc (char *c, int n=100) {
}

This function waits n milliseconds for a character over RS232. If a character is received, it saves it to the pointer ¢
and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc (&c) ;

//gets a char, waits 200ms for a timeout
mygetc (&c, 200);

34

Function Definition

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI requirements except that it does
not require at least one fixed parameter as ANSI does. The function can be passed any number of variables and any
data types. The access functions are VA_START, VA_ARG, and VA_END. To view the number of arguments
passed, the NARGS function can be used.

/*
stdarg.h holds the macros and va list data type needed for variable number of parameters.
*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis (...), which must be the
last parameter of the function. The ellipsis represents the variable argument list. Second, it requires one more
variable before the ellipsis (...). Usually you will use this variable as a method for determining how many variables
have been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va start(al, count);
while (count--) {
//get an int from the list
x = var_arg(al, int);
sum += x;
}
//stop using the list
va_end(al);
return (sum) ;

Some examples of using this new function:
x=Sum (5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

35

FUNCTIONAL OVERVIEW

12C

[2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC microcontrollers support
hardware-based I2C™. CCS offers support for the hardware-based 12C™ and a software-based master I2C™
device. (For more information on the hardware-based 12C module, please consult the datasheet for you target device;

not all PICs support 12C™.)

Relevant Functions:

i2c_start()
i2c_write(data)
i2c_read()
i2c_stop()
i2c_poll()

Relevant Preprocessor:
#USE 12C

Relevant Interrupts:
#INT_SSP

#INT_BUSCOL

#INT_12C

#INT_BUSCOL?2
#INT_SSP2

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
12C_SLAVE
12C_MASTER

Example Code:

#define Device_SDA PIN_C3
#define Device_ SLC PIN_C4

#use i2c(master, sda=Device_SDA,
scl=Device_SCL)

Issues a start command when in the 12C master mode.

Sends a single byte over the 12C interface.

Reads a byte over the 12C interface.

Issues a stop command when in the I2C master mode.

Returns a TRUE if the hardware has received a byte in the buffer.

Configures the compiler to support I2C™ to your specifications.

12C or SPI activity

Bus Collision

12C Interrupt (Only on 14000)

Bus Collision (Only supported on some PIC18's)

12C or SPI activity (Only supported on some PIC18's)

Returns a 1 if the device has 12C slave HW

Returns a 1 if the device has a 12C master H/W

/I Pin defines

/I Configure Device as Master

BYTE data; /I Data to be transmitted

i2c_start(); Il Issues a start command when in the 12C master mode.
i2c_write(data); /I Sends a single byte over the 12C interface.

i2c_stop(); // Issues a stop command when in the 12C master mode.

ADC

These options let the user configure and use the analog to digital converter module. They are only available on
devices with the ADC hardware. The options for the functions and directives vary depending on the chip and are
listed in the device header file. On some devices there are two independent ADC modules, for these chips the
second module is configured using secondary ADC setup functions (Ex. setup_ADC2).

37

CCSC Manual

Relevant Functions:

setup_adc(mode)
setup_adc_ports(value)
set_adc_channel(channel)
read_adc(mode)

adc_done()

Relevant Preprocessor:
#DEVICE ADC=xx

Relevant Interrupts:
INT_AD
INT_ADOF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
ADC_CHANNELS
ADC_RESOLUTION

Example Code:
#DEVICE ADC=10

IBng value;
setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG);
set_adc_channel(0);

delay_us(10);

value=read_adc();

read_adc(ADC_START_ONLY);
value=read_adc(ADC_READ_ONLY);

Sets up the a/d mode like off, the adc clock etc.

Sets the available adc pins to be analog or digital.

Specifies the channel to be use for the a/d call.

Starts the conversion and reads the value. The mode can also control
the functionality.

Returns 1 if the ADC module has finished its conversion.

Configures the read_adc return size. For example, using a PIC with a
10 bit A/D you can use 8 or 10 for xx- 8 will return the most significant
byte, 10 will return the full A/D reading of 10 bits.

Interrupt fires when a/d conversion is complete
Interrupt fires when a/d conversion has timed out

Number of A/D channels
Number of bits returned by read_adc

/lenables the a/d module

/land sets the clock to internal adc clock

//sets all the adc pins to analog

/lthe next read_adc call will read channel 0

/la small delay is required after setting the channel
/land before read

//starts the conversion and reads the result

/land store it in value

/lonly starts the conversion

/Ireads the result of the last conversion and store it in //value. Assuming
the device hat a 10bit ADC module, //value will range between 0-3FF. If
#DEVICE ADC=8 had //been used instead the result will yield 0-FF. If
#DEVICE //ADC=16 had been used instead the result will yield 0-
/[FFCO

38

Analog Comparator

Functional Overview

These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:

setup_comparator(mode)

Relevant Preprocessor:
None

Relevant Interrupts:
INT_COMP

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:

Returns 1 if the device has a comparator

Example Code:

Enables and sets the analog comparator module. The options
vary depending on the chip. Refer to the header file for details.

Interrupt fires on comparator detect. Some chips have more
than one comparator unit, and thus, more interrupts.

COMP

setup_comparator(A4_A5 NC_NC);

if(C10OUT)
output_low(PIN_DO);
else
output_high(PIN_D1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features included with the MCP2515 CAN
interface chip and the PIC18 MCU. These functions will only work with the MCP2515 CAN interface chip and PIC
microcontroller units containing either a CAN or an ECAN module. Some functions are only available for the ECAN
module and are specified by the work ECAN at the end of the description. The listed interrupts are no available to the

MCP2515 interface chip.

Relevant Functions:

can_init(void);

can_set_baud(void);

can_set_mode
(CAN_OP_MODE mode);

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

can_set_id(int* addr, int32 id, intl ext);

can_get_id(int * addr, int1 ext);

Initializes the CAN module and clears all the filters and masks so
that all messages can be received from any ID.

Initializes the baud rate of the CAN bus to125kHz, if using a 20 MHz
clock and the default CAN-BRG defines, it is called inside the
can_init() function so there is no need to call it.

Allows the mode of the CAN module to be changed to configuration
mode, listen mode, loop back mode, disabled mode, or normal
mode.

Allows the functional mode of ECAN modules to be changed to
legacy mode, enhanced legacy mode, or first in firstout (fifo) mode.
ECAN

Can be used to set the filter and mask ID's to the value specified by
addr. It is also used to set the ID of the message to be sent.

Returns the ID of a received message.

39

CCSC Manual

can_putd
(int32id, int * data, int len,
int priority, intl ext, intl rtr);

can_getd

(int32 & id, int * data, int & len,
struct rx_stat & stat);
can_enable_rtr(PROG_BUFFER b);

can_disable_rtr(PROG_BUFFER b);

can_load_rtr
(PROG_BUFFER b, int * data, int len);

can_enable_filter(long filter);

can_disable_filter(long filter);

can_associate_filter_to_buffer
(CAN_FILTER_ASSOCIATION_BUFFERS
buffer, CAN_FILTER_ASSOCIATION
filter);

can_associate_filter_to_mask
(CAN_MASK_FILTER_ASSOCIATE
mask,

CAN_FILTER_ASSOCIATION filter);

can_fifo_getd(int32 & id,int * data,
int &len,struct rx_stat & stat);

Relevant Preprocessor:
None

Relevant Interrupts:
#int_canirx

#int_canwake

#int_canerr
#int_cantx0

#int_cantx1
#int_cantx2

#int_canrx0
#int_canrx1

Relevant Include Files:
can-mcp2510.c
can-18xxx8.c
can-18F4580.c

Relevant getenv() Parameters:
none

Example Code:
can_init();

Constructs a CAN packet using the given arguments and places it in
one of the available transmit buffers.

Retrieves a received message from one of the CAN buffers and
stores the relevant data in the referenced function parameters.

Enables the automatic response feature which automatically sends
a user created packet when a specified ID is received. ECAN

Disables the automatic response feature. ECAN

Creates and loads the packet that will automatically transmitted
when the triggering ID is received. ECAN

Enables one of the extra filters included in the ECAN module. ECAN

Disables one of the extra filters included in the ECAN module.
ECAN

Used to associate a filter to a specific buffer. This allows only
specific buffers to be filtered and is available in the ECAN module.
ECAN

Used to associate a mask to a specific buffer. This allows only
specific buffer to have this mask applied. This feature is available in
the ECAN module. ECAN

Retrieves the next buffer in the fifo buffer. Only available in the
ECON module while operating in fifo mode. ECAN

This interrupt is triggered when an invalid packet is received on the
CAN.

This interrupt is triggered when the PIC is woken up by activity on
the CAN.

This interrupt is triggered when there is an error in the CAN module.
This interrupt is triggered when transmission from buffer 0 has
completed.

This interrupt is triggered when transmission from buffer 1 has
completed.

This interrupt is triggered when transmission from buffer 2 has
completed.

This interrupt is triggered when a message is received in buffer 0.
This interrupt is triggered when a message is received in buffer 1.

Drivers for the MCP2510 and MCP2515 interface chips
Drivers for the built in CAN module
Drivers for the build in ECAN module

/I initializes the CAN bus

40

Functional Overview

can_putd(0x300,data,8,3, TRUE,FALSE); /I places a message on the CAN buss with
//'ID = 0x300 and eight bytes of data pointed to by
/l “data”, the TRUE creates an extended ID, the
Il FALSE creates

can_getd(ID,data,len,stat); I/ retrieves a message from the CAN bus storing the
/I'ID in the ID variable, the data at the array pointed to by
// “data’, the number of data bytes in len, and statistics
/[about the data in the stat structure.

CCP

These options lets to configure and use the CCP module. There might be multiple CCP modules for a device. These
functions are only available on devices with CCP hardware. They operate in 3 modes: capture, compare and PWM.
The source in capture/compare mode can be timerl or timer3 and in PWM can be timer2 or timer4. The options
available are different for different devices and are listed in the device header file. In capture mode the value of the
timer is copied to the CCP_X register when the input pin event occurs. In compare mode it will trigger an action when
timer and CCP_x values are equal and in PWM mode it will generate a square wave.

Relevant Functions:

setup_ccpl(mode) Sets the mode to capture, compare or PWM. For capture
set_pwm1_duty(value) The value is written to the pwm1 to set the duty.

Relevant Preprocessor:
None

Relevant Interrupts :
INT_CCP1 Interrupt fires when capture or compare on CCP1

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

CCP1 Returns 1 if the device has CCP1

Example Code:

#int_ccpl

void isr()

{
rise = CCP_1; /ICCP_1 is the time the pulse went high
fall = CCP_2; /ICCP_2 is the time the pulse went low
pulse_width =fall - rise; /Ipulse width

}

setup_ccpl(CCP_CAPTURE_RE); // Configure CCP1 to capture rise
setup_ccp2(CCP_CAPTURE_FE); // Configure CCP2 to capture fall
setup_timer_1(T1_INTERNAL); /I Start timer 1

Some chips also have fuses which allows to multiplex the ccp/pwm on different pins. So check the fuses to
see which pin is set by default. Also fuses to enable/disable pwm outputs.

41

CCSC Manual

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs information
while the program is running and provides statistics, logging and tracing of it's execution. This
is accomplished by using a simple communication method between the processor and the ICD
with minimal side-effects to the timing and execution of the program. Another benefit of code
profile versus in-circuit debugging is that a program written with profile support enabled will run
correctly even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to be included in the project
being compiled and profiled. Doing this adds the proper code profile run-time support on the microcontroller.

See the help file in the Code Profile tool for more help
and usage examples.

Relevant Functions:

profileout() Send a user specified message or variable to be displayed or
logged by the code profile tool.

Relevant Pre-Processor:
#use profile() Global configuration of the code profile run-time on the
microcontroller.

#profile Dynamically enable/disable specific elements of the profiler.
Relevant Interrupts: The profiler can be configured to use a microcontroller's internal

timer for more accurate timing of events over the clock on the PC.
This timer is configured using the #profile pre-processor

command.
Relevant Include Files: None — all the functions are built into the compiler.
Relevant getenv(): None
Example Code: #include <18F4520.h>

#use delay(crystal=10MHz, clock=40MHz)
#profile functions, parameters
void main(void)

int adc;
setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);

for(;;)
{
adc = read_adc();
profileout(adc);
delay_ms(250);
}
}

42

Functional Overview

Configuration Memory

On all PIC18 Family of chips, the configuration memory is readable and writable. This functionality is not available on

the PIC16 Family of devices..

Relevant Functions:

write_configuration_memory
(ramaddress, count)

or
write_configuration_memory
(offset,ramaddress, count)
read_configuration_memory
(ramaddress,count)

Relevant Preprocessor:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For PIC18f452
int16 data=0xc32;

Writes count bytes, no erase needed

Writes count bytes, no erase needed starting at byte address offset

Read count bytes of configuration memory

write_configuration_memory(data,2); //writes 2 bytes to the configuration memory

DAC

These options let the user configure and use the digital to analog converter module. They are only available on
devices with the DAC hardware. The options for the functions and directives vary depending on the chip and are

listed in the device header file.

Relevant Functions:

setup_dac(divisor)

dac_write(value)

Relevant Preprocessor:

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Sets up the DAC e.g. Reference voltages
Writes the 8-bit value to the DAC module
Sets up the d/a mode e.g. Right enable, clock divisor

Writes the 16-bit value to the specified channel

#USE DELAY(clock=20M, Aux: crystal=6M, clock=3M)

43

CCSC Manual

int8 i=0;

setup_dac (DAC_VSS_VDD);
while (TRUE) {

itt;

dac_write(i);

}

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the user read and write to the
data eeprom memory. These functions are only available in flash chips.

Relevant Functions:

(8 bit or 16 bit depending on the

device)
read_eeprom(address)

write_eeprom(address, value)

Relevant Preprocessor:
#ROM address={list}

write_eeprom = noint
Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
DATA_EEPROM

Example Code:
For 18F452
#rom 0xf00000={1,2,3,4,5}

write_eeprom(0x0,0x12);
value=read_eeprom(0x0);

#ROM 0x007FFC00={1,2,3,4,5}

write_eeprom(0x10, 0x1337);
value=read_eeprom(0x0);

Reads the data EEPROM memory location
Erases and writes value to data EEPROM location address.

Reads N bytes of data EEPROM starting at memory location address. The
maximum return size is int64.

Reads from EEPROM to fill variable starting at address

Reads N bytes, starting at address, to pointer

Writes value to EEPROM address

Writes N bytes to address from pointer

Can also be used to put data EEPROM memory data into the hex file.

Allows interrupts to occur while the write_eeprom() operations is polling the
done bit to check if the write operations has completed. Can be used as
long as no EEPROM operations are performed during an ISR.

Interrupt fires when EEPROM write is complete

Size of data EEPROM memory.

/linserts this data into the hex file. The data eeprom address
/ldiffers for different family of chips. Please refer to the
/lprogramming specs to find the right value for the device

/lwrites 0x12 to data eeprom location 0
/lreads data eeprom location 0x0 returns 0x12

/I Inserts this data into the hex file

/I The data EEPROM address differs between PICs

/I Please refer to the device editor for device specific values.
/ Writes 0x1337 to data EEPROM location 10.

/I Reads data EEPROM location 10 returns 0x1337.

44

Functional Overview

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the “modulator signal”) with a carrier
signal to produce a modulated output. Both the carrier and the modulator signals are supplied to the DSM module,
either internally from the output of a peripheral, or externally through an input pin. The modulated output signal is
generated by performing a logical AND operation of both the carrier and modulator signals and then it is provided to
the MDOUT pin. Using this method, the DSM can generate the following types of key modulation schemes:

. Frequency Shift Keying (FSK)
. Phase Shift Keying (PSK)
. On-Off Keying (OOK)

Relevant Functions:

(8 bit or 16 bit depending on the

device)
setup_dsm(mode,source,carrier) Configures the DSM module and selects the source signal and carrier
signals.
setup_dsm(TRUE) Enables the DSM module.
setup_dsm(FALSE) Disables the DSM module.
Relevant Preprocessor:
None
Relevant Interrupts:
None
Relevant Include Files:
None, all functions built-in
Relevant getenv() parameters: None
Example Code:
setup_dsm(DSM_ENABLED | /[Enables DSM module with the output enabled and selects UART1
DSM_OUTPUT_ENABLED, //as the source signal and VSS as the high carrier signal and OC1's
DSM_SOURCE_UART], /[PWM output as the low carrier signal.
DSM_CARRIER_HIGH_VSS |
DSM_CARRIER_LOW_OC1);
if(input(PIN_BO)) Disable DSM module
setup_dsm(FALSE);
else Enable DSM module

setup_dsm(TRUE);

External Memory

Some PIC18 devices have the external memory functionality where the external memory can be mapped to external
memory devices like (Flash, EPROM or RAM). These functions are available only on devices that support external
memory bus.

45

CCSC Manual

General Purpose I/O

These options let the user configure and use the 1/0 pins on the device. These functions will affect the pins that are

listed in the device header file.

Relevant Functions:

output_high(pin)
output_low(pin)
output_float(pin)

output_x(value)
output_bit(pin,value)
input(pin)
input_state(pin)
set_tris_x(value)
input_change_x()

Relevant Preprocessor:
#USE STANDARD_IO(port)

#USE FAST_IO(port)
#USE FIXED_IO

(port_outputs=;in,pin?)

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

PIN:pb

Example Code:
#use fast_io(b)

Int8 Tris_value= 0xO0F;
intl Pin value;

set tris b(Tris_value);
output_high (PIN_B7) ;
If(input (PIN_BO)) {
output_high (PIN B7) ;}

Sets the given pin to high state.

Sets the given pin to the ground state.

Sets the specified pin to the input mode. This will allow the pin to float high to
represent a high on an open collector type of connection.

Outputs an entire byte to the port.

Outputs the specified value (0,1) to the specified 1/O pin.

The function returns the state of the indicated pin.

This function reads the level of a pin without changing the direction of the pin
as INPUT() does.

Sets the value of the I/O port direction register. A '1'is an input and '0' is for
output.

This function reads the levels of the pins on the port, and compares them to the
last time they were read to see if there was a change, 1 if there was, 0 if there
wasn't.

This compiler will use this directive be default and it will automatically inserts
code for the direction register whenever an I/O function like output_high() or
input() is used.

This directive will configure the I/O port to use the fast method of performing
I/0. The user will be responsible for setting the port direction register using the
set_tris_x() function.

This directive set particular pins to be used an input or output, and the compiler
will perform this setup every time this pin is used.

Returns a 1 if bit b on port p is on this part

//Sets B0:B3 as input and B4:B7 as output
//Set the pin B7 to High
//Read the value on pin B0, set B7 to low if pin BO is high

46

Functional Overview

Internal LCD

Some families of PIC microcontrollers can drive a glass segment LCD directly, without the need of an LCD controller.
For example, the PIC16C92X, PIC16F91X, and PIC16F193X series of chips have an internal LCD driver module.

Relevant Functions:

setup_lcd Configures the LCD Driver Module to use the specified mode, timer prescaler,

(mode, prescale, [segments]) and segments. For more information on valid modes and settings, see the
setup_lcd() manual page and the *.h header file for the PIC micro-controller
being used.

Icd_symbol The specified symbol is placed on the desired segments, where segment_b7

(symbol, segment_b7 ... to segment_bO0 represent SEGXX pins on the PIC micro-controller. For

segment_b0) example, if bit 0 of symbol is set, then segment_b0 is set, and if segment_b0

is 15, then SEG15 would be set.

lcd_load(ptr, offset, length) Writes length bytes of data from pointer directly to the LCD segment
memory, starting with offset.

Icd_contrast (contrast) Passing a value of 0 — 7 will change the contrast of the LCD segments, 0
being the minimum, 7 being the maximum.

Relevant Preprocessor:

None

Relevant Interrupts:
#int_lcd LCD frame is complete, all pixels displayed

Relevant Inlcude Files: None, all functions built-in to the compiler.

Relevant getenv() Parameters:
LCD Returns TRUE if the device has an Internal LCD Driver Module.

Example Program:
/I How each segment of the LCD is set (on or off) for the ASCII digits 0 to 9.
byte CONST DIGIT_MAP[10] = {OxFC, 0x60, 0xDA, 0xF2, 0x66, 0xB6, OXBE, OXEO, OXFE, OXxE6};

/I Define the segment information for the first digit of the LCD
#define DIGIT1 COM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28, COM2+20, COM3+18

/I Displays the digits 0 to 9 on the first digit of the LCD.
for(i=0;i<=9;i++) {

lcd_symbol(DIGIT_MAPJi], DIGIT1);

delay_ms(1000);

Internal Oscillator

Many chips have internal oscillator. There are different ways to configure the internal oscillator. Some chips have a
constant 4 Mhz factory calibrated internal oscillator. The value is stored in some location (mostly the highest program
memory) and the compiler moves it to the osccal register on startup. The programmers save and restore this value
but if this is lost they need to be programmed before the oscillator is functioning properly. Some chips have factory
calibrated internal oscillator that offers software selectable frequency range(from 31Kz to 8 Mhz) and they have a
default value and can be switched to a higher/lower value in software. They are also software tunable. Some chips
also provide the PLL option for the internal oscillator.

Relevant Functions:

setup_oscillator(mode, finetune) Sets the value of the internal oscillator and also tunes it. The options vary

47

CCSC Manual

Relevant Preprocessor:
None

Relevant Interrupts:
INT_OSC_FAIL or INT_OSCF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For PIC18F8722

setup_oscillator(OSC_32MHZ);

depending on the chip and are listed in the device header files.

Interrupt fires when the system oscillator fails and the processor switches to
the internal oscillator.

/Isets the internal oscillator to 32MHz (PLL enabled)

If the internal oscillator fuse option are specified in the #fuses and a valid clock is specified in the #use
delay(clock=xxx) directive the compiler automatically sets up the oscillator. The #use delay statements
should be used to tell the compiler about the oscillator speed.

Interrupts

The following functions allow for the control of the interrupt subsystem of the microcontroller. With these functions,

interrupts can be enabled, disabled, and cleared. With the preprocessor directives, a default function can be called for

any interrupt that does not have an associated ISR, and a global function can replace the compiler generated

interrupt dispatcher.

Relevant Functions:

disable_interrupts()
enable_interrupts()

ext_int_edge()

clear_interrupt()

interrupt_active()

interrupt_enabled()

Relevant Preprocessor:
#DEVICE HIGH_INTS=
#INT_XXX fast

Relevant Interrupts:
#int_default

#int_global

#int_xxx

Disables the specified interrupt.
Enables the specified interrupt.

Enables the edge on which the edge interrupt should trigger. This can be
either rising or falling edge.

This function will clear the specified interrupt flag. This can be used if a global
isr is used, or to prevent an interrupt from being serviced.

This function checks the interrupt flag of specified interrupt and returns true if
flag is set.

This function checks the interrupt enable flag of the specified interrupt and
returns TRUE if set.

This directive tells the compiler to generate code for high priority interrupts.
This directive tells the compiler that the specified interrupt should be treated
as a high priority interrupt.

This directive specifies that the following function should be called if an
interrupt is triggered but no routine is associated with that interrupt.

This directive specifies that the following function should be called whenever
an interrupt is triggered. This function will replace the compiler generated
interrupt dispatcher.

This directive specifies that the following function should be called whenever
the xxx interrupt is triggered. If the compiler generated interrupt dispatcher is

48

Functional Overview

Relevant Include Files:
none, all functions built in.

Relevant getenv() Parameters:
none

Example Code:
#int_timer0
void timerQinterrupt()

enable_interrupts(TIMERO);
disable_interrtups(TIMERO);
clear_interrupt(TIMERO);

used, the compiler will take care of clearing the interrupt flag bits.

I/ #int_timer associates the following function with the
[l interrupt service routine that should be called

// enables the timer0 interrupt

/I disables the timer0 interrupt

/I clears the timerO interrupt flag

Low Voltage Detect

These functions configure the high/low voltage detect module. Functions available on the chips that have the low

voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode)

Relevant Preprocessor:
None

Relevant Interrupts :
INT_LOWVOLT

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

For PIC18F8722
setup_low_volt_detect
(LVD_36|LVD_TRIGGER_ABOVE);

Sets the voltage trigger levels and also the mode (below or above in case
of the high/low voltage detect module). The options vary depending on the
chip and are listed in the device header files.

Interrupt fires on low voltage detect

/Isets the trigger level as 3.6 volts and

/[trigger direction as above. The interrupt
/if enabled is fired when the voltage is
/labove 3.6 volts.

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-bit/16-bit I/O module
specifically designed to communicate with a wide variety of parallel devices. Key features of the PMP module are:

- 8 or 16 Data lines

- Up to 16 or 32 Programmable Address Lines

- Up to 2 Chip Select Lines

49

CCSC Manual

- Programmable Strobe option

- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave(PSP) Support

- Enhanced Parallel Slave Port Support

- Programmable Wait States

Relevant Functions:

setup_psp (options,address_mask)

setup_pmp_csx(options,[offset])

setup_psp_es(options)

psp_input_full()

psp_output_full()
Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PMP

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

setup_pmp(PAR_ENABLE |
PAR_MASTER_MODE_1 |
PAR_STOP_IN_IDLE,0x00FF);

If (pmp_output_full ())
{

pmp_write(next_byte);
}

This will setup the PMP/EPMP module for various mode and specifies
which address lines to be used.

This will setup the PSP module for various mode and specifies which
address lines to be used.

Sets up the Chip Select X Configuration, Mode and Base Address registers
Sets up the Chip Select X Configuration and Mode registers

Write the data byte to the next buffer location.

This will write a byte of data to the next buffer location or will write a byte to
the specified buffer location.

Reads a byte of data.

psp_read() will read a byte of data from the next buffer location and
psp_read (address) will read the buffer location address.

Configures the address register of the PMP module with the destination
address during Master mode operation.

This will return the status of the output buffer underflow bit.

This will return the status of the input buffers.

This will return the status of the input buffers.

This will return the status of the output buffers.

This will return the status of the output buffers.

Interrupt on read or write strobe

Sets up Master mode with address lines PMAO:PMA7

Power PWM

These options lets the user configure the Pulse Width Modulation (PWM) pins. They are only available on devices
equipped with PWM. The options for these functions vary depending on the chip and are listed in the device header

file.

50

Functional Overview

Relevant Functions:

setup_power_pwm(config)

setup_power_pwm_pins(module x)
set_power_pwmx_duty(duty)

set_power_pwm_override(pwm,override,value)

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_PWMTB

Relevant getenv() Parameters:
None

Example Code:

i.c;.ng duty cycle, period,;

Sets up the PWM clock, period, dead time etc.

Configure the pins of the PWM to be in
Complimentary, ON or OFF mode.

Stores the value of the duty cycle in the PDCXL/H register. This
duty cycle value is the time for which the PWM is in active state.

This function determines whether the OVDCONS or the PDC
registers determine the PWM output .

PWM Timebase Interrupt (Only available on PIC18XX31)

/I Configures PWM pins to be ON,OFF or in Complimentary mode.
setup_power_pwm_pins(PWM_COMPLEMENTARY ,PWM_OFF, PWM_OFF, PWM_OFF);

/ISets up PWM clock , postscale and period. Here period is used to set the

/IPWM Frequency as follows:

/[Frequency = Fosc / (4 * (period+1) *postscale)
setup_power_pwm(PWM_CLOCK_DIV_4|PWM_FREE_RUN,1,0,period,0,1,0);

set_power_pwmO_duty(duty_cycle));

/I Sets the duty cycle of the PWM 0,1 in
//Complementary mode

Program Eeprom

The Flash program memory is readable and writable in some chips and is just readable in some. These options lets
the user read and write to the Flash program memory. These functions are only available in flash chips.

Relevant Functions:

read_program_eeprom(address)

write_program_eeprom(address, value)
erase_program_eeprom(address)

write_program_memory(address,dataptr,count)

read_program_memory(address,dataptr,count)

Relevant Preprocessor:
#ROM address={list}

Reads the program memory location (16 bit or 32 bit
depending on the device).

Writes value to program memory location address.

Erases FLASH_ERASE_SIZE bytes in program memory.
Writes count bytes to program memory from dataptr to
address. When address is a mutiple of FLASH_ERASE_SIZE

an erase is also performed.

Read count bytes from program memory at address to
dataptr.

Can be used to put program memory data into the hex file.

51

CCSC Manual

#DEVICE(WRITE_EEPROM=ASYNC)

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters
PROGRAM_MEMORY
READ_PROGRAM
FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

Can be used with #DEVICE to prevent the write function from
hanging. When this is used make sure the eeprom is not
written both inside and outside the ISR.

Interrupt fires when eeprom write is complete.

Size of program memory

Returns 1 if program memory can be read
Smallest number of bytes written in flash
Smallest number of bytes erased in flash

Example Code:

For 18F452 where the write size is 8 bytes and erase size is 64 bytes

#rom 0xa00={1,2,3,4,5} /linserts this data into the hex file.
erase_program_eeprom(0x1000); Ilerases 64 bytes strting at 0x1000
write_program_eeprom(0x1000,0x1234); /Iwrites 0x1234 to 0x1000
value=read_program_eeprom(0x1000); /lreads 0x1000 returns 0x1234
write_program_memory(0x1000,data,8); /lerases 64 bytes starting at 0x1000 as 0x1000 is a multiple
/lof 64 and writes 8 bytes from data to 0x1000
/lreads 8 bytes to value from 0x1000

/lerases 64 bytes starting at 0x1000

/lwrites 8 bytes from data to 0x1000

llreads 8 bytes to value from 0x1000

read_program_memory(0x1000,value,8);
erase_program_eeprom(0x1000);

write_program_memory(0x1010,data,8);
read_program_memory(0x1000,value,8);

For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes,does not erase (use

ERASE_PROGRAM_EEPROM)

Writes any number of bytes,will erase a block whenever the

first (lowest) byte in a block is written to. If the first address is

not the start of a block that block is not erased.

Will erase a block. The lowest address bits are not used.

WRITE_PROGRAM_MEMORY -

ERASE_PROGRAM_EEPROM -

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM - Writes 2 bytes, no erase is needed.
WRITE_PROGRAM_MEMORY - Writes any number of bytes, bytes outside the range of the

write block are not changed. No erase is needed.
ERASE_PROGRAM_EEPROM - Not available.

PSP

These options let to configure and use the Parallel Slave Port on the supported devices.

Relevant Functions:

setup_psp(mode)
psp_output_full()

Enables/disables the psp port on the chip
Returns 1 if the output buffer is full(waiting to be read by the external bus)

52

Functional Overview

psp_input_full()
psp_overflow()

Relevant Preprocessor:
None

Relevant Interrupts :
INT_PSP

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
PSP

Example Code:
while(psp_output_full());
psp_data=command;
while(linput_buffer_full());
if (osp_overflow())

error=true
else
data=psp_data;

Returns 1 if the input buffer is full(waiting to read by the cpu)
Returns 1 if a write occurred before the previously written byte was read

Interrupt fires when PSP data is in

Returns 1 if the device has PSP

/Iwaits till the output buffer is cleared
/hwrites to the port

[Iwaits till input buffer is cleared

/lif there is an overflow set the error flag

/lif there is no overflow then read the port

QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining

mechanical positional data.

Relevant Functions:

setup_gei(options,
filter,maxcount)
gei_status()

gei_set_count(value)

gei_get_count()

Relevant Preprocessor:

None

Relevant Interrupts :

#INT_QEI

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

Configures the QEI module.

Returns the status of the QUI module.
Write a 16-bit value to the position counter.

Reads the current 16-bit value of the position counter.

Interrupt on rollover or underflow of the position counter.

53

CCSC Manual

None

Example Code:

int16 Value;
setup_qei(QEL_MODE_X2 |
QEL_TIMER_INTERNAL,

QEL_FILTER_DIV_2,QEI__ FORWARD);

Value = qei_get count();

Setup the QEI module

Read the count.

RS232 1/0

These functions and directives can be used for setting up and using RS232 1/O functionality.

Relevant Functions:

getc() or getch()
getchar() or fgetc()

gets() or fgets()

putc() or putchar() or
fputc()

puts() or fputs()

printf() or fprintf()

kbhit()

setup_uart(baud,[stream])

or

setup_uart_speed(baud,[stream])

Gets a character on the receive pin(from the specified stream in case of fgetc,
stdin by default). Use KBHIT to check if the character is available.

Gets a string on the receive pin(from the specified stream in case of fgets,
STDIN by default). Use getc to receive each character until return is
encountered.

Puts a character over the transmit pin(on the specified stream in the case of
fputc, stdout by default)

Puts a string over the transmit pin(on the specified stream in the case of fputc,
stdout by default). Uses putc to send each character.

Prints the formatted string(on the specified stream in the case of fprintf, stdout
by default). Refer to the printf help for details on format string.

Return true when a character is received in the buffer in case of hardware
RS232 or when the first bit is sent on the RCV pin in case of software RS232.
Useful for polling without waiting in getc.

Used to change the baud rate of the hardware UART at run-time. Specifying
stream is optional. Refer to the help for more advanced options.

54

Functional Overview

assert(condition) Checks the condition and if false prints the file name and line to STDERR. Will
not generate code if #DEFINE NODEBUG is used.

perror(message) Prints the message and the last system error to STDERR.

putc_send() or fputc_send() When using transmit buffer, used to transmit data from buffer. See function
description for more detail on when needed.

rcv_buffer_bytes() When using receive buffer, returns the number of bytes in buffer that still need
to be retrieved.

tx_buffer_bytes() When using transmit buffer, returns the number of bytes in buffer that still need

- - to be sent.
tx_buffer_full() When using transmit buffer, returns TRUE if transmit buffer is full.
receive_buffer_full() When using receive buffer, returns TRUE if receive buffer is full.

Relevant Interrupts:

INT_RDA Interrupt fires when the receive data available

INT_TBE Interrupt fires when the transmit data empty

Some chips have more than one hardware uart, and hence more interrupts.

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

UART Returns the number of UARTS on this PIC

AUART Returns true if this UART is an advanced UART

UART_RX Returns the receive pin for the first UART on this PIC (see PIN_XX)
UART_TX Returns the transmit pin for the first UART on this PIC

UARTZ2_RX Returns the receive pin for the second UART on this PIC
UARTZ2_TX TX — Returns the transmit pin for the second UART on this PIC

Example Code:
/* configure and enable uart, use first hardware UART on PIC */
#use rs232(uartl, baud=9600)

[* print a string */
printf(“enter a character”);

[* get a character */
if (kbhit()) /[check if a character has been received

55

CCSC Manual

¢ = getc();

/Iread character from UART

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS). This operating system is
cooperatively multitasking and allows for tasks to be scheduled to run at specified time intervals. Because the RTOS
does not use interrupts, the user must be careful to make use of the rtos_yield() function in every task so that no one

task is allowed to run forever.

Relevant Functions:

rtos_run()

rtos_terminate()

rtos_enable(task)

rtos_disable(task)

rtos_msg_poll()

rtos_msg_read()

rtos_msg_send(task,byte)

rtos_yield()

rtos_signal(sem)

rtos_wait(sem)

rtos_await(expre)

rtos_overrun(task)

rtos_stats(task,stat)

Relevant Preprocessor:

#USE RTOS(options)

#TASK(options)

#TASK

Begins the operation of the RTOS. All task management tasks are
implemented by this function.

This function terminates the operation of the RTOS and returns operation to
the original program. Works as a return from the rtos_run()function.

Enables one of the RTOS tasks. Once a task is enabled, the rtos_run()
function will call the task when its time occurs. The parameter to this
function is the name of task to be enabled.

Disables one of the RTOS tasks. Once a task is disabled, the rtos_run()
function will not call this task until it is enabled using rtos_enable(). The
parameter to this function is the name of the task to be disabled.

Returns true if there is data in the task's message queue.
Returns the next byte of data contained in the task's message queue.

Sends a byte of data to the specified task. The data is placed in the
receiving task's message queue.

Called with in one of the RTOS tasks and returns control of the program to
the rtos_run() function. All tasks should call this function when finished.

Increments a semaphore which is used to broadcast the availability of a
limited resource.

Waits for the resource associated with the semaphore to become available
and then decrements to semaphore to claim the resource.

Will wait for the given expression to evaluate to true before allowing the
task to continue.

Will return true if the given task over ran its alloted time.

Returns the specified statistic about the specified task. The statistics
include the minimum and maximum times for the task to run and the total
time the task has spent running.

This directive is used to specify several different RTOS attributes including
the timer to use, the minor cycle time and whether or not statistics should
be enabled.

This directive tells the compiler that the following function is to be an RTOS
task.

specifies the rate at which the task should be called, the maximum time the
task shall be allowed to run, and how large it's queue should be

56

Functional Overview

Relevant Interrupts:
none

Relevant Include Files:
none all functions are built in

Relevant getenv() Parameters:
none

Example Code:

#USE /I RTOS will use timer zero, minor cycle will be 20ms
RTOS(timer=0,minor_cycle=20ms)

int sem;

#TASK (rate=1s,max=20ms,queue=5) // Task will run at a rate of once per second

void task_name(); /l with a maximum running time of 20ms and
/l a 5 byte queue
rtos_run(); /I begins the RTOS
rtos_terminate(); /I ends the RTOS
rtos_enable(task_name); /I enables the previously declared task.
rtos_disable(task_name); /I disables the previously declared task
rtos_msg_send(task_name,5); /l places the value 5 in task_names queue.
rtos_yield(); /I yields control to the RTOS
rtos_sigal(sem); /I signals that the resource represented by sem is available.

For more information on the CCS RTOS please

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola. Most PIC devices support
most common SPI™ modes. CCS provides a support library for taking advantage of both hardware and software
based SPI™ functionality. For software support, see #USE SPI.

Relevant Functions:

setup_spi(mode) Configure the hardware SPI to the specified mode. The mode configures
setup_spi2(mode) setup_spi2(mode) thing such as master or slave mode, clock speed and
setup_spi3 (mode) clock/data trigger configuration.

setup_spi4 (mode)
Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to configure the
second interface.

spi_data_is_in() Returns TRUE if the SPI receive buffer has a byte of data.

spi_data_is_in2()

spi_write(value) Transmits the value over the SPI interface. This will cause the data to be
spi_write2(value) clocked out on the SDO pin.

spi_read(value) Performs an SPI transaction, where the value is clocked out on the SDO pin
spi_read2(value) and data clocked in on the SDI pin is returned. If you just want to clock in data

then you can use spi_read() without a parameter.

Relevant Preprocessor:
None

Relevant Interrupts:

57

CCSC Manual

#int_ssp Transaction (read or write) has completed on the indicated peripheral.
#int_ssp2

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16):

spi_write(0x80); [Iwrite 0x80 to SPI device

value=spi_read(); /Iread a value from the SPI device

value=spi_read(0x80); /Iwrite Ox80 to SPI device the same time you are reading a value.
TimerO

These options lets the user configure and use timerQ. It is available on all devices and is always enabled. The
clock/counter is 8-bit on pic16s and 8 or 16 bit on pic18s. It counts up and also provides interrupt on overflow. The
options available differ and are listed in the device header file.

Relevant Functions:

setup_timer_O(mode) Sets the source, prescale etc for timerO

set_timerO(value) or Initializes the timer0 clock/counter. Value may be a 8 bit or 16 bit depending on
set_rtcc(value) the device.

value=get_timer0 Returns the value of the timer0 clock/counter

Relevant Preprocessor: None

Relevant Interrupts :
INT_TIMERO or INT_RTCC Interrupt fires when timer0 overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMERO Returns 1 if the device has timer0

Example Code:
For PIC18F452

setup_timer_O(RTCC_INTERNAL //sets the internal clock as source
|RTCC_DIV_2|RTCC_8 BIT); /land prescale 2. At 20Mhz timerO

/Iwill increment every 0.4us in this
/Isetup and overflows every

//102.4us
set_timer0(0); /lthis sets timerO0 register to 0
time=get_timer0(); /Ithis will read the timer0 register
/Ivalue

58

Functional Overview

Timerl

These options lets the user configure and use timerl. The clock/counter is 16-bit on pic16s and picl8s. It counts up
and also provides interrupt on overflow. The options available differ and are listed in the device header file.

Relevant Functions:

setup_timer_1(mode) Disables or sets the source and prescale for timerl
set_timerl(value) Initializes the timerl clock/counter
value=get_timerl Returns the value of the timerl clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER1 Interrupt fires when timerl overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER1 Returns 1 if the device has timerl

Example Code:

For PIC18F452

setup_timer_1(T1_DISABLED); /[disables timerl

or

setup_timer_1(T1_INTERNAL|T1_DIV_BY_8); //sets the internal clock as source
/land prescale as 8. At 20Mhz timerl will increment
/levery 1.6us in this setup and overflows every
//104.896ms

set_timer1(0); /lthis sets timer1 register to 0
time=get_timer1(); /lthis will read the timer1 register value
Timer2

These options lets the user configure and use timer2. The clock/counter is 8-bit on pic16s and picl8s. It counts up
and also provides interrupt on overflow. The options available differ and are listed in the device header file.

Relevant Functions:

setup_timer_2 Disables or sets the prescale, period and a postscale for timer2
(mode,period,postscale)

set_timer2(value) Initializes the timer2 clock/counter
value=get_timer2 Returns the value of the timer2 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER2 Interrupt fires when timer2 overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER2 Returns 1 if the device has timer2

59

CCSC Manual

Example Code:
For PIC18F452
setup_timer_2(T2_DISABLED); //disables timer2
or
setup_timer_2(T2_DIV_BY_4,0xc0,2); //sets the prescale as 4, period as 0xcO and
/lpostscales as 2.
/At 20Mhz timer2 will increment every .8us in this
/Isetup overflows every 154.4us and interrupt every 308.2us

set_timer2(0); /lthis sets timer2 register to O
time=get_timer2(); /lthis will read the timerl register value
Timer3

Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

Timer4 is very similar to Timer2. So please refer to the Timer2 section for more details.

Timer5

These options lets the user configure and use timer5. The clock/counter is 16-bit and is available only on 18Fxx31
devices. It counts up and also provides interrupt on overflow. The options available differ and are listed in the device
header file.

Relevant Functions:

setup_timer_5(mode) Disables or sets the source and prescale for imer5
set_timer5(value) Initializes the timer5 clock/counter
value=get_timer5 Returns the value of the timer51 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERS Interrupt fires when timer5 overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERS Returns 1 if the device has timer5

Example Code:

For PIC18F4431

setup_timer_5(T5_DISABLED) /[disables timer5

or

setup_timer_5(T5_INTERNAL|T5_DIV_BY_1); //sets the internal clock as source and
/lprescale as 1.
/IAt 20Mhz timer5 will increment every .2us in this
/Isetup and overflows every 13.1072ms

set_timer5(0); /lthis sets timer5 register to 0

60

Functional Overview

time=get_timer5();

/lthis will read the timer5 register value

TimerA

These options lets the user configure and use timerA. It is available on devices with Timer A hardware. The
clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The options available are listed in the

device's header file.

Relevant Functions:

setup_timer_A(mode)
set_timerA(value)

value=get_timerA()
Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERA

Relevant Include Files:

Relevant getenv() parameters:

TIMERA

Example Code:
setup_timer_A(TA_OFF);

or

setup_timer_A
(TA_INTERNAL | TA_DIV_8);

set_timerA(0);
time=get_timerA();

Disable or sets the source and prescale for timerA
Initializes the timerA clock/counter
Returns the value of the timerA clock/counter

Interrupt fires when timerA overflows

None, all functions built-in

Returns 1 if the device has timerA

/ldisable timerA

//sets the internal clock as source

/land prescale as 8. At 20MHz timerA will increment
/levery 1.6us in this setup and overflows every
//409.6us

/lthis sets timerA register to 0
/lthis will read the timerA register value

TimerB

These options lets the user configure and use timerB. It is available on devices with TimerB hardware. The
clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The options available are listed in the

device's header file.

Relevant Functions:

setup_timer_B(mode)
set_timerB(value)

value=get_timerB()
Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERB

Relevant Include Files:

Relevant getenv() parameters:

Disable or sets the source and prescale for timerB
Initializes the timerB clock/counter
Returns the value of the timerB clock/counter

Interrupt fires when timerB overflows

None, all functions built-in

61

CCSC Manual

TIMERB Returns 1 if the device has timerB
Example Code:

setup_timer_B(TB_OFF); /[disable timerB

or

setup_timer_B [Isets the internal clock as source

(TB_INTERNAL | TB_DIV_8); /land prescale as 8. At 20MHz timerB will increment
/levery 1.6us in this setup and overflows every

/1/1409.6us
set_timerB(0); /lthis sets timerB register to 0
time=get_timerB(); /lthis will read the timerB register value

USB

Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to and talk to a personal
computer. CCS provides libraries for interfacing a PIC to PC using USB by using a PIC with an internal USB
peripheral (like the PIC16C765 or the PIC18F4550 family) or by using any PIC with an external USB peripheral (the
National USBN9603 family).

Relevant Functions:

usb_init() Initializes the USB hardware. Will then wait in an infinite loop for the USB peripheral to
be connected to bus (but that doesn't mean it has been enumerated by the PC). Will
enable and use the USB interrupt.

usb_init_cs() The same as usb_init(), but does not wait for the device to be connected to the bus.
This is useful if your device is not bus powered and can operate without a USB
connection.

usb_task() If you use connection sense, and the usb_init_cs() for initialization, then you must

periodically call this function to keep an eye on the connection sense pin. When the
PIC is connected to the BUS, this function will then perpare the USB peripheral. When
the PIC is disconnected from the BUS, it will reset the USB stack and peripheral. Will
enable and use the USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the connection sense pin.

usb_detach() Removes the PIC from the bus. Will be called automatically by usb_task() if connection
is lost, but can be called manually by the user.

usb_attach() Attaches the PIC to the bus. Will be called automatically by usb_task() if connection is
made, but can be called manually by the user.

usb_attached() If using connection sense pin (USB_CON_SENSE_PIN), returns TRUE if that pin is
high. Else will always return TRUE.

usb_enumerated() Returns TRUE if the device has been enumerated by the PC. If the device has been
enumerated by the PC, that means it is in normal operation mode and you can
send/receive packets.

usb_put_packet Places the packet of data into the specified endpoint buffer. Returns TRUE if success,
(endpoint, data, len, tgl) FALSE if the buffer is still full with the last packet.

usb_puts Sends the following data to the specified endpoint. usb_puts() differs from
(endpoint, data, len, usb_put_packet() in that it will send multi packet messages if the data will not fit into
timeout) one packet.

62

Functional Overview

usb_kbhit(endpoint)

ush_get_packet
(endpoint, ptr, max)

usb_gets(endpoint, ptr,
max, timeout)

Relevant CDC Functions:

Returns TRUE if the specified endpoint has data in it's receive buffer

Reads up to max bytes from the specified endpoint buffer and saves it to the pointer
ptr. Returns the number of bytes saved to ptr.

Reads a message from the specified endpoint. The difference usb_get_packet() and
usb_gets() is that usb_gets() will wait until a full message has received, which a
message may contain more than one packet. Returns the number of bytes received.

A CDC USB device will emulate an RS-232 device, and will appear on your PC as a COM port. The follow
functions provide you this virtual RS-232/serial interface

Note: When using the CDC library, you can use the same functions above, but do not use the packet related

function such as

usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit()

usb_cdc_getc()

usb_cdc_putc(c)

usb_cdc_putc_fast(c)

usb_cdc_puts(*str)

usb_cdc_putready()

Relevant Preporcessor:
None

Relevant Interrupts:
#int_usb

Relevant Include files:
pic_usb.h

pic18 usb.h

usbn960x.h

usb.h

usb.c

usb_cdc.h

The same as kbhit(), returns TRUE if there is 1 or more character in the
receive buffer.

The same as getc(), reads and returns a character from the receive buffer. If there is no
data in the receive buffer it will wait indefinitely until there a character has been
received.

The same as putc(), sends a character. It actually puts a character into the transmit
buffer, and if the transmit buffer is full will wait indefinitely until there is space for the
character.

The same as usb_cdc_putc(), but will not wait indefinitely until there is space for the
character in the transmit buffer. In that situation the character is lost.

Sends a character string (null terminated) to the USB CDC port. Will return FALSE if
the buffer is busy, TRUE if buffer is string was put into buffer for sending. Entire string
must fit into endpoint, if string is longer than endpoint buffer then excess characters will
be ignored.

Returns TRUE if there is space in the transmit buffer for another character.

A USB event has happened, and requires application intervention. The USB library that
CCS provides handles this interrupt automatically.

Hardware layer driver for the PIC16C765 family PICmicro controllers with an internal
USB peripheral.

Hardware layer driver for the PIC18F4550 family PICmicro controllers with an internal
USB peripheral.

Hardware layer driver for the National USBN9603/USBN9604 external USB peripheral.
You can use this external peripheral to add USB to any microcontroller.

Common definitions and prototypes used by the USB driver

The USB stack, which handles the USB interrupt and USB Setup Requests on
Endpoint 0.

A driver that takes the previous include files to make a CDC USB device, which
emulates an RS232 legacy device and shows up as a COM port in the MS Windows

63

CCSC Manual

device manager.

Relevant getenv() Parameters:
USB Returns TRUE if the PICmicro controller has an integrated internal USB peripheral.

Example Code:
Due to the complexity of USB example code will not fit here. But you can find the following examples
installed with your CCS C Compiler:

ex_usb_hid.c A simple HID device
ex_usb_mouse.c A HID Mouse, when connected to your PC the mouse cursor will go in circles.
ex_usb_kbmouse.c An example of how to create a USB device with multiple interfaces by creating a

keyboard and mouse in one device.

ex_usb_kbmouse2.c An example of how to use multiple HID report Ids to transmit more than one type of HID
packet, as demonstrated by a keyboard and mouse on one device.

ex_usb_scope.c A vendor-specific class using bulk transfers is demonstrated.
ex_usb_serial.c The CDC virtual RS232 library is demonstrated with this RS232 < - > USB example.
ex_usb_serial2.c Another CDC virtual RS232 library example, this time a port of the ex_intee.c example

to use USB instead of RS232.

Voltage Reference

These functions configure the votlage reference module. These are available only in the supported chips.

Relevant Functions:

setup_vref(mode | value) Enables and sets up the internal voltage
reference value. Constants are defined in
the device's .h file.

Relevant Preprocesser:

none

Relevant Interrupts:
none

Relevant Include Files:
none, all functions built-in

Relevant getenv() parameters:
VREF Returns 1 if the device has VREF

Example code:
for PIC12F675
#INT_COMP /lcomparator interrupt handler
void isr() {
safe_conditions = FALSE;
printf(""WARNING!!!! Voltage level is above

64

Functional Overview

3.6V.\r\n");
}

setup_comparator(Al_VR_OUT_ON_A2)//sets
2 comparators(Al and VR and A2 as output)

{
setup_vref(VREF_HIGH | 15);//sets 3.6(vdd
* value/32 + vdd/4) if vdd is 5.0V
enable_interrupts(INT_COMP); // enable
the comparator interrupt
enable_interrupts(GLOBAL); //enable
global interrupts

}

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:

setup_wdt() Enables/disables the wdt or sets the prescalar.
restart_wdt() Restarts the wdt, if wdt is enables this must be periodically called to prevent a
timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH device it is done
using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH using fuses like
WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232 statements like this #USE

DELAY (clock=20000000, restart_wdt) will cause the wdt to restart if it times out during the delay or 1I2C_READ
or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#FUSES WDT16 Sets ups the timeout time in PCH devices

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For PIC16F877
#fuses wdt
setup_wdt(WDT_2304MS);
while(true){
restart_wdt();
perform_activity();

65

CCSC Manual

}
For PIC18F452
#fuse WDT1
setup_wdt(WDT_ON);
while(true){
restart_wdt();
perform_activity();

Some of the PCB chips are share the WDT prescalar bits with timer0 so the WDT prescalar constants can be
used with setup_counters or setup_timer0 or setup_wdt functions.

interrupt_enabled()

This function checks the interrupt enabled flag for the specified interrupt and returns
TRUE if set.

Syntax interrupt_enabled(interrupt);

Parameters interrupt- constant specifying the interrupt

Returns Boolean value

Function The function checks the interrupt enable flag of the specified interrupt and

returns TRUE when set.

Availability Devices with interrupts

Requires Interrupt constants defined in the device's .h file.

Examp|e5 if(interrupt_enabled(INT_RDA))
disable_interrupt(INT_RDA);

Example Files None

Also see DISABLE INTERRUPTS(), , Interrupts Overview,

CLEAR_INTERRUPT(),
ENABLE_INTERRUPTS(),,INTERRUPT ACTIVE()

Stream 1/O

Syntax: #include <ios.h>is required to use any of the ios identifiers.

Output: output:
stream << variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cout.

stream may also be the name of a char array. In this case the data is
written to the array with a 0 terminator.

stream may also be the name of a function that accepts a single char
parameter. In this case the function is called for each character to be output.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
output as strings and all other types are output as an address of the variable.

manipulators:
hex -Hex format numbers

66

Functional Overview

Examples:

Input:

Examples:

dec- Decimal format numbers (default)

setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output intl as true and false

noboolalpha -Output intl as 1 and 0 (default)

fixed Floats- in decimal format (default)

scientific Floats- use E notation

iosdefault- All manipulators to default settings

end| -Output CR/LF

ends- Outputs a null (\0O00")

cout << "Value is " << hex << data << end|;

cout << "Price is $" << setw(4) << setprecision(2) << cost << endl;
lcdputec << '\f' << setw(3) << count<<" "<<min<<" "<<max;
string1l << setprecision(1l) << sum / count;

string2 << x << '/'<<y;

stream >> variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cin.

stream may also be the name of a char array. In this case the data is
read from the array up to the O terminator.

stream may also be the name of a function that returns a single char and has
no parameters. In this case the function is called for each character to be input.
Make sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
input as strings. Floats may use the E format.

Reading of each item terminates with any character not valid for the type. Usually
items are separated by spaces. The termination character is discarded. Atthe end
of any stream input statement characters are read until a return (\r) is read. No
termination character is read for a single char input.

manipulators:

hex -Hex format numbers

dec- Decimal format numbers (default)

noecho- Suppress echoing

strspace- Allow spaces to be input into strings

nostrspace- Spaces terminate string entry (default)

iosdefault -All manipulators to default settings

cout << "Enter number: ";

cin >> value;

cout << "Enter title: ";

cin >> strspace >> title;

cin >> datali].recordid >> data]i].xpos >> data][i].ypos >> datali].sample ;

stringl >> data;

Icdputc << "\fEnter count";

Icdputc << keypadgetc >> count; // read from keypad, echo to Ilcd
/I This syntax only works with
/I user defined functions.

67

PREPROCESSOR

PRE-PROCESSOR DIRECTORY

Pre-processor directives all begin with a # and are followed by a specific command. Syntax is dependent on the
command. Many commands do not allow other syntactical elements on the remainder of the line. A table of
commands and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-processor directive that
compilers will accept and ignore or act upon the following data. This implementation will allow any pre-processor
directives to begin with #PRAGMA. To be compatible with other compilers, this may be used before non-standard
features.

Examples:

Both of the following are valid
#INLINE

#PRAGMA INLINE

address
attribute x
Fize I A= A1 o L = S L L=] PRI

#define.........
definedinc....
#device.........
[0 [V (o] RN
e SN L =Y YN 2=l [22T 1o 1) TR
#error
Eia =R 910] 18 (0] 0111001y PO PUT S UTTPPPPPTN
B oottt ————————————
filename ...
#ill_rom...........
#fuses..............
#hexcomment..

#ignore_warnings
caa100] 010 AR (0] 01100 1Sy PP PUT S UTTPPPPT

22101 18 [o [UOTRRRPRN
#inline
#int XXxX

#locate.........
2111010 (U] [OOSR

69

CCSC Manual

2] oL |- L (=TRSO USROS PPPRRO
#serializeccccoeeeee.

#use capture..............o.......

f#use delay.......cccceevvveenne.
#use dynamic_memory

#use fast _io
#use fixed io ...
E2U EY =Y V2 TR
#use profile

#use rs232...
#use rtos......
H#USE SPI v
#use standard_io
E2dU E =Y 111 11 TR

70

__address___

PreProcessor

A predefined symbol __address__ may be used to indicate a type that must
hold a program memory address.

For example:

address testa = 0x1000 //will allocate 16 bits for test a and

//initialize to 0x1000

_attribute _x
Syntax: __attribute__x
Elements: X is the attribute you want to apply. Valid values for x are as follows:
((packed))
By default each element in a struct or union are padded to be evenly spaced by the
size of 'int'. This is to prevent an address fault when accessing an element of struct.
See the following example:
struct
{
int8 a;
intl6 b;
} test;
On architectures where 'int' is 16bit (such as dsPIC or PIC24 PICmicrocontrollers),
‘test’ would take 4 bytes even though it is comprised of3 bytes. By applying the
'‘packed' attribute to this struct then it would take 3 bytes as originally intended:
struct __attribute__ ((packed))
{
int8 a;
int16 b;
} test;
Care should be taken by the user when accessing individual elements of a packed
struct — creating a pointer to 'b' in 'test' and attempting to dereference that pointer
would cause an address fault. Any attempts to read/write 'b' should be done in
context of 'test' so the compiler knows it is packed:
test.b =5;
((aligned(y))
By default the compiler will alocate a variable in the first free memory location. The
aligned attribute will force the compiler to allocate a location for the specified variable
at a location that is modulus of the y parameter. For example:
int8 array[256] __attribute__((aligned(0x1000)));
This will tell the compiler to try to place ‘array' at either 0x0, 0x1000, 0x2000, 0x3000,
0x4000, etc.
Purpose To alter some specifics as to how the compiler operates
Examples: struct __ attribute _ ((packed))

{
int8 a;
int8 b;
} test;
int8 array[256] __ attribute__ ((aligned(0x1000)));

71

CCSC Manual

Example Files: None

#asm #endasm #asm asis

Syntax: #ASM or #ASM ASIS code #ENDASM
Elements: code is a list of assembly language instructions
Examples: int find parity(int data) {

int count;
#asm

MOV #0x08, WO
MOV WO, count
CLR WO

loop:

XOR.B data, W0
RRC data, WO
DEC count,F
BRA NZ, loop
MOV #0x01,WO0
ADD count, F
MOV count, WO
MOV WO. RETURN

#endasm

}
Example Files: FFT.c
Also See: None
12 Bit and 14 Bit
ADDWEF f,d ANDWE f,d
CLRF f CLRW
COMF f,d DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWEF f,d
MOVF f,d MOVPHW
MOVPLW MOVWEF f
NOP RLF f,d
RRF f,d SUBWE f,d
SWAPF f,d XORWEF f,d
BCF f,b BSF f,b
BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION

TRIS k

72

PreProcessor

14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN

may be a constant (file number) or a simple variable

f,b
k

may be a constant (0 or 1) or W or F
may be a file (as above) and a constant (0-7) or it may be just a bit variable reference.

may be a constant expression

Note that all expressions and comments are in C like syntax.

PIC 18

ADDWF f.d ADDWFC f,d ANDWF fd
CLRF f COMF f,d CPFSEQ f
CPFSGT f CPFSLT f DECF fd
DECFSz f.d DCFSNz f,d INCF f.d
INFSNZ f,d IORWF f,d MOVF f,d
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f,d RLNCF f,d
RRCF f,d RRNCF f,d SETF f
SUBFWB f.d SUBWEF f,d SUBWFB f.d
SWAPF f,d TSTFSZ f XORWF fd
BCF f.b BSF f,.b BTFSC f.b
BTFSS f.b BTG f,d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIE s RETLW k RETURN S
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *- TBLRD +*
TBLWT i TBLWT *t TBLWT *.
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an &
before it. And if it is an expression it must be a valid C expression that evaluates
to a constant (no & here). In C an un-subscripted array name is a pointer and a

constant (no need for &).

#bit
Syntax: #BIT id = x.y
Elements: id is a valid C identifier,

X is a constant or a C variable,
y is a constant 0-7

73

CCSC Manual

Purpose: A new C variable (one bit) is created and is placed in memory at byte x and bity. This is useful to
gain access in C directly to a bit in the processors special function register map. It may also be
used to easily access a bit of a standard C variable.

Examples: #bit TOIF = 0x b.2
fiiF = 0; // Clear Timer 0 interrupt flag
int result;

#bit result odd = result.0
i%i(resultiodd)

Example ex_glint.c

Files:

Also See: #BYTE, #RESERVE, #LOCATE, #WORD

buildcount

Only defined if
enabled.

Options>Project Options>Global Defines has global defines

This id resolves to a number representing the number of successful builds of

the project.

#build

Syntax: #BUILD(segment = address)
#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)
#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)
Elements: segment is one of the following memory segments which may be assigned a location: MEMORY,
RESET, or INTERRUPT
address is a ROM location memory address. Start and end are used to specify a range in
memory to be used.
start is the first ROM location and end is the last ROM location to be used.
nosleep is used to prevent the compiler from inserting a sleep at the end of main()
Bootload produces a bootloader-friendly hex file (in order, full block size).
NOSLEEP_LOCK is used instead of A sleep at the end of a main A infinite loop.
Purpose: PIC18XXX devices with external ROM or PIC18XXX devices with no internal ROM can direct the

compiler to utilize the ROM. When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

74

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Examples:

Example
Files:
Also See:

#build (memory=0x20000:0x2FFFF) //Assigns memory space
#build (reset=0x200, interrupt=0x208) //Assigns start
//location
//of reset and
//interrupt
//vectors
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)
//Assign limited space
//for reset and
//interrupt vectors.
#build (memory=0x20000:0x2FFFF) //Assigns memory space

None

#LOCATE, #RESERVE, #ROM, #ORG

#byte

Syntax: #byte id = x
Elements: id is a valid C identifier,
x is a C variable or a constant
Purpose: If the id is already known as a C variable then this will locate the variable at address x. In this case
the variable type does not change from the original definition. If the id is not known a new C
variable is created and placed at address x with the type int (8 bit)
Warning: In both cases memory at x is not exclusive to this variable. Other variables may be
located at the same location. In fact when x is a variable, then id and x share the same memory
location.
Examples: #byte status = 3
#byte b port = 6
struct {
short int r w;
short int c_d;
int unused : 2;
int data 5 48 g b Gl jelehaiel
#byte a port = 5
é;ﬁort.c_d =1;
Example ex_glint.c
Files:
Also See: #bit, #locate, #reserve, #word, Named Reqisters, Type Specifiers, Type Qualifiers, Enumerated
Types, Structures & Unions, Typedef
#case
Syntax: #CASE
Elements: None
Purpose: Will cause the compiler to be case sensitive. By default the compiler is case insensitive. When

75

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

linking multiple compilation units, this directive must appear exactly the same in each compilation
unit.

Warning: Not all the CCS example programs, headers and drivers have been tested with case
sensitivity turned on.

Examples: #case
int STATUS;

void func() {
int status;

STATUS = status; // Copy local status to

//global
}
Example ex_cust.c
Files:
Also See: None
date
Syntax: __ DATE__
Elements: None
Purpose: This pre-processor identifier is replaced at compile time with the date of the compile in the form:
JAN-03"
Examples: printf ("Software was compiled on ");
printf (_ DATE);
Example None
Files:
Also See: None

#define

Syntax: #define id text
or
#define id(x,y...) text

Elements: id is a preprocessor identifier, text is any text, X,y is a list of local preprocessor identifiers, and in
this form there may be one or more identifiers separated by commas.

Purpose: Used to provide a simple string replacement of the ID with the given text from this point of the
program and on.

In the second form (a C macro) the local identifiers are matched up with similar identifiers in the
text and they are replaced with text passed to the macro where it is used.

If the text contains a string of the form #idx then the result upon evaluation will be the parameter
id concatenated with the string x.

76

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

If the text contains a string of the form #idx#idy then parameter idx is concatenated with
parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
X##ty is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified as ... and the local
identifier used is __va_args__. In this case, all remaining arguments are combined with the
commas.

Examples: #define BITS 8
a=a+BITS; //same as a=a+8;
#define hi (x) (x<<4)
a=hi (a) ; //same as a=(a<<4);
#define isequal (a,b) (primary ##a([b]==backup ##al[b])
// usage iseaqual (names,5) is the same as
// (primary names[5]==backup names[5])
#define str(s) #s
#define part (device) #include str (device##.h)
// usage part (16F887) is the same as
// #include "16F887.h"
#define DBG(...) fprintf (debug, VA ARGS)
Example ex_stwt.c, ex_macro.c
Files:
Also See: #UNDEF, #IFDEF, #IFNDEF
definedinc
Syntax: value = definedinc(variable);
Parameters: variable is the name of the variable, function, or type to be checked.
Returns: A C status for the type of id entered as follows:
0 — not known
1 — typedef or enum
2 — struct or union type
3 — typemod qualifier
4 — defined function
5 — function prototype
6 — compiler built-in function
7 — local variable
8 — global variable
Function: This function checks the type of the variable or function being passed in and returns a
specific C status based on the type.
Availability: All devices
Requires: None.
Examples: intx,y=0;

Example Files:

y = definedinc(x); /[y will return 7 — x is a local variable

None

7

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

Also See: None
#device
Syntax: #DEVICE chip options
#DEVICE Compilation mode selection
Elements: Chip Options-

chip is the name of a specific processor (like: PIC16C74), To get a current list of supported devices:

START | RUN | CCSC +Q

Options are gualifiers to the standard operation of the device. Valid options are:

*=5 Use 5 bit pointers (for all parts)

*=8 Use 8 hit pointers (14 and 16 bit parts)

*=16 Use 16 bit pointers (for 14 bit parts)

ADC=x Where x is the number of bits read_adc() should return

ICD=TRUE Generates code compatible with Microchips ICD debuggir
hardware.

ICD=n For chips with multiple ICSP ports specify the port numbel

WRITE_EEPROM=ASYNC

WRITE_EEPROM = NOINT

HIGH_INTS=TRUE

Y%f=.
OVERLOAD=KEYWORD
OVERLOAD=AUTO
PASS_STRINGS=IN_RAM
CONST=READ_ONLY

CONST=ROM

NESTED_INTERRUPTS=TRUE

NORETFIE

NO_DIGITAL_INIT

being used. The defaultis 1.

Prevents WRITE_EEPROM from hanging while writing is
taking place. When used, do not write to EEPROM from
ISR and outside ISR.

Allows interrupts to occur while the write_eeprom() operat
is polling the done bit to check if the write operations has
completed. Can be used as long as no EEPROM operatio
are performed during an ISR.

Use this option for high/low priority interrupts on the PIC®
No 0 before a decimal pint on %f numbers less than 1.
Overloading of functions is now supported. Requires the |
of the keyword for overloading.

Default mode for overloading.

A new way to pass constant strings to a function by first
copying the string to RAM and then passing a pointer to R
to the function.

Uses the ANSI keyword CONST definition, making CONS
variables read only, rather than located in program memol
Uses the CCS compiler traditional keyword CONST definir
making CONST variables located in program memory.
Enables interrupt nesting for PIC24, dsPIC30, and dsPIC:
devices. Allows higher priority interrupts to interrupt lower
priority interrupts.

ISR functions (preceeded by a #int_xxx) will use a RETUF
opcode instead of the RETFIE opcode. This is not a
commonly used option; used rarely in cases where the us
writing their own ISR handler.

Normally the compiler sets all I/O pins to digital and turns
the comparator. This option prevents that action.

78

PreProcessor

Both chip and options are optional, so multiple #DEVICE lines may be used to fully define the device.
Be warned that a #DEVICE with a chip identifier, will clear all previous #DEVICE and #FUSE
settings.

Compilation mode selection-

The #DEVICE directive supports compilation mode selection. The valid keywords are CCS2, CCS3,
CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI mode, the compiler uses the
default fuse settings NOLVP, PUT for chips with these fuses. The NOWDT fuse is default if no call is
made to restart_wdt().

Purpose:

Examples:

Example
Files:
Also See:

CCS4 This is the default compilation mode. The pointer size in this mode for PCM and P(
is set to *=16 if the part has RAM over OFF.

ANSI Default data type is SIGNED all other modes default is UNSIGNED. Compilation is case
sensitive, all other modes are case insensitive. Pointer size is set to *=16 if the part has |
over OFF.

CCSs2 varl6é = NegConst8 is compiled as: varl6 = NegConst8 & Oxff (no sign extension) Pointe

CCS3 size is set to *=8 for PCM and PCH and *=5 for PCB . The overload keyword is required.

CCSs2 The default #DEVICE ADC is set to the resolution of the part, all other modes default to

only

onebit = eightbits is compiled as onebit = (eightbits != 0)
All other modes compile as: onebit = (eightbits & 1)

Chip Options -Defines the target processor. Every program must have exactly one #DEVICE with a
chip. When linking multiple compilation units, this directive must appear exactly the same in each
compilation unit.

Compilation mode selection - The compilation mode selection allows existing code to be compiled
without encountering errors created by compiler compliance. As CCS discovers discrepancies in the
way expressions are evaluated according to ANSI, the change will generally be made only to the
ANSI mode and the next major CCS release.

Chip Options-

#device PIC16C74

#device PIC16C67 *=16

#device *=16 ICD=TRUE

#device PIC16F877 *=16 ADC=10

#device %$f=.

printf ("$£",.5); //will print .5, without the directive it will print 0.5

Compilation mode selection-
#device CCS2 // This will set the ADC to the resolution of the part

ex_mxram.c , ex_icd.c, 16c74.h ,

read adc()

device

Syntax:

_ DEVICE__

Elements:

None

79

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink3.click()

CCSC Manual

Purpose:

Examples:

Example
Files:
Also See:

This pre-processor identifier is defined by the compiler with the base number of the current
device (from a #DEVICE). The base number is usually the number after the C in the part number.
For example the PIC16C622 has a base number of 622.

#if device ==71
SETUP ADC PORTS (ALL DIGITAL);
#endif

None

#DEVICE

#if expr #else #elif #endif

Syntax: #if expr
code
#elif expr //Optional, any number may be used
code
#else //Optional
code
#endif
Elements: expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard c source code.
Purpose: The pre-processor evaluates the constant expression and if it is non-zero will process
the lines up to the optional #ELSE or the #ENDIF.
Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created
via #define can be used.
The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined
and 0O if it is not.
== and != operators now accept a constant string as both operands. This allows for
compile time comparisons and can be used with GETENV() when it returns a string
result.
Examples: #if MAX VALUE > 255

Example Files:

Also See:

long value;
#else
int value;
#endif
#if getenv (“"DEVICE”)=="PICl6F877"
//do something special for the PIC16F877
#endif

ex_extee.c

#IFDEF, #IENDEF, getenv()

80

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

#error

Syntax: #ERROR text
#ERROR / warning text
#ERROR / information text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this directive appears in the
file. The text may include macros that will be expanded for the display. This may be
used to see the macro expansion. The command may also be used to alert the user to
an invalid compile time situation.

Examples: #if BUFFER SIZE>16
#error Buffer size is too large
#endif
#error Macro test: min(x,Vy)

Example Files: ex_psp.c

Also See: #WARNING

#export (options)

Syntax:

#EXPORT (options)

Elements:

FILE=filname
The filename which will be generated upon compile. If not given, the filname will be the name of the
file you are compiling, with a .0 or .hex extension (depending on output format).

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will be visible to modules that import or link this relocatable object file. If
neither ONLY or EXCEPT is used, all symbols are exported.

EXCEPT=symbol+symbol+.....+symbol
All symbols except the listed symbols will be visible to modules that import or link this relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are exported.

RELOCATABLE

CCS relocatable object file format. Must be imported or linked before loading into a PIC. This is the
default format when the #EXPORT is used.

HEX

Intel HEX file format. Ready to be loaded into a PIC. This is the default format when no #EXPORT
is used.

RANGE-=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

81

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Purpose:

Examples:

Example
Files:
See Also:

This directive will tell the compiler to either generate a relocatable object file or a stand-alone HEX
binary. A relocatable object file must be linked into your application, while a stand-alone HEX binary
can be programmed directly into the PIC.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files. this may be used for 8722
like devices with external memory.

#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc2 (void) { /* some code */ }
void TimerFunc3(void) { /* some code */ }
void TimerTask (void)
{

TimerFuncl () ;

TimerFunc?2 () ;

TimerFunc3 () ;
}
/ *
This source will be compiled into a relocatable object, but the object this is
being linked to can only see TimerTask()
=Y

None

#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

82

PreProcessor

file
Syntax: __FILE__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the file path and the
filename of the file being compiled.
Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILE " at line " LINE _ "\r\n");
Example Files: assert.h
Also See: line
fillename
Syntax: __FILENAME_
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the filename of the file
being compiled.
Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__ FILENAME " at line " _ LINE _ "\r\n");
Example Files: None
Also See: line
#fill_rom
Syntax: #fill_rom value
Elements: value is a constant 16-bit value
Purpose: This directive specifies the data to be used to fill unused ROM locations. When linking multiple
compilation units, this directive must appear exactly the same in each compilation unit.
Examples: #fill rom 0x36
Example None
Files:
Also See: #ROM

83

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

#fuses

Syntax: #FUSES options

Elements: options vary depending on the device. A list of all valid options has been put at the top of each
devices .h file in a comment for reference. The PCW device edit utility can modify a particular
devices fuses. The PCW pull down menu VIEW | Valid fuses will show all fuses with their
descriptions.
Some common options are:
e LP, XT, HS, RC
e WDT, NOWDT
e PROTECT, NOPROTECT
e PUT, NOPUT (Power Up Timer)
¢ BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part when it is programmed. This directive
does not affect the compilation; however, the information is put in the output files. If the fuses need
to be in Parallax format, add a PAR option. SWAP has the special function of swapping (from the
Microchip standard) the high and low BYTES of non-program data in the Hex file. This is required
for some device programmers.
Some fuses are set by the compiler based on other compiler directives. For example, the oscillator
fuses are set up by the #USE delay directive. The debug, No debug and ICSPN Fuses are set by
the #DEVICE ICD=directive.
Some processors allow different levels for certain fuses. To access these levels, assign a value to
the fuse. For example, on the 18F452, the fuse PROTECT=6 would place the value 6 into
CONFIGS5L, protecting code blocks 0 and 3.
When linking multiple compilation units be aware this directive applies to the final object file. Later
files in the import list may reverse settings in previous files.
To eliminate all fuses in the output files use:

#FUSES none
To manually set the fuses in the output files use:
#FUSES 1 = 0xC200 // sets config word 1 to 0xC200

Examples: #fuses HS,NOWDT

Example ex_sgw.c

Files:

Also See: None

#hexcomment

Syntax: #HEXCOMMENT text comment for the top of the hex file

#HEXCOMMENT\ text comment for the end of the hex file
Elements: None

84

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Purpose:

Examples:

Example
Files:
Also See:

Puts a comment in the hex file

Some programmers (MPLAB in particular) do not like comments at the top of the hex file.

#HEXCOMMENT Version 3.1 - requires 20MHz crystal
None

None

#id

Syntax: #ID number 16
#ID number, number, number, number
#ID "filename"
#ID CHECKSUM

Elements: Number 16 is a 16 bit number, number is a 4 bit number, filename is any valid PC
filename and checksum is a keyword.

Purpose: This directive defines the ID word to be programmed into the part. This directive does not
affect the compilation but the information is put in the output file.
The first syntax will take a 16 -bit number and put one nibble in each of the four ID words in
the traditional manner. The second syntax specifies the exact value to be used in each of
the four ID words .
When a filename is specified the ID is read from the file. The format must be simple text
with a CR/LF at the end. The keyword CHECKSUM indicates the device checksum should
be saved as the ID.

Examples: #id 0x1234

Example Files:

Also See:

#id "serial.num"
#id CHECKSUM

ex_cust.c

None

#if expr #else #elif #endif

Syntax:

#if expr
code

#elif expr //Optional, any number may be used
code

#else //Optiona
code

#endif

Elements:

expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard ¢ source code.

85

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Purpose:

Examples:

Example Files:

Also See:

The pre-processor evaluates the constant expression and if it is non-zero will process
the lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via
#define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined
and 0 if it is not.

== and != operators now accept a constant string as both operands. This allows for
compile time comparisons and can be used with GETENV() when it returns a string
result.

#if MAX VALUE > 255
long value;
#else
int value;
#endif
#1if getenv (“"DEVICE”)=="PIC16F877"”
//do something special for the PIC16F877
#endif

ex_extee.c

#IFDEF, #IENDEF, getenv()

#ifdef #ifndef #else #elif #endif

Syntax:

#IFDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

#IFNDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

Elements:

Purpose:

Examples:

Example Files:

id is a preprocessor identifier, code is valid C source code.

This directive acts much like the #IF except that the preprocessor simply checks to see if
the specified ID is known to the preprocessor (created with a #DEFINE). #IFDEF checks to
see if defined and #IFNDEF checks to see if it is not defined.

#define debug // Comment line out for no debug

$ifdef DEBUG

printf ("debug point a");

#endif

ex_sqw.c

86

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Also See: #IE

#ignore_warnings

Syntax: #ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements: warnings is one or more warning numbers separated by commas

Purpose: This function will suppress warning messages from the compiler. ALL indicates no warning will be
generated. NONE indicates all warnings will be generated. If numbers are listed then those
warnings are suppressed.

Examples: #ignore warnings 203
while (TRUE) {
#ignore warnings NONE

Example None
Files:
Also See: Warning messages

#import (options)

Syntax: #IMPORT (options)

Elements: FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object file. If neither
ONLY or EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable object file. If neither
ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the #IMPORT is used.

COFF
COFF file format from MPASM, C18 or C30.

HEX
Imported data is straight hex data.

RANGE=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id
The identifier is made a constant with the start address of the imported data.

SIZE=id

87

CCSC Manual

Purpose:

Examples:

The identifier is made a constant with the size of the imported data.

This directive will tell the compiler to include (link) a relocatable object with this unit during
compilation. Normally all global symbols from the specified file will be linked, but the
EXCEPT and ONLY options can prevent certain symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)
{

while (TRUE)

TimerTask () ;

}
/*
timer.o is linked with this compilation, but only TimerTask() is visible in
scope from this object.

*/

Example Files: None

See Also: #EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple Compilation Unit

#include

Syntax: #INCLUDE <filename>

or
#INCLUDE "filename"

Elements: filename is a valid PC filename. It may include normal drive and path information. A file
with the extension ".encrypted"” is a valid PC file. The standard compiler #INCLUDE
directive will accept files with this extension and decrypt them as they are read. This
allows include files to be distributed without releasing the source code.

Purpose: Text from the specified file is used at this point of the compilation. If a full path is not
specified the compiler will use the list of directories specified for the project to search for
the file. If the filename is in " then the directory with the main source file is searched
first. If the filename is in <> then the directory with the main source file is searched last.

Examples: #include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example Files: ex_sqw.c
Also See: None
#inline

Syntax: #INLINE
Elements: None

88

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Purpose: Tells the compiler that the function immediately following the directive is to be
implemented INLINE. This will cause a duplicate copy of the code to be placed
everywhere the function is called. This is useful to save stack space and to increase
speed. Without this directive the compiler will decide when it is best to make procedures
INLINE.
Examples: #inline
swapbyte (int &a, int &b) {
int t;
t=a;
a=b;
b=t;

}

Example Files: ex_cust.c

Also See: #SEPARATE

#INt_XXXX

Syntax: #INT_AD Analog to digital conversion complete

#INT_ADOF Analog to digital conversion timeout
#INT_BUSCOL Bus collision

#INT_BUSCOL2 Bus collision 2 detected

#INT_BUTTON Pushbutton

#INT_CANERR An error has occurred in the CAN module
#INT_CANIRX An invalid message has occurred on the CAN bus
#INT_CANRXO CAN Receive buffer 0 has received a new message
#INT_CANRX1 CAN Receive buffer 1 has received a new message
#INT_CANTXO CAN Transmit buffer 0 has completed transmission
#INT_CANTX1 CAN Transmit buffer 0 has completed transmission
#INT_CANTX2 CAN Transmit buffer 0 has completed transmission
#INT_CANWAKE Bus Activity wake-up has occurred on the CAN bus
#INT_CCP1 Capture or Compare on unit 1

#INT_CCP2 Capture or Compare on unit 2

#INT_CCP3 Capture or Compare on unit 3

#INT_CCP4 Capture or Compare on unit 4

#INT_CCP5 Capture or Compare on unit 5

#INT_COMP Comparator detect

#INT_COMPO Comparator 0 detect

#INT_COMP1 Comparator 1 detect

#INT_COMP2 Comparator 2 detect

#INT_CR Cryptographic activity complete

89

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

#INT_ETH Ethernet module interrupt

#INT_EXT1 External interrupt #1

#INT_EXT3 External interrupt #3

#INT_IC1 Input Capture #1

#IC3DR Input Capture 3 / Direction Change Interrupt

#INT_LOWVOLT Low voltage detected

#INT_OSC_FAIL System oscillator failed

#INT_PMP Parallel Master Port interrupt

#INT_PWMTB PWM Time Base

#INT_RB Port B any change on B4-B7

#INT_RDA RS232 receive data available

#INT_RDA1 RS232 receive data available in buffer 1

#INT_RTCC Timer 0 (RTCC) overflow

#INT_SSP SPI or 12C activity

#INT_TBE RS232 transmit buffer empty

#INT_TBE1 RS232 transmit buffer 1 empty

#INT_TIMERO Timer 0 (RTCC) overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMER4 Timer 4 overflow

#INT_ULPWU Ultra-low power wake up interrupt

90

PreProcessor

#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific chips. Check the devices .h file for
a full list for a given chip.

Elements:

Purpose:

Examples:

Example
Files:
Also See:

None

These directives specify the following function is an interrupt function. Interrupt functions may not
have any parameters. Not all directives may be used with all parts. See the devices .h file for all
valid interrupts for the part or in PCW use the pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when the interrupt is detected. It will
generate code to save and restore the machine state, and will clear the interrupt flag. To prevent
the flag from being cleared add NOCLEAR after the #INT_xxxx. The application program must call
ENABLE_INTERRUPTS(INT_xxxx) to initially activate the interrupt along with the
ENABLE_INTERRUPTS(GLOBAL) to enable interrupts.

The keywords HIGH and FAST may be used with the PCH compiler to mark an interrupt as high
priority. A high-priority interrupt can interrupt another interrupt handler. An interrupt marked FAST is
performed without saving or restoring any registers. You should do as little as possible and save
any registers that need to be saved on your own. Interrupts marked HIGH can be used normally.
See #DEVICE for information on building with high-priority interrupts.

A summary of the different kinds of PIC18 interrupts:
#INT_Xxxx
Normal (low priority) interrupt. Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST
High priority interrupt. Compiler DOES NOT save/restore key registers.
This interrupt will interrupt any normal interrupt in progress.
Only one is allowed in a program.
#INT_xxxx HIGH
High priority interrupt. Compiler saves/restores key registers.
This interrupt will interrupt any normal interrupt in progress.
#INT_xxxx NOCLEAR
The compiler will not clear the interrupt.
The user code in the function should call clear_interrput() to
clear the interrupt in this case.
#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.

Some interrupts shown in the devices header file are only for the enable/disable interrupts. For
example, INT_RB3 may be used in enable/interrupts to enable pin B3. However, the interrupt
handler is #INT_RB.

Similarly INT_EXT_L2H sets the interrupt edge to falling and the handler is #INT_EXT.

#int_ad
adc_handler () {

adc_active=FALSE;
}

#int_rtcc noclear
isr() {

}

See ex_sisr.c and ex_stwt.c for full example programs.

enable interrupts(), disable interrupts(), #INT DEFAULT, #INT GLOBAL, #PRIORITY

91

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

#INT_DEFAULT

Syntax: #INT_DEFAULT

Elements: None

Purpose: The following function will be called if the PIC® triggers an interrupt and none of the
interrupt flags are set. If an interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

Examples: #int default

Example Files:

Also See:

default isr() {
printf ("Unexplained interrupt\r\n");

}

None

#INT xxxx, #INT global

#int_global

Syntax: #INT_GLOBAL
Elements: None
Purpose: This directive causes the following function to replace the compiler interrupt
dispatcher. The function is normally not required and should be used with great
caution. When used, the compiler does not generate start-up code or clean-up
code, and does not save the registers.
Examples: #int global
isr() { // Will be located at location 4 for PIC16 chips.
#asm
bsf isr flag
retfie
#endasm
}
Example Files: ex_glint.c
Also See: #INT_xxxx
line
Syntax: _line__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with line number of the file

92

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

being compiled.

Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
~ FILE " at line " LINE "\r\n");

Example Files: assert.h
Also See: file
#list
Syntax: #LIST
Elements: None
Purpose: #LIST begins inserting or resumes inserting source lines into the .LST file after a

#NOLIST.
Examples: #NOLIST // Don't clutter up the list file

#include <cdriver.h>

#LIST
Example Files: 16c74.h
Also See: #NOLIST
#line
Syntax: #LINE number file name
Elements: Number is non-negative decimal integer. File name is optional.
Purpose: The C pre-processor informs the C Compiler of the location in your source code. This

code is simply used to change the value of _LINE_ and _FILE_ variables.

Examples: 1. void main() {

Example Files:

Also See:

#line 10 //
//
//

2. #line 7 "hello.

//
//
//
//
None
None

specifies the line number that
should be reported for
the following line of input

pt
line number in the source file
hello.c and it sets the

line 7 as current line

and hello.c as current file

93

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

#locate
Syntax: #LOCATE id=x
Elements: id is a C variable,
X is a constant memory address
Purpose: #LOCATE allocates a C variable to a specified address. If the C variable was not previously
defined, it will be defined as an INT8.
A special form of this directive may be used to locate all A functions local variables starting at a
fixed location.
Use: #LOCATE Auto = address
This directive will place the indirected C variable at the requested address.
Exanuﬂes; // This will locate the float variable at 50-53
// and C will not use this memory for other
// variables automatically located.
float x;
#locate x=0x 50
Example ex_glint.c
Files:
Also See: #byte, #bit, #reserve, #word, Named Registers, Type Specifiers, Type Qualifiers, Enumerated
Types, Structures & Unions, Typedef
#module
Syntax: #MODULE
Elements: None
Purpose: All global symbols created from the #MODULE to the end of the file will only be visible
within that same block of code (and files #INCLUDE within that block). This may be
used to limit the scope of global variables and functions within include files. This
directive also applies to pre-processor #defines.
Note: The extern and static data qualifiers can also be used to denote scope of
variables and functions as in the standard C methodology. #MODULE does add some
benefits in that pre-processor #DEFINE can be given scope, which cannot normally be
done in standard C methodology.
Examples: int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE

int g count;
#define G COUNT MAX 100
int GetCount (void) {return(g count);}
void SetCount (int newCount) {

if (newCount>G COUNT MAX)

newCount=G_COUNT_ MAX;

g_count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope, but the
variable g count and the #define G COUNT MAX only has scope to this

94

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Example Files:

file.
=/

None

See Also: #EXPORT, Invoking the Command Line Compiler, Multiple Compilation Unit

#nolist

Syntax: #NOLIST

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #LIST

#0ocCsS

Syntax: #0OCS x

Elements: x is the clock's speed and can be 1 Hz to 100 MHz.

Purpose: Used instead of the #use delay(clock = x)

Examples: #include <18F4520.h>

Example Files:

Also See:

#device ICD=TRUE
#0CS 20 MHz
#use rs232 (debugger)

void main () {

None

#USE DELAY

95

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

#opt

Syntax: #OPT n

Elements: All Devices: n is the optimization level 1-11 or by using the word "compress" for PIC18
and Enhanced PIC16 families.

Purpose: The optimization level is set with this directive. This setting applies to the entire
program and may appear anywhere in the file. The PCW default is 9 for normal.

When Compress is specified the optimization is set to an extreme level that causes a
very tight rom image, the code is optimized for space, not speed. Debugging with this
level my be more difficult.

Examples: #opt 5
Example Files: None
Also See: None

#org

Syntax:

#ORG start, end
or
#ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements:

Purpose:

start is the first ROM location (word address) to use, end is the last ROM location,
segment is the start ROM location from a previous #ORG

This directive will fix the following function, constant or ROM declaration into a specific
ROM area. End may be omitted if a segment was previously defined if you only want to
add another function to the segment.

Follow the ORG with a { } to only reserve the area with nothing inserted by the compiler.

The RAM for a ORG'd function may be reset to low memory so the local variables and
scratch variables are placed in low memory. This should only be used if the ORG'd
function will not return to the caller. The RAM used will overlap the RAM of the main
program. Add a AUTO=0 at the end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all functions user
and compiler generated from this point in the file until a #ORG DEFAULT is encountered
(no address range). If a compiler function is called from the generated code while
DEFAULT is in effect the compiler generates a new version of the function within the
specified address range.

#ORG may be used to locate data in ROM. Because CONSTANT are implemented as
functions the #ORG should proceed the CONSTANT and needs a start and end address.
For a ROM declaration only the start address should be specified.

96

PreProcessor

When linking multiple compilation units be aware this directive applies to the final object
file. Itis an error if any #ORG overlaps between files unless the #ORG matches exactly.

Examples: #ORG 0x1E00, Ox1FFF
MyFunc () {
//This function located at 1E00
}

#ORG 0x1E00

Anotherfunc () {

// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl NO0=12345;

#ORG 0x1C00, 0x1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1C00

//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

}

Example Files: loader.c

Also See: #ROM

#pin_select

Syntax: #PIN_SELECT function=pin_xx

Elements: function is the Microchip defined pin function name, such as: UIRX

(UART1 receive), INT1 (external interrupt 1), T2CK (timer 2 clock), IC1
(input capture 1), OC1 (output capture 1).

INT1 External Interrupt 1

INT2 External Interrupt 2

INT3 External Interrupt 3

TOCK Timer0 External Clock

T3CK Timer3 External Clock

CCP1 Input Capture 1

CCP2 Input Capture 2

T1G Timerl Gate Input

T3G Timer3 Gate Input

U2RX EUSART2 Asynchronous
Receive/Synchronous Receive (also
named: RX2)

U2CK EUSART2 Asynchronous Clock Input

97

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

Purpose:

Examples:

Example
Files:
Also See:

SDI2
SCK2IN
SS2IN
FLTO
TOCKI
T3CKI
RX2

NULL
Ci0ouT
C20UT
u2TX
u2DT
SDO2
SCK20UT
SS20UT
ULPOUT
P1A
P1B
P1C
P1D
P2A
P2B
P2C
P2D

TX2

DT2

SCK2
SSDMA

SPI2 Data Input

SPI2 Clock Input

SPI2 Slave Select Input

PWM Fault Input

Timer0 External Clock Input

Timer3 External Clock Input

EUSART2 Asynchronous
Transmit/Asynchronous Clock Output (also
named: TX2)

NULL

Comparator 1 Output

Comparator 2 Output

EUSART2 Asynchronous Transmit/
Asynchronous Clock Output (also named:
TX2)

EUSART2 Synchronous Transmit (also
named: DT2)

SPI2 Data Output

SPIC2 Clock Output

SPI2 Slave Select Output

Ultra Low-Power Wake-Up Event

ECCP1 Compare or PWM Output Channel
A

ECCP1 Enhanced PWM Output, Channel
B

ECCP1 Enhanced PWM Output, Channel
©

ECCP1 Enhanced PWM Output, Channel
D

ECCP2 Compare or PWM Output Channel
A

ECCP2 Enhanced PWM Output, Channel
B

ECCP2 Enhanced PWM Output, Channel
C

ECCP1 Enhanced PWM Output, Channel
D

EUSART2 Asynchronous
Transmit/Asynchronous Clock Output (also
named: TX2)

EUSART2 Synchronous Transmit (also
named: U2DT)

SPI2 Clock Output

SPI DMA Slave Select

pin_xx is the CCS provided pin definition. For example: PIN_C7,

PIN_BO, PIN_D3, etc.

When using PPS chips a #PIN_SELECT must be appear before these
peripherals can be used or referenced.

#pin select UITX=PIN C6
#pin select UIRX=PIN C7
#pin select INT1=PIN BO

None

None

98

PreProcessor

__bcb__

Syntax: _PCB__
Elements: None
Purpose: The PCB compiler defines this pre-processor identifier. It may be used to

determine if the PCB compiler is doing the compilation.

Examples: #ifdef pcb
#device PICl6c54
#endif
Example Files: ex_sqw.c
Also See: PCM_,_ PCH
__pcm__
Syntax: __PCM__
Elements: None
Purpose: The PCM compiler defines this pre-processor identifier. It may be used to

determine if the PCM compiler is doing the compilation.

Examples: #ifdef pem
#device PICl6c71
#endif

Example Files: ex_sgw.c

Also See: PCB_,_PCH

__pch__

Syntax: __PCH__

Elements: None

Purpose: The PCH compiler defines this pre-processor identifier. It may be used to determine if
the PCH compiler is doing the compilation.

Examples: #ifdef =~ PCH _ _
#device PIC18C452
#endif

Example Files: ex_sgw.c

Also See: PCB , PCM

99

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

#pragma

Syntax: #PRAGMA cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C compilers. This compiler will
accept this directive before any other pre-processor command. In no case does this
compiler require this directive.

Examples: #pragma device PIC16C54

Example Files:

Also See:

ex_cust.c

None

#priority

Syntax: #PRIORITY ints

Elements: ints is a list of one or more interrupts separated by commas.
export makes the functions generated from this directive available to other
compilation units within the link.

Purpose: The priority directive may be used to set the interrupt priority. The highest priority
items are first in the list. If an interrupt is active it is never interrupted. If two interrupts
occur at around the same time then the higher one in this list will be serviced first.
When linking multiple compilation units be aware only the one in the last compilation
unit is used.

Examples: #priority rtecc,rb

Example Files:

Also See:

None

#INT XXXX

#profile

Syntax:

#profile options

Elements:

options may be one of the following:

functions Profiles the start/end of functions and all

profileout() messages.

100

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Purpose:

Examples:

Example Files:

functions, Profiles the start/end of functions,

parameters parameters sent to functions, and all
profileout() messages.

profileout Only profile profilout() messages.

paths Profiles every branch in the code.

off Disable all code profiling.

on Re-enables the code profiling that was

previously disabled with a #profile off
command. This will use the last
options before disabled with the off
command.

Large programs on the microcontroller may generate lots of profile data, which may make it
difficult to debug or follow. By using #profile the user can dynamically control which points of
the program are being profiled, and limit data to what is relevant to the user.

#profile off
void BigFunction (void)
{
// BigFunction code goes here.
// Since f#profile off was called above,
// no profiling will happen even for other
// functions called by BigFunction() .
}

#profile on

ex_profile.c

Also See: #use profile(), profileout(), Code Profile overview
#reserve
Syntax: #RESERVE address
or
#RESERVE address, address, address
or
#RESERVE start:end
Elements: address is a RAM address, start is the first address and end is the last address
Purpose: This directive allows RAM locations to be reserved from use by the compiler. #RESERVE must
appear after the #DEVICE otherwise it will have no effect. When linking multiple compilation units
be aware this directive applies to the final object file.
Examples: #DEVICE PIC16C74
#RESERVE 0x60:0X6f
Example ex_cust.c
Files:
Also See: #ORG

101

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

#rom

Syntax:

#ROM address = {list}
#ROM type address = {list}

Elements:

Purpose:

Examples:

Example Files:

Also See:

address is a ROM word address, list is a list of words separated by commas

Allows the insertion of data into the .HEX file. In particular, this may be used to
program the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive
creates a segment for the data, resulting in an error if a #ORG is over the same area.
The #ROM data will also be counted as used program memory space.

The type option indicates the type of each item, the default is 16 bits. Using char as the
type treats each item as 7 bits packing 2 chars into every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies to the final object
file.

Some special forms of this directive may be used for verifying program memory:

#ROM address = checksum
This will put a value at address such that the entire program memory will sum to
0x1248

#ROM address = crc16
This will put a value at address that is a crc16 of all the program memory except the
specified address

#ROM address = crc8
This will put a value at address that is a crc16 of all the program memory except the
specified address

#rom getnev ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}

#rom int8 0x1000={"(c)CCS, 2010"}
None

#ORG

#separate

Syntax:

#SEPARATE

Elements:

Purpose:

Examples:

None

Tells the compiler that the procedure IMMEDIATELY following the directive is to be
implemented SEPARATELY. This is useful to prevent the compiler from automatically
making a procedure INLINE. This will save ROM space but it does use more stack
space. The compiler will make all procedures marked SEPARATE, separate, as
requested, even if there is not enough stack space to execute.

#separate
swapbyte (int *a, int *b) {
int t;

t=*a;

102

PreProcessor

*a:*b;
*b=t;
}

Example Files: ex_cust.c

Also See: #INLINE

#serialize

Syntax: #SERIALIZE(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt",
"prompt="text", log="filename.txt") -
or
#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" | listfile="filename.txt",
prompt="text", log="filename.txt")

Elements: id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char array
Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address specified. -or-
string=x - The integer x is the number of bytes to be written to address specified.
unicode=n - If nis a 0, the string format is normal unicode. For n>0 n indicates the
string

number in a USB descriptor.

Use only one of the next three options:
file="filename.txt" - The file x is used to read the initial serial number from, and this file
is updated by the ICD programmer. It is assumed this is a one line file with the serial
number. The programmer will increment the serial number.
listfile="filename.txt" - The file x is used to read the initial serial number from, and this
file is updated by the ICD programmer. It is assumed this is a file one serial number per
line. The programmer will read the first line then delete that line from the file.
next="x" - The serial number X is used for the first load, then the hex file is updated to
increment x by one.
Other optional parameters:
prompt="text" - If specified the user will be prompted for a serial number on each load.
If used with one of the above three options then the default value the user may use is
picked according to the above rules.
log=xxx - A file may optionally be specified to keep a log of the date, time, hex file name
and serial number each time the part is programmed. If no id=xxx is specified then this
may be used as a simple log of all loads of the hex file.

Purpose: Assists in making serial numbers easier to implement when working with CCS ICD units.
Comments are inserted into the hex file that the ICD software interprets.

Examples: //Prompt user for serial number to be placed

//at address of serialNumA
//Default serial number = 200int8int8 const serialNumA=100;
#serialize (id=serialNumA, next="200",prompt="Enter the serial number")

//Adds serial number log in seriallog.txt
#serialize (id=serialNumA, next="200",prompt="Enter the serial number",
log="seriallog.txt")

103

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

//Retrieves serial number from serials.txt
#serialize (id=serialNumA,listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1 byte
#serialize (dataee=0,binary=1,next="45",prompt="Put in Serial number")

//Place string serial number at EEPROM address 0, reserving 2 bytes
#serialize (dataee=0, string=2,next="AB",prompt="Put in Serial number")

Example Files: None

Also See: None

#task

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #TASK directive is needed just
before each RTOS task to enable the compiler to tell which functions are RTOS tasks. An RTOS task cannot be
called directly like a regular function can.

Syntax: #TASK (options)

Elements: options are separated by comma and may be:
rate=time
Where time is a number followed by s, ms, us, or ns. This specifies how often the task
will execute.

max=time
Where time is a number followed by s, ms, us, or ns. This specifies the budgeted time
for this task.

queue=bytes
Specifies how many bytes to allocate for this task's incoming messages. The default
value is 0.

enabled=value
Specifies whether a task is enabled or disabled by rtos_run().
True for enabled, false for disabled. The default value is enabled.

Purpose: This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must be a
multiple of the minor_cycle option if one is specified in the #USE RTOS directive.

The max option is used to specify how much processor time a task will use in one
execution of the task. The time specified in max must be equal to or less than the time
specified in the minor_cycle option of the #USE RTOS directive before the project will
compile successfully. The compiler does not have a way to enforce this limit on
processor time, so a programmer must be careful with how much processor time a task
uses for execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default queue value
is 0.

Examples: #task (rate=1s, max=20ms, queue=5)

104

PreProcessor

Also See: #USE RTOS
time
Syntax: __TIME__
Elements: None
Purpose: This pre-processor identifier is replaced at compile time with the time of the compile in
the form: "hh:mm:ss"
Examples: printf ("Software was compiled on ") ;

Example Files

Also See:

printf(TIME);
: None

None

#type

Syntax:

#TYPE standard-type=size
#TYPE default=area
#TYPE unsigned

#TYPE signed

Elements:

Purpose:

Examples:

standard-type is one of the C keywords short, int, long, or default
size is 1,8,16, or 32
area is a memory region defined before the #TYPE using the addressmod directive

By default the compiler treats SHORT as one bit, INT as 8 bits, and LONG as 16 bits. The
traditional C convention is to have INT defined as the most efficient size for the target processor.
This is why it is 8 bits on the PIC ® . In order to help with code compatibility a #TYPE directive may
be used to allow these types to be changed. #TYPE can redefine these keywords.

Note that the commas are optional. Since #TYPE may render some sizes inaccessible (like a one
bit int in the above) four keywords representing the four ints may always be used: INT1, INTS,
INT16, and INT32. Be warned CCS example programs and include files may not work right if you
use #TYPE in your program.

This directive may also be used to change the default RAM area used for variable storage. This is
done by specifying default=area where area is a addressmod address space.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the default data type.

#TYPE SHORT= 8 , INT= 16 , LONG= 32

105

CCSC Manual

#TYPE default=area

addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in

// 0x100-0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED

ééid main ()
{

int variablel; // variablel can only take values from -128 to 127

}

Example ex_cust.c
Files:
Also See: None

#undef

Syntax: #UNDEF id

Elements: id is a pre-processor id defined via #DEFINE

Purpose: The specified pre-processor ID will no longer have meaning to the pre-processor.
Examples: #if MAXSIZE<100

#undef MAXSIZE
#define MAXSIZE 100

#endif
Example Files: None
Also See: #DEFINE

_unicode
Syntax:

__unicode(constant-string)
Elements:

Unicode format string
Purpose

This macro will convert a standard ASCII string to a Unicode format string by
inserting a \00O0 after each character and removing the normal C string
terminator.

For example: _unicode("ABCD")
will return: ~ "A\00B\OOOC\000D" (8 bytes total with the terminator)

106

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Since the normal C terminator is not used for these strings you need to do one
of the following for variable length strings:

string = _unicode(KEYWORD) "000\000";
OR

string = _unicode(KEYWORD);

string_size = sizeof(_unicode(KEYWORD));

Examples: #define USB DESC_STRING TYPE 3

#define USB STRING (x)
(sizeof (_unicode (x))+2),USB DESC STRING TYPE, unicode (x)
#define USB _ENGLISH STRING 4,USB_DESC_STRING_TYPE,OXO9,0XO4
//Microsoft Defined for
English

char const USB STRING DESC[]=[
USB_ENGLISH_STRING,
USB_STRING ("CCS"),
USB STRING ("CCS HID DEMO")
b

Example Files: usb_desc_hid.h

#use capture

Syntax: #USE CAPTURE(options)

Elements: ICx/CCPx
Which CCP/Input Capture module to us.

INPUT = PIN_xx
Specifies which pin to use. Useful for device with remappable pins, this
will cause compiler to automatically assign pin to peripheral.

TIMER=x
Specifies the timer to use with capture unit. If not specified default to
timer 1 for PCM and PCH compilers and timer 3 for PCD compiler.

TICK=x

The tick time to setup the timer to. If not specified it will be set to fastest
as possible or if same timer was already setup by a previous stream it will
be set to that tick time. If using same timer as previous stream and
different tick time an error will be generated.

FASTEST
Use instead of TICK=x to set tick time to fastest as possible.

SLOWEST
Use instead of TICK=x to set tick time to slowest as possible.

CAPTURE_RISING
Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_FALLING

107

CCSC Manual

Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_BOTH
PCD only. Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

PRE=x

Specifies number of rising edges before capture event occurs. Valid
options are 1, 4 and 16, default to 1 if not specified. Options 4 and 16 are
only valid when using CAPTURE_RISING, will generate an error is used
with CAPTURE_FALLING or CAPTURE_BOTH.

ISR=x

STREAM=id
Associates a stream identifier with the capture module. The identifier
may be used in functions like get_capture_time().

DEFINE=id
Creates a define named id which specifies the number of capture per
second. Default define name if not specified is
CAPTURES_PER_SECOND. Define name must start with an ASCI|I
letter 'A' to 'Z', an ASCI| letter 'a’ to 'z' or an ASCII underscore (*_").
Purpose: This directive tells the compiler to setup an input capture on the specified
pin using the specified settings. The #USE DELAY directive must appear
before this directive can be used. This directive enables use of built-in
functions such as get_capture_time() and get_capture_event().

Examples: #USE
CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

Example None.

Files:

Also See: get capture time(), get capture event()

#use delay

Syntax: #USE DELAY (options))

Elements: Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following denominations: M, MHZ,
K, KHZ. This specifies the clock the CPU runs at. Depending on the PIC this is 2 or 4 times the
instruction rate. This directive is not needed if the following type=speed is used and there is no
frequency multiplication or division.

type=speed type defines what kind of clock you are using, and the following values are valid:
oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal, int (same as internal) or rc.
The compiler will automatically set the oscillator configuration bits based upon your defined type. If
you specified internal, the compiler will also automatically set the internal oscillator to the defined
speed. Configuration fuses are modified when this option is used. Speed is the input frequency.

restart_wdt will restart the watchdog timer on every delay_us() and delay_ms() use.

clock_out when used with the internal or oscillator types this enables the clockout pin to output the
clock.

fast_start some chips allow the chip to begin execution using an internal clock until the primary clock

108

PreProcessor

Also See:

is stable.
lock some chips can prevent the oscillator type from being changed at run time by the software.

USB or USB_FULL for devices with a built-in USB peripheral. When used with the type=speed
option the compiler will set the correct configuration bits for the USB peripheral to operate at Full-
Speed.

USB_LOW for devices with a built-in USB peripheral. When used with the type=speed option the
compiler will set the correct configuration bits for the USB peripheral to operate at Low-Speed.

ACT or ACT=type for device with Active Clock Tuning, type can be either USB or SOSC. If only
using ACT type will default to USB. ACT=USB causes the compiler to enable the active clock tuning
and to tune the internal oscillator to the USB clock. ACT=SOSC causes the compiler to enable the
active clock tuning and to tune the internal oscillator to the secondary clock at 32.768 kHz. ACT can
only be used when the system clock is set to run from the internal oscillator.

delay ms(), delay us()

#use dynamic_memory

Syntax: #USE DYNAMIC_MEMORY
Elements: None
Purpose: This pre-processor directive instructs the compiler to create the _DYNAMIC_HEAD object.
_DYNAMIC_HEAD is the location where the first free space is allocated.
Examples: #USE DYNAMIC MEMORY
void main () {
}
Example ex_malloc.c
Files:
Also See: None

#use fast_io

Syntax:

#USE FAST_IO (port)

Elements:

Purpose:

Examples:

portisA,B,C,D, E, F, G, H, Jor ALL

Affects how the compiler will generate code for input and output instructions that follow. This
directive takes effect until another #use xxxx_lO directive is encountered. The fast method of doing
1/0 will cause the compiler to perform I/O without programming of the direction register. The
compiler's default operation is the opposite of this command, the direction I/O will be set/cleared on
each 1/O operation. The user must ensure the direction register is set correctly via set_tris_X().
When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

#use fast io(A)

109

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Example ex_cust.c
Files:
Also See: #USE FIXED 10, #USE STANDARD |O, set_tris X() , General Purpose I/O

#use fixed _io

Syntax: #USE FIXED_IO (port_outputs=pin, pin?)

Elements: port is A-G, pin is one of the pin constants defined in the devices .h file.

Purpose: This directive affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #USE XXX_IO directive is encountered. The fixed
method of doing I/0 will cause the compiler to generate code to make an I/O pin either input or
output every time it is used. The pins are programmed according to the information in this
directive (not the operations actually performed). This saves a byte of RAM used in standard 1/O.
When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

Examples: #use fixed io(a outputs=PIN A2, PIN A3)

Example None

Files:

Also See: #USE FAST 10, #USE STANDARD 10, General Purpose 1/0

#usei2c

Syntax: #USE 12C (options)

Elements: Options are separated by commas and may be:

MASTER

Sets to the master mode

MULTI_MASTER
SLAVE

SCL=pin
SDA=pin
ADDRESS=nn
FAST
FAST=nnnnnn
SLOW
RESTART_WDT

FORCE_HW
FORCE_SW
NOFLOAT_HIGH

SMBUS

Set the multi_master mode

Set the slave mode

Specifies the SCL pin (pin is a bit address)
Specifies the SDA pin

Specifies the slave mode address

Use the fast 12C specification.

Sets the speed to nnnnnn hz

Use the slow 12C specification

Restart the WDT while waiting in 12C_READ

Use hardware I12C functions.
Use software 12C functions.

Does not allow signals to float high, signals are driven from
low to high
Bus used is not 12C bus, but very similar

110

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

STREAM=id Associates a stream identifier with this 12C port. The
identifier may then be used in functions like i2c_read or
i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

12C1 Instead of SCL= and SDA= this sets the pins to the first
module

12C2 Instead of SCL= and SDA= this sets the pins to the second
module

NOINIT No initialization of the 12C peripheral is performed. Use

12C_INIT() to initialize peripheral at run time.

Only some chips allow the following:

DATA_HOLD No ACK is sent until I2C_READ is called for data bytes (slave only)
ADDRESS HOLD No ACK is sent until I2C_read is called for the address byte (slave only)
SDA_HOLD Min of 300ns holdtime on SDA a from SCL goes low

Purpose: CCS offers support for the hardware-based 12C™ and a software-based master 12C™ device.(For

more information on the hardware-based 12C module, please consult the datasheet for your target
device; not all PICs support [2C™.

The 12C library contains functions to implement an 12C bus. The #USE I12C remains in effect for the
[2C_START, 12C_STOP, I2C_READ, I2C_WRITE and 12C_POLL functions until another USE 12C is
encountered. Software functions are generated unless the FORCE_HW is specified. The SLAVE
mode should only be used with the built-in SSP. The functions created with this directive are
exported when using multiple compilation units. To access the correct function use the stream
identifier.

Examples: #use I2C(master, sda=PIN B0, scl=PIN Bl)

#use I2C(slave,sda=PIN C4,scl=PIN C3
address=0xa0, FORCE_HW)

#use I2C(master, scl=PIN B0, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

Example ex_extee.c with 16c74.h
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c _isr_state, i2c_write,

i2c_read, 12C Overview

#use profile()

Syntax: #use profile(options)

Elements: options may be any of the following, comma separated:

ICD Default — configures code profiler to use the ICD
connection.
TIMER1 Optional. If specified, the code profiler run-time

on the microcontroller will use the Timerl
peripheral as a timestamp for all profile events.
If not specified the code profiler tool will use
the PC clock, which may not be accurate for
fast events.

111

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink3.click()

CCSC Manual

BAUD=x Optional. If specified, will use a different baud rate
between the microcontroller and the code profiler tool.
This may be required on slow microcontrollers to attempt
to use a slower baud rate.
Purpose: Tell the compiler to add the code profiler run-time in the microcontroller and configure the link and
clock.

Examples: #profile(ICD, TIMER1, baud=9600)

Example ex_profile.c
Files:

Also See: #profile(), profileout(), Code Profile overview

#use pwm
Syntax: #USE PWM(options)
Elements: Options are separated by commas and may be:

PWMx or CCPx

Selects the CCP to use, x being the module number to use.

OUTPUT=PIN_xx

TIMER=X

FREQUENCY=x

PERIOD=x

BITS=x

Selects the PWM pin to use, pin must be one of the CCP pins. If device has
remappable pins compiler will assign specified pin to specified CCP module. If CCP
module not specified it will assign remappable pin to first available module.

Selects timer to use with PWM module, default if not specified is timer 2.

Sets the period of PWM based off specified value, should not be used if PERIOD is
already specified. If frequency can't be achieved exactly compiler will generate a
message specifying the exact frequency and period of PWM. If neither FREQUENCY
or PERIOD is specified, the period defaults to maximum possible period with
maximum resolution and compiler will generate a message specifying the frequency
and period of PWM, or if using same timer as previous stream instead of setting to
maximum possible it will be set to the same as previous stream. If using same timer
as previous stream and frequency is different compiler will generate an error.

Sets the period of PWM, should not be used if FREQUENCY is already specified. If
period can't be achieved exactly compiler will generate a message specifying the
exact period and frequency of PWM. If neither PERIOD or FREQUENCY is specified,
the period defaults to maximum possible period with maximum resolution and
compiler will generate a message specifying the frequency and period of PWM, or if
using same timer as previous stream instead of setting to maximum possible it will be
set to the same as previous stream. If using same timer as previous stream and
period is different compiler will generate an error.

Sets the resolution of the the duty cycle, if period or frequency is specified will adjust
the period to meet set resolution and will generate an message specifying the
frequency and duty of PWM. If period or frequency not specified will set period to
maximum possible for specified resolution and compiler will generate a message
specifying the frequency and period of PWM, unless using same timer as previous
then it will generate an error if resolution is different then previous stream. If not

112

PreProcessor

specified then frequency, period or previous stream using same timer sets the

resolution.

DUTY=x Selects the duty percentage of PWM, default if not specified is 50%.

PWM_ON Initialize the PWM in the ON state, default state if pwm_on or pwm_off is not
specified.

PWM_OFF Initalize the PWM in the OFF state.

STREAM=id Associates a stream identifier with the PWM signal. The identifier may be used in

functions like pwm_set_duty_percent().

This directive tells the compiler to setup a PWM on the specified pin using the specified
frequency, period, duty cycle and resolution. The #USE DELAY directive must appear
before this directive can be used. This directive enables use of built-in functions such

Purpose: as set_pwm_duty_percent(), set_pwm_frequency(), set_pwm_period(), pwm_on() and
pwm_off().

Example Files | None

Also See:

#use rs232

Syntax: #USE RS232 (options)

Elements: Options are separated by commas and may be:
STREAM=id Associates a stream identifier with this RS232 port.
The identifier may then be used in functions like fputc.

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin

FORCE_SW Will generate software serial I/O routines even when the

UART pins are specified.

BRGH1OK Allow bad baud rates on chips that have baud rate
problems.
ENABLE=pin The specified pin will be high during transmit. This may be

used to enable 485 transmit.

DEBUGGER Indicates this stream is used to send/receive data through
a CCS ICD unit. The default pin used is B3, use XMIT=
and RCV= to change the pin used. Both should be the

same pin.

RESTART_WDT Will cause GETC() to clear the WDT as it waits for a
character.

INVERT Invert the polarity of the serial pins (normally not needed

when level converter, such as the MAX232). May not be
used with the internal UART.

113

CCSC Manual

PARITY=X

BITS =X

FLOAT_HIGH

ERRORS

SAMPLE_EARLY

RETURN=pin

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

TIMEOUT=X

SYNC_SLAVE

SYNC_MASTER

SYNC_MATER_CONT

UART1

UART2

NOINIT

Where xis N, E, or O.
Where x is 5-9 (5-7 may not be used with the SCI).

The line is not driven high. This is used for open collector
outputs. Bit 6 in RS232_ERRORS is set if the pin is not
high at the end of the bit time.

Used to cause the compiler to keep receive errors in the
variable RS232_ERRORS and to reset errors when they
occur.

A getc() normally samples data in the middle of a bit time.
This option causes the sample to be at the start of a bit
time. May not be used with the UART.

For FLOAT_HIGH and MULTI_MASTER this is the pin
used to read the signal back. The default for
FLOAT_HIGH is the XMIT pin and for MULTI_MASTER
the RCV pin.

Uses the RETURN pin to determine if another master on
the bus is transmitting at the same time. If a collision is
detected bit 6 is set in RS232_ERRORS and all future
PUTC's are ignored until bit 6 is cleared. The signal is
checked at the start and end of a bit time. May not be
used with the UART.

Makes getc() return an int16 and putc accept an int16.
This is for 9 bit data formats.

Will cause interrupts to be disabled when the routines get
or put a character. This prevents character distortion for
software implemented I/O and prevents interaction
between I/O in interrupt handlers and the main program
when using the UART.

To set the number of stop bits (default is 1). This works for
both UART and
non-UART ports.

To set the time getc() waits for a byte in milliseconds. If no
character comes in within this time the RS232_ERRORS
is set to 0 as well as the return value form getc(). This
works for both UART and non-UART ports.

Makes the RS232 line a synchronous slave, making the
receive pin a clock in, and the data pin the data in/out.

Makes the RS232 line a synchronous master, making the
receive pin a clock out, and the data pin the data in/out.

Makes the RS232 line a synchronous master mode in
continuous receive mode. The receive pin is set as a clock
out, and the data pin is set as the data in/out.

Sets the XMIT= and RCV= to the chips first hardware
UART.

Sets the XMIT= and RCV= to the chips second hardware
UART.
No initialization of the UART peripheral is performed.

114

PreProcessor

ICD

UART3
UART4

ICD

Serial Buffer Options:
RECEIVE_BUFFER=x

TRANSMIT_BUFFER=x

TXISR

NOTXISR

Flow Control Options:
RTS = PIN_xx

RTS_LEVEL=x

CTS = PIN_xx

CTS_LEVEL=x

FLOW_CONTROL_MODE

SIMPLEX_MODE

Useful for dynamic control of the UART baudrate or
initializing the peripheral manually at a later point in the
program's run time. If this option is used, then setup_uart(
) needs to be used to initialize the peripheral. Using a
serial routine (such as getc() or putc()) before the UART
is initialized will cause undefined behavior.

Indicates this stream is used to send/receive data through
a CCS ICD unit. The default trasmit pin is the PIC's
ICSPDAT/PGD pin and the default receive pin is the PIC's
ICSPCLK/PGC pin. Use XMIT= and RCV= to change
the pins used.

Sets the XMIT= and RCV=
hardware UART.

Sets the XMIT= and RCV= to the device's fourth
hardware UART.

Indicates this stream uses the ICD in a special pass
through mode to send/receive serial data to/from PC. The
ICSP clock line is the PIC's receive pin, usually pin B6,
and the ICSP data line is the PIC's transmit pin, usually
pin B7.

to the device's third

Size in bytes of UART circular receive buffer, default if not
specified is zero. Uses an interrupt to receive data,
supports RDA interrupt or external interrupts.

Size in bytes of UART circular transmit buffer, default if
not specified is zero.

If TRANSMIT_BUFFER is greater then zero specifies
using TBE interrupt for transmitting data. Default is
NOTXISR if TXISR or NOTXISR is not specified. TXISR
option can only be used when using hardware UART.

If TRANSMIT_BUFFER is greater then zero specifies to
not use TBE interrupt for transmitting data. Default is
NOTXISR if TXISR or NOTXISR is not specified and
XMIT_BUFFER is greater then zero

Pin to use for RTS flow control. When using
FLOW_CONTROL_MODE this pin is driven to the active
level when it is ready to receive more data. In
SIMPLEX_MODE the pin is driven to the active level when
it has data to transmit. FLOW_CONTROL_MODE can
only be use when using RECEIVE_BUFFER

Specifies the active level of the RTS pin, HIGH is active
high and LOW is active low. Defaults to LOW if not
specified.

Pin to use for CTS flow control. In both
FLOW_CONTROL_MODE and SIMPLEX_MODE this pin
is sampled to see if it clear to send data. If pin is at active
level and there is data to send it will send next data byte.
Specifies the active level of the CTS pin, HIGH is active
high and LOW is active low. Default to LOW if not
specified

Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is driven to the
active level when ready to receive data. Defaults to
FLOW_CONTROL_MODE when neither
FLOW_CONTROL_MODE or SIMPLEX_MODE is
specified. If RTS pin isn't specified then this option is not
used.

Specifies how the RTS pin is used. For SIMPLEX_MODE
the RTS pin is driven to the active level when it has data
to send. Defaults to FLOW_CONTROL_MODE when
neither FLOW CONTROL MODE or SIMPLEX MODE is

115

CCSC Manual

specified. If RTS pin isn't specified then this option is not
used.

Purpose: This directive tells the compiler the baud rate and pins used for serial I/O. This directive takes effect
until another RS232 directive is encountered. The #USE DELAY directive must appear before this
directive can be used. This directive enables use of built-in functions such as GETC, PUTC, and
PRINTF. The functions created with this directive are exported when using multiple compilation
units. To access the correct function use the stream identifier.

When using parts with built-in SCI and the SCI pins are specified, the SCI will be used. If a baud
rate cannot be achieved within 3% of the desired value using the current clock rate, an error will be
generated. The definition of the RS232_ERRORS is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
e Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0 is used to indicate a parity error.

Warning:

The PIC UART will shut down on overflow (3 characters received by the hardware with a GETC()
call). The "ERRORS" option prevents the shutdown by detecting the condition and resetting the
UART.

Examples: #use rs232(baud=9600, xmit=PIN A2, rcv=PIN A3)
Example ex_cust.c

Files:
Also See: getc(), putc(), printf(), setup_uart(), RS2332 I/O overview

#use rtos

(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to
run regularly scheduled tasks without the need for interrupts. This is
accomplished by a function (RTOS_RUNY()) that acts as a dispatcher. When a
task is scheduled to run, the dispatch function gives control of the processor to
that task. When the task is done executing or does not need the processor
anymore, control of the processor is returned to the dispatch function which
then will give control of the processor to the next task that is scheduled to
execute at the appropriate time. This process is called cooperative multi-

tasking.

Syntax: #USE RTOS (options)

Elements: options are separated by comma and may be:
timer=X Where x is 0-4 specifying the timer used by the RTOS.
minor_cycle=time Where time is a number followed by s, ms, us, ns. This is the

longest time any task will run. Each task’s execution rate
must be a multiple of this time. The compiler can calculate
this if it is not specified.

statistics Maintain min, max, and total time used by each task.

116

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Purpose: This directive tells the compiler which timer on the PIC to use for monitoring and when to grant
control to a task. Changes to the specified timer's prescaler will effect the rate at which tasks are
executed.

This directive can also be used to specify the longest time that a task will ever take to execute with
the minor_cycle option. This simply forces all task execution rates to be a multiple of the minor_cycle
before the project will compile successfully. If the this option is not specified the compiler will use a
minor_cycle value that is the smallest possible factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum processor time
taken by one execution of each task, the maximum processor time taken by one execution of each
task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same in each
compilation unit.

Examples: #use rtos(timer=0, minor cycle=20ms)

Also See: #TASK

#use spl

Syntax: #USE SPI (options)

Elements: Options are separated by commas and may be:
MASTER Set the device as the master. (default)
SLAVE Set the device as the slave.
BAUD=n Target bits per second, default is as fast as possible.
CLOCK_HIGH=n High time of clock in us (not needed if BAUD= is used).

(default=0)
CLOCK_LOW=n Low time of clock in us (not needed if BAUD= is used).
(default=0)

Dl=pin Optional pin for incoming data.
DO=pin Optional pin for outgoing data.
CLK=pin Clock pin.
MODE=n The mode to put the SPI bus.
ENABLE=pin Optional pin to be active during data transfer.
LOAD=pin Optional pin to be pulsed active after data is transferred.
DIAGNOSTIC=pin Optional pin to the set high when data is sampled.
SAMPLE_RISE Sample on rising edge.
SAMPLE_FALL Sample on falling edge (default).
BITS=n Max number of bits in a transfer. (default=32)
SAMPLE_COUNT=n Number of samples to take (uses majority vote). (default=1
LOAD_ACTIVE=n Active state for LOAD pin (0, 1).
ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1). (default=0)
IDLE=n Inactive state for CLK pin (0, 1). (default=0)
ENABLE_DELAY=n Time in us to delay after ENABLE is activated. (default=0)
DATA_HOLD=n Time between data change and clock change
LSB_FIRST LSB is sent first.
MSB_FIRST MSB is sent first. (default)
STREAM=id Specify a stream name for this protocol.
SPI1 Use the hardware pins for SPI Port 1
SPI2 Use the hardware pins for SPI Port 2
FORCE_HW Use the pic hardware SPI.
NOINIT Don't initialize the hardware SPI Port

Purpose: The SPI library contains functions to implement an SPI bus. After setting all of the proper

117

CCSC Manual

Examples:

Example
Files:
Also See:

parameters in #USE SPI, the spi_xfer() function can be used to both transfer and receive data on
the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most common pins
present on hardware SPI are: DI, DO, and CLK. These pins don’t need to be assigned values
through the options; the compiler will automatically assign hardware-specific values to these pins.
Consult your PIC’s data sheet as to where the pins for hardware SPI are. If hardware SPI is not
used, then software SPI will be used. Software SPI is much slower than hardware SPI, but software
SPI can use any pins to transfer and receive data other than just the pins tied to the PIC’s hardware
SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to sample data.
MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0 and SAMPLE_FALL. MODE=2
sets IDLE=1 and SAMPLE_FALL. MODE=3 sets IDLE=1 and SAMPLE_RISE. There are only these
4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to send data and
another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted as indicated
above.

#use Spi(DI=PIN7Bl, DO=PIN7BO, CLK=PIN7B2, ENABLE=PIN7B4, BITS=16)

// uses software SPI

#use spi (FORCE_HW, BITS=16, stream=SPI_STREAM)
// uses hardware SPI and gives this stream the name SPI_STREAM

None

spi_xfer()

#use standard _io

Syntax: #USE STANDARD_IO (port)

Elements: portisA,B,C,D, E, F, G, H,Jor ALL

Purpose: This directive affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #USE XXX_10 directive is encountered. The
standard method of doing I/0 will cause the compiler to generate code to make an 1/O pin either
input or output every time it is used. On the 5X processors this requires one byte of RAM for every
port set to standard 1/0.
Standard_io is the default /O method for all ports.
When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

Examples: #use standard io(A)

Example ex_cust.c

Files:

Also See: #USE FAST 10, #USE FIXED 10, General Purpose I/O

118

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PreProcessor

#use timer

Syntax: #USE TIMER (options)

Elements: TIMER=x
Sets the timer to use as the tick timer. x s a valid timer that the PIC has. Default value is 1 for
Timer 1.
TICK=xx
Sets the desired time for 1 tick. xx can be used with ns(nanoseconds), us (microseconds), ms
(milliseconds), or s (seconds). If the desired tick time can't be achieved it will set the time to closest
achievable time and will generate a warning specifying the exact tick time. The default value is 1us.
BITS=x
Sets the variable size used by the get_ticks() and set_ticks() functions for returning and setting the
tick time. x can be 8 for 8 bits, 16 for 16 bits or 32 for 32bits. The default is 32 for 32 bits.
ISR
Uses the timer's interrupt to increment the upper bits of the tick timer. This mode requires the the
global interrupt be enabled in the main program.
NOISR
The get_ticks() function increments the upper bits of the tick timer. This requires that the get_ticks()
function be called more often then the timer's overflow rate. NOISR is the default mode of
operation.
STREAM=id
Associates a stream identifier with the tick timer. The identifier may be used in functions like
get_ticks().
DEFINE=id
Creates a define named id which specifies the number of ticks that will occur in one second.
Default define name if not specified is TICKS_PER_SECOND. Define name must start with an
ASCI|I letter ‘A" to 'Z', an ASCII letter 'a' to 'z or an ASCII underscore ('_").
COUNTER or COUNTER=x
Sets up specified timer as a counter instead of timer. x specifies the prescallar to setup counter
with, default is1 if x is not specified specified. The function get_ticks() will return the current count
and the function set_ticks() can be used to set count to a specific starting value or to clear counter.

Purpose: This directive creates a tick timer using one of the PIC's timers. The tick timer is initialized to zero
at program start. This directive also creates the define TICKS_PER_SECOND as a floating point
number, which specifies that number of ticks that will occur in one second.

Examples: #USE TIMER (TIMER=1, TICK=1ms,BITS=16, NOISR)

unsigned intl6 tick difference (unsigned intl6 current, unsigned intl6é previous) {
return (current - previous);

}

void main (void) {
unsigned intlé6 current tick, previous_tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) > 1000) {
output toggle (PIN BO);
previous tick = current tick;

}

119

CCSC Manual

Example
Files:
Also See:

None

get_ticks(), set_ticks()

#use touchpad

Syntax: #USE TOUCHPAD (options)
Elements: RANGE=x
Sets the oscillator charge/discharge current range. If x is L, current is nominally 0.1 microamps. If x
is M, current is nominally 1.2 microamps. If x is H, current is nominally 18 microamps. Default value
is H (18 microamps).
THRESHOLD=x
X is a number between 1-100 and represents the percent reduction in the nominal frequency that
will generate a valid key press in software. Default value is 6%.
SCANTIME=xxMS
xx is the number of milliseconds used by the microprocessor to scan for one key press. If utilizing
multiple touch pads, each pad will use xx milliseconds to scan for one key press. Default is 32ms.
PIN=char
If a valid key press is determined on “PIN”, the software will return the character “char” in the
function touchpad_getc(). (Example: PIN_B0="A")
SOURCETIME=xxus (CTMU only)
xx is thenumber of microseconds each pin is sampled for by ADC during each scan time period.
Default is 10us.
Purpose: This directive will tell the compiler to initialize and activate the Capacitive Sensing Module (CSM)or
Charge Time Measurement Unit (CTMU) on the microcontroller. The compiler requires use of the
TIMERO and TIMER1 modules for CSM and Timerl ADC modules for CTMU, and global interrupts
must still be activated in the main program in order for the CSM or CTMU to begin normal operation.
For most applications, a higher RANGE, lower THRESHOLD, and higher SCANTIME will result
better key press detection. Multiple PIN's may be declared in “options”, but they must be valid pins
used by the CSM or CTMU. The user may also generate a TIMERO ISR with TIMERO's interrupt
occuring every SCANTIME milliseconds. In this case, the CSM's or CTMU's ISR will be executed
first.
Examples: #USE TOUCHPAD (THRESHOLD=5, PIN_D5='5', PIN BO='C')
void main (void) {
char c;
enable interrupts (GLOBAL) ;
while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN BO is pressed, c will have 'C'
} //if PIN D5 is pressed, c will have '5'
Example None
Files:
Also See: touchpad_state(), touchpad getc(), touchpad_hit()

120

H#warnin

PreProcessor

g

Syntax: #WARNING text
Elements: text is optional and may be any text
Purpose: Forces the compiler to generate a warning at the location this directive appears in the
file. The text may include macros that will be expanded for the display. This may be
used to see the macro expansion. The command may also be used to alert the user to
an invalid compile time situation.
To prevent the warning from being counted as a warning, use this syntax:
#warning/information text
Examples: #if BUFFER SIZE < 32
#warning Buffer Overflow may occur
#endif
Example Files: ex_psp.c
Also See: #ERROR
#word
Syntax: #WORD id = x
Elements: id is a valid C identifier,
x is a C variable or a constant
Purpose: If the id is already known as a C variable then this will locate the variable at address x. In this case
the variable type does not change from the original definition. If the id is not known a new C
variable is created and placed at address x with the type intl6
Warning: In both cases memory at x is not exclusive to this variable. Other variables may be
located at the same location. In fact when x is a variable, then id and x share the same memory
location.
Examples: #word data = 0x0800
struct {
int lowerByte : 8;
int upperByte : 8;
} control word;
#word control word = 0x85
ééﬁtroliword.upperByte = 0x42;
Example None
Files:
Also See: #bit, #byte, #locate, #reserve, Named Regqisters, Type Specifiers, Type Qualifiers, Enumerated

Types, Structures & Unions, Typedef

121

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

#zero_ram
Syntax: #ZERO_RAM
Elements: None
Purpose: This directive zero's out all of the internal registers that may be used to hold variables before
program execution begins.
Examples: #zero_ ram
void main () {
}
Example ex_cust.c
Files:
Also See: None

122

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC microcontroller's peripherals. This
makes it very easy for the users to configure and use the peripherals without going into in depth details of the
registers associated with the functionality. The functions categorized by the peripherals associated with them are
listed on the next page. Click on the function name to get a complete description and parameter and return value
descriptions.

pin_select()
atoi() atol() atoi32().........
at_clear_interrupts()
at_disable interrupts()
at_enable interrupts()
P o [o= o) (01 () PSR
at_get _missing pulse delay()
F= Lo [y A 0 1=1 4 [o o [() RN
Fe Lo [A] 0 F= EoY S o1 01U [| (=Y () RN
at_get_resolution()
Fe Lo [A=) A 01011 0L { () PN
P Lo [A= O 01011 0L =) £ (01 () IO PSPPSRI
at_get status()......cccceeuee.

at_interrupt_active()..........

at_set _compare time()
at_set_missing_pulse_delay()
at_set_resolution()....ccceeeeevvevevviiereeereennnn.

Fo LY=L Y=Y A 1o 1101 { () RN
P Y=L (0] T oo () PSPPSR
bit_clear()
LS =) ()
oL (=T (OO UPPPPRPIRN
brownout _enable()
bsearch()
calloc()........

LI) et ——————————————

clcl setup gate() clc2_setup_gate() clc3_setup_gate() clc4_setup_gate()..............
clcl setup input() clc2_setup_input() clc3 setup input() clc4 setup_input()
clear_interrupt

CoQ_Status()......eeevvvrvrvnnnnns

[of T o I (=] =1 () PPN

cwg_restart()......ccocceveennnnes

[0 7= (o] 41 (= () SRR

123

CCSC Manual

divO Idiv() oo,

enable interrupts()

erase_eeprom().....ccceeennnn.

erase program_eeprom()

(o LA =Y [1= () PP EPP SRR

=10 1S (0 RPN
getc() getch() getchar() fgetc()

[o 1= e o =) £ PSP PEPTOT

L oTo T () P RUPPRPPRPIR

printf() fprintf()..................
putc() putchar() fputc()....

get_capture32()
[T B 1Y o1V A or=Y 0100 1= () RN
[(= A T o I= Voo 8 [1V F= L (o () RN
get_nco_inc_value()
get tickS().vvervreereiiiieennne
get_timerA()....
get_timerB()....
get_timerx()
[o T A () PSPPSR
o= =Y 017/ (0 PSSP
gets() fgets()
[o To) (o T= Lo [0 [(=11 () PSP ERR S
11| aIEY oY== HF=Vo (oo (o] 1= () FR PO PSPPI
i2c_init()
2 o T 1 0= L= ()
(24 oa oo [PP TU T UUPPPPPPTTN
i2C_read() covvvrvrrrrnnninnnnnns

i2c_slaveaddr().......cccevvves

i2c_speed().....ccoveerreriinnnns

i2c_start()........

i2c_stop()....
(2o 1 (=] (TSP
18] o101 P P PTT TP PP PPPPPTN
input_change x()
1] U] = L= (P ST PERRRN
1] 0L () PSR PRRRRN
interrupt_active()

isalnum(char) isalpha(char)
(Yol 0] (g O Yo [To L (o =T o) OO UPPPPIPPRN
isgraph(x) islower(char) isspace(char) isupper(char) isxdigit(char) isprint(x) ispunct(x)
[ISY= 10010 1o [() PO P USPR TP
itoa()
jump_to_isr()
KBNIt() vevvvvrvrvninininirininieinnns
label _address()
=Y (ST PRRRRN
Icd_contrast()
oo I o 7= Vo[(N

124

Built-in Functions

(oo RS2/ 141 oo [I SRRSO PRRTTRN 191
10 T2 o () PN 191
oo (TSR 192
FoTo 0 (SRR PPPRRRN 192
[T T aTo | [00] o () SRR PPPRRRN 193
[0E o] () ST PPPRRRN 193
[0F N T () ST PPPPRRRN 194
L0212 C 72 () 194
0= 0T (N 195
(001 001o] 0 @ 0 01T 00104101 VL= () N 195
00T 100 1ST= ()PP 196
0010 (TR PPPPRRN 196

L0 TU L IR 197
= 01 () 197
(01 E= (o) { @) Y= (o) oL () SR 198
(o101 o 10 | () U U OO PUPUUPPTUUPTPPN 199
(o 10110 U A oL (SRRSO 199
(o U101 U1 e LY=o PRPR OO 200
(o010 0|1 [o = L (PR PRSP 201
[o 1011010 1o | () PP 201
{01011 01U [() PP 202
[o 1011 01U (o [0 [T (PP 202
o111 (o () PP TP PPTR PR 203
0T I o101/ () PSP ERRSR 203
oL o [= A =11 U L TSRS 204
0T I == Lo (PSSR 204
0T Y1 (= () PSPPSR 205
oo] A o 10118 o () PP 206
oL Y I o) TP PPTTOPTPP 207
o100 o110 PSPPI 207
010 1T LU PRSPPI 208
psp_output full() psp_input full() PSP _OVEIFIOW() ..euvuerrrrrrrininriiiriiirasariisiisasasassaasssssssasaeaaaraaasasasasaassaaasassnnsasnsasnrnes 209
[oTU Lo @ o1V 1o o=V () 11 0101 o] () 210
o101 (oY= T [PSSR 211
L 01U L (oY =T T [() OSSR 211
01U LY (I 10 £= (PSPPSR 211
010 o 1 P TP PPPTT ST 212
o1V B0 P PP P PP P PP PPPPPPPPPPPPPPPPPPR 212
oL Y=Y o [V P TP PRTT PP 213
oL A IESY = e 101 AV =] (1= | PSP UPPPPRPPRN 213
LT A IESY Y A (=T 0 (1= [0 RN 214
[o T o (= A o0 1 UL PP ERT 215
[o [T ST = A oo 10 01 () P PSR 215
[0 T IES] t= LU] () PSSR 215
[EST0 L (PP P PP PP PP PPPPPPPPPPPPPPPPPPR 216
(=100 () PP OO PSR UPPPPRPPRN 217
(T o1V (=T A)Y (==Y () PP UPUPPRPPRN 217
(YA 01U 11 1= {11 218
(Y= 1o = Lo (o ()N 218
(Y= 1o I oY= 1 () N 219
(oY= Vo I oz= 11 oT = L1 oY o T () TN 219
(Y=o M oteTaNilo 0 = aTo] N 00 1=)0 AT/ () TN 220
(Y= Lo =TT o100 1 0 () PSR O PP PPPPTTRN 220
(T o IR =D (= Lo (1o I =10 0 () OO RUPUPPRPPRN 221
(== o M o (oTo [r=Ta A M 1 01=) 0010 Y/ () PRSPPI 221
read eXIEINAL MEMIOIY(() .uuieiiiiiiiiiiie e e e ettt e e e ettt e e e e et e e e eeeeeee e e e sttt e eeeeesessaaanaeeessesssannaeeeeesssansaeeessssssnnnaaeeeennres 221
[(=Y= Vo I a1 To | WY o TSY<Yo =T (o] () SN 222
(Y= o Mo T(oTe r=Ta a M =T=) 01 o) 0 01 () RN 223
(Y=o I (o]0 A T 0 01=)0 010 Y/ () N 224
(== (o IE=Yo I 1o (o] () PR 224
(Y= 11 o () N 224
(11T Y ST [o] TSRO 225

125

CCSC Manual

(=TT =1 o3 01U () SR
restart_cause()c.ccceeuuee
restart wdt()
rotate_left().....
rotate_right()
rtc_alarm_read()...............
rtc_alarm_write()...............
(ol (Y= (o [() T

rtc_write
[(O ST= V112 UL () PN
00T 0 152 1o =Y (N
rtos_enable
L CO TSI 0 1Yo T o | (RN
LLCO TSI Yo T == 1o [RN
rtos_ msg_send()......cceuvees
rtos_overrun()ccceeeeveeees
IOS rUN() .evevevevererervrnreinnns

rtos_signal().....cccceeveeerenns
rtos_stats()...ccccvevveerrevnennn
rtos_terminate()
rtos_wait()......ccovvveeeeeeeiinnns
rtos_yield()..ccccevvveeeerinnnnnn.

SEL AAC CRANNEI() i
Y A= = 1 oY o T o 110 = () N
scanf()
Y Mot e Yo T o1 F= 1| T T PPN
set_cog_dead band()
set cog_phase()...............
set_compare time()..........
set_hspwm duty()
set_hspwm_event()
set_hspwm_override()
Y A 1S XV o] P T =Y (RN
Y A (oL I [oY= | (U= () RN
set_power pwm_override()
Y A T LV A o 1YL 0 Do (V1 Y/ () O
ST=1 0 1V LU o] (TP PPP R TOPPPPPRPRS
set pwml duty() set pwm2 duty() set pwm3 duty() set pwm4 duty() set pwm5 duty()
set_rtcc() set timerO() set timerl() set timer2() set timer3() set timer4() set timer5()
Y M [0 <Y () PRSPPI
setup_sd_adc_calibration()...
set_sd_adc_channel()
set_ timerA().....cooeevveeneennn.
set_timerB()....
LY A 101 0 () TP PPRPTPRR
set_rtcc() set _timerQ() set timerl() set timer2() set timer3() set timer4() set timer5()
1o B (D () USSR
set _uart speed()
ESY=10 1101 0] () PR PR OO
setup_adc(mode)

setup_adc_ports()
setup_adc_reference()
oYL 01 o= () PR
setup _ccpl() setup ccp2() setup ccp3() setup _ccp4() setup _ccp5() setup _ccpb()
setup_clcl() setup clc2() setup clc3() setup_clc4()
setup _comparator()
setup_counters()...............

setup _cod()eeeeeeerirnverenneannnn

U0 o T o] (o] () PSS PPPR
110 oI 1V o |) PSP SUPPPPRPPNN
setup_dac()

SEtUD EXIEINAI MEMIOIY() ... iieeietiiiiieeieeettiee et e ettt et e e e e et e ettt e e e e e e e e s st e eeeeesesssbaa e aeessessssanssaeessesssaansaaeeesssssnnnaaeeeesnrres

126

Built-in Functions

(Y10 oI a1Te | TSy oY=Y=Yo H= o (o () IR
setup _high speed adc pair()................
setup _hspwm_blanking().......cccceeeeervennen.
setup_hspwm_chop _clock()cceeeeennnn.
setup_hspwm _trigger()
setup_hspwm_unit()
setup_hspwm().....ccceeeeen..

setup _hspwm unit_chop clock()

SetUP 1CA() eeeeeeeeiiiiiiiiei e

(Y=Y 0] o I (o) VA o | Ao [=) (=Tox { () RN
oY= 8] o T 0T o () PR
setup_opampl() setup_opamp?2()
setup_opampl() setup_opamp?2()
=100 oI o TSY o= (o (PP OO PPRPR
Setup _Pid()eeveeeeeeeiiiiiiieiee e eeciiiere e

setup pmp(option,address mask)
setup_power pwm().............

setup_power_pwm_pins()
setup_psp(option,address MaSK)..........uueeerieiiieiiiiiieee e
setup_pwmi() setup pwm2() setup _pwm3() setup pwm4()
setup _gei()
setup_rtc()
setup_rtc_alarm()
Y100 o IS = Lo (o () PP UPR S OSPPRRR
setup_smtx()
setup spi() setup spi2()
Y100 I U100 LY G () P EPR PP
setup _timer B().....cc.........
setup_timer_0()ccceeeneee.
setup timer_1()cccccueeee.
setup_timer 2()cccec...e.
setup_timer 3() ..ccccvverennnn.
Y100 (100 LY G () P UPP PP
Y100 (100 LY Y () P UPR ORI
setup_uart()
setup_vref()
setup_wdt()
setup_zdc()
1] 211 10 1= USSR
K] 0L S o |0 () T PP PPP U OPPPPPRPTN

sleep() coovvvevvviiieeeeeeein.
sleep_ulpwu()ccevvvvvnnnn..
smtx_read()coevveeneennnn
smtx_reset timer()
smtx_start().......ooevvveenennn.

1110 £= L (0 () PP PP PO PPRPR
LY 1] () o () PR
smtx_write().ooooeeeeeieiiieenne

smtx_update()

(Yoo F= = N S [S oI o = o= W ST [0 24 () [N

(S T (== (o [IS o T (=TT 124 () ORI
spi_read 16()ccovveeeeennnn
spi_read2 16()cccoeeeennn.
spi_read3 16()cccvveeeennn
spi_read4 16()cccccerrnnnn.
Spi_speed....c.cccceevuvrvirreannn.
£ IR L (Y @ T oI 1 (Y () TN
LY o1 =T () U PUPR S PPRPR
SPIl_XFER_IN()
L] o110 14 () TP PPT O

127

CCSC Manual

S0 L1 () T U TP P TP TP PPURUPPPI 296
[=0 o () S SUUUSRRURE 296

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr() strcmp() strcoll()
strespn() strerror() stricmp() strlen() striwr() strncat() strncmp() strncpy() strpbrk() strrchr()

S oA B (e (S (i 10 01 () TR 297
S Tge])Y B 1(e10])Y/ () TSR 298
L 1 (oo [IR EPP TSP PPRPR 298
[(1 (0 () SRR 299
1] (1 (o) [() SRR 300
1S (o 11][SRR 300
X121 o () P OO TP U PUPPPUUUPPPI 301
Lo Lo (@ e 1T oo =T (T PURPRPRPRRPPRPIR 301
(o]0 o] o= Vo I e = (o] () PP PO PUPRSRP 302
(o8 o] 0] o=V I 01 () TSP EPRST 303
(o]0 o] 0 o= To HES) t= L= () PRSP URRSR 303
LS o101 (=Y = \VZ= Y1 F=Y o] Y () R 304
| o101 =Y o) VA= () PP 304
Lo o101 (=Y i (V1 RPN 305
(=N Lo [PP PP P PP PPPPPPPPPPPPPPPPPIR 306
(2= B =1 10 [PO UTRRORP 306
(= NE) =L SO UPPPTRPORR 307
AL SR o= a1 TSP PURTRROR 307
=R e o] iTo (W = e o] A M A A1) 0110) 4/ () PRI 308
AL (I =T=T o1 (o] 0 01 () PSPPSR 308
LI (=T P VI 0= 0110 T (ST 309
LI (=T aTo (Yo I =10 0 () TR 310
AL T e To =T a A W =Y=] 0100 1 11 () ST 310
LI T = A A A=Y 0 10 A (TP 310
Ao (o) t= LD] () PP PP PO PPRPR 312

128

Built-in Functions

abs()

Syntax: value = abs(x)

Parameters: X is a signed 8, 16, or 32 bit int or a float
Returns: Same type as the parameter.

Function: Computes the absolute value of a number.
Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: signed int target,actual;

error = abs(target-actual);

Example Files: None
Also See: labs()

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh()
atan2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan?2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is a float representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.
Value is a float

Returns: rad is a float representing an angle in Radians -pi/2 to pi/2
val is a float with the range -1.0 to 1.0.

radl is a float representing an angle in Radians 0 to pi

rad2 is a float representing an angle in Radians -pi to pi
Result is a float

Function: These functions perform basic Trigonometric functions.
sin returns the sine value of the parameter (measured in radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians)

asin returns the arc sine value in the range [-pi/2,+pi/2] radians

129

CCSC Manual

acos returns the arc cosine value in the range[0,pi] radians

atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x

cosh returns the hyperbolic cosine of x

tanh _ returns the hyperbolic tangent of x

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno variable. The user
can check the errno to see if an error has occurred and print the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

Availability: All devices
Requires: #INCLUDE <math.h>

Examples: float phase;
// Output one sine wave
for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+l);

Example ex_tank.c

Files:

Also See: log(), log10(), exp(), pow(), sqrt()

adc_done()

Syntax: value = adc_done();

Parameters: None

Returns: A short int. TRUE if the A/D converter is done with conversion, FALSE if it is still
busy.

Function: Can be polled to determine if the A/D has valid data.

Availability: Only available on devices with built in analog to digital converters

Requires: None

Examples: intl6 value;

setup_adc_ports (sANO|sAN1l, VSS _VDD);
setup_adc (ADC_CLOCK_ DIV 4 |ADC TAD MUL_8) ;
set_adc_channel (0) ;

read_adc (ADC_START_ONLY) ;

intl done = adc_done();
while (!done) {
done = adc _done();

}

130

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

value = read adc (ADC_READ ONLY) ;
printf (“A/C value = %LX\n\r”, value);
}

Example None

Files:

Also See: setup_adc(), set_adc_channel(), setup_adc ports(), read_adc(), ADC Overview

assert()

Syntax: assert (condition);

Parameters: condition is any relational expression

Returns: Nothing

Function: This function tests the condition and if FALSE will generate an error message on
STDERR (by default the first USE RS232 in the program). The error message will
include the file and line of the assert(). No code is generated for the assert() if you
#define NODEBUG. In this way you may include asserts in your code for testing and
quickly eliminate them from the final program.

Availability: All devices

Requires: assert.h and #USE RS232

Exan1p|es; assert (number of entries<TABLE SIZE);
// If number of entries is >= TABLE SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

Example None

Files:

Also See: #USE RS232, RS232 I/O Overview

atoe

Syntax: atoe(string);

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number

Function: Converts the string passed to the function into a floating point

representation. If the result cannot be represented, the behavior is
undefined. This function also handles E format numbers

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: char string [10];

float32 x;

131

CCSC Manual

strcpy (string, "12E3");
x = atoe(string);
// x is now 12000.00

Example None
Files:
Also See: atoi(), atol(), atoid2(), atof(), printf()
atof()
Syntax: result = atof (string)
Parameters: string is a pointer to a null terminated string of characters.
Returns: Result is a floating point number
Function: Converts the string passed to the function into a floating point representation. If the
result cannot be represented, the behavior is undefined.
Availability: All devices
Requires: #INCLUDE <stdlib.h>
Examples: char string [10];
float x;
strcpy (string, "123.456");
x = atof (string);
// x is now 123.456
Example ex_tank.c
Files:
Also See: atoi(), atol(), atoi32(), printf()
pin_select()
Syntax: pin_select(peripheral_pin, pin, [unlock],[lock])
Parameters: peripheral_pin — a constant string specifying which peripheral pin to map the specified

pin to. Refer to #pin_select for all available strings. Using “NULL” for the peripheral_pin
parameter will unassign the output peripheral pin that is currently assigned to the pin

passed for the pin parameter.

pin — the pin to map to the specified peripheral pin. Refer to device's header file for pin

defines. If the peripheral_pin parameter is an input, passing FALSE for the pin
parameter will unassign the pin that is currently assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock sequence before
writing the RPINRx or RPORX register register determined by peripheral_pin and pin
options. Default is TRUE if not specified. The unlock sequence must be performed to
allow writes to the RPINRx and RPORX registers. This option allows calling pin_select()

multiple times without performing an unlock sequence each time.

132

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:

Availability:
Requires:
Examples:

Example Files:
Also See:

lock — optional parameter specifying whether to perform a lock sequence after writing
the RPINRx or RPORXx registers. Default is TRUE if not specified. Although not
necessary it is a good idea to lock the RPINRx and RPORX registers from writes after all
pins have been mapped. This option allows calling pin_select() multiple times without
performing a lock sequence each time.

Nothing.

On device with remappable peripheral pins.
Pin defines in device's header file.
pin_select(“U2TX",PIN_BO0);

/IMaps PIN_BO to U2TX //peripheral pin, performs unlock //and lock
sequences.

pin_select("U2TX”,PIN_BO,TRUE,FALSE);

//Maps PIN_BO to U2TX //peripheral pin and performs //unlock sequence.
pin_select(“U2RX”,PIN_B1,FALSE, TRUE);

/IMaps PIN_B1 to U2RX //peripheral pin and performs lock //sequence.

None.
#pin_select

atoi() atol() atoi32()

Syntax: ivalue = atoi(string)
or
Ivalue = atol(string)
or
i32value = atoi32(string)
Parameters: string is a pointer to a null terminated string of characters.
Returns: ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.

Function: Converts the string passed to the function into an int representation. Accepts both
decimal and hexadecimal argument. If the result cannot be represented, the
behavior is undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: char string[10];
int x;
strcpy(string,"123");

x = atoi(string);
// x is now 123

Example input.c

Files:

Also See: printf()

133

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

at_clear_interrupts()

Syntax: at_clear_interrupts(interrupts);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants are defined
in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns: Nothing

Function: To disable the Angular Timer interrupt flags. More than one interrupt can be cleared at a time by
or'ing multiple constants together in a single call, or calling function multiple times for each
interrupt to clear.

Availability: All devices with an AT module.
Requires: Constants defined in the device's header file

Examples: #INT-AT1
voidl isr(void)
[
if (at_interrupt active (AT PERIOD INTERRUPT))
[
handle period interrupt();
at clear interrupts (AT PERIOD INTERRUPT) ;
]
if (at_interrupt (active (AT_PHASE INTERRUPT) ;
[
handle phase interrupt();
at clear interrupts (AT PHASE INTERRUPT) ;

]

Example None
Files:
Also See: at_set _resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get missing_pulse_delay(), at_get period(), at get phase_counter(), at set set point(),
at_get set point(), at_get_set_point_error(), at_enable interrupts(), at disable interrupts(),
at_interrupt_active(), at_setup _cc(), at_set compare time(), at_get capture(), at_get status(),

setup_at()

at_disable_interrupts()

Syntax: at_disable_interrupts(interrupts);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to disable. The constants are defined

134

Built-in Functions

in the device's header file as:

- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Returns: Nothing
Function: To disable the Angular Timer interrupts. More than one interrupt can be disabled at a time by
or'ing multiple constants together in a single call, or calling function multiple times for eadch

interrupt to be disabled.

Availability: All devices with an AT module.

Requires: Constants defined in the device's header file
Examples; at disable interrupts (AT PHASE INTERRUPT) ;
at_disable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);
Example None
Files:
Also See: at_set resolution(), at_get resolution(), at_set _missing_pulse_delay(),

at_get missing_pulse_delay(), at_get period(), at_get phase counter(), at set set point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup _cc(), at_set compare_time(), at_get_capture(), at_get_status(),

setup_at()

at_enable_interrupts()

Syntax: at_enable_interrupts(interrupts);

Parameters: interrupts - an 8-bit constant specifying which AT interrupts to enable. The constants are defined
in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT _PERIOD_INTERRUPT
AT _CC3_INTERRUPT
AT _CC2_INTERRUPT
AT _CC1_INTERRUPT

Returns: Nothing

Function: To enable the Angular Timer interrupts. More than one interrupt can be enabled at a time by or'ing
multiple constants together in a single call, or calling function multiple times for each interrupt to be
enabled.

Availability: All devices with an AT module.

Requires: Constants defined in the device's header file

Examples; at enable interrupts (AT PHASE INTERRUPT);
atienableiinterrupts (AT PERIOD INTERRUPT |AT7CC17INTERRUPT) ;

Example None

135

CCSC Manual

Files:
Also See:

setup_at(), at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get_missing_pulse_delay(), at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(), at_get_capture(), at_get_status()

at_get_capture()

Syntax: result=at_get_capture(which);;

Parameters: which - an 8-bit constant specifying which AT Capture/Compare module to get the capture time
from, can be 1, 2 or 3.

Returns: A 16-bit integer

Function: To get one of the Angular Timer Capture/Compare modules capture time.

Availability: All devices with an AT module.

Requires: Nothing

Examples: resultl=at get capture(l);
result2=at get capture(2);

Example None

Files:

Also See: setup_at(), at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_set_compare_time(), at_get_status()

at_get_missing_pulse _delay()

Syntax: result=at_get_missing_pulse_delay();
Parameters: None.

Returns: A 16-bit integer

Function: To setup the Angular Timer Missing Pulse Delay
Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get missing pulse delay();
Example None

Files:

136

Built-in Functions

Also See: at_set resolution(), at_get _resolution(), at_set_missing pulse delay(), at _get period(),
at_get phase_counter(), at_set_set point(), at_get set point(), at_get_set_point_error(),
at_enable interrupts(), at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup cc(), at_set compare_time(), at_get capture(), at_get_status(), setup_at()

at_get_period()

Syntax: result=at_get_period();

Parameters: None.

Returns: A 16-bit integer. The MSB of the returned value specifies whether the period counter rolled over
one or more times. 1 - counter rolled over at least once, 0 - value returned is valid.

Function: To get Angular Timer Measured Period

Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at get period();

Example None

Files:

Also See: at_set _resolution(), at_get _resolution(), at_set_missing_pulse_delay(),

at_get _missing pulse delay(), at_get phase counter(), at_set set point(), at _get set point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set compare_time(), at_get_capture(), at_get_status(),

setup_at()

at_get phase_counter()

Syntax: result=at_get_phase_counter();

Parameters: None.
Returns: A 16-bit integer.
Function: To get the Angular Timer Phase Counter

Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at get phase counter();

Example None

Files:

Also See: at_set resolution(), at get resolution(), at set missing_pulse_delay(),

137

CCSC Manual

at_get _missing pulse delay(), at get period(), at_set set point(), at_get set point(),
at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(), at clear_interrupts(),
at_interrupt_active(), at_setup cc(), at_set compare_time(), at_get _capture(), at_get_status(),

setup_at()

at_get_resolution()

Syntax: result=at_get_resolution();

Parameters: None
Returns: A 16-bit integer
Function: To setup the Angular Timer Resolution

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get resolution();

Example None

Files:

Also See: at_set resolution(), at_set missing_pulse_delay(), at_get missing_pulse_delay(), at get period(),

at_get phase_counter(), at set set point(), at_get set point(), at_get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at _clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare_time(), at_get _capture(), at_get status(), setup_at()

at_get_set point()

Syntax: result=at_get_set_point();

Parameters: None

Returns: A 16-bit integer
Function: To get the Angular Timer Set Point

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get set point();

Example None

Files:

Also See: at_set resolution(), at_get_resolution(), at_set_missing pulse delay(),

at_get _missing pulse delay(), at_get_period(), at_get phase counter(), at_set set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup cc(), at_set compare time(), at_get capture(), at_get status(),
setup_at()

138

Built-in Functions

at_get_set_point_error()

Syntax: result=at_get_set_point_error();

Parameters: None

Returns: A 16-bit integer

Function: To get the Angular Timer Set Point Error, the error of the measured period value compared to the
threshold setting.

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get set point error();

Example None

Files:

Also See: at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get missing_pulse_delay(), at_get period(), at_get phase counter(), at_set set point(),
at_get set point(), at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(), at_get_capture(), at_get_status(),

setup_at()

at_get_status()

Syntax: result=at_get_status();

Parameters: None

Returns: An 8-bit integer. The possible results are defined in the device's header file as:
AT_STATUS_PERIOD_AND_PHASE_VALID
AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function: To get the status of the Angular Timer module.

Availability: All devices with an AT module.

Requires: Nothing

Examples: if ((at_get status()&AT STATUS PERIOD AND PHASE VALID)==

AT STATUS PERIOD AND PHASE VALID

[
Period=at get period();
Phase=at get phase();

139

CCSC Manual

Example
Files:
Also See:

]

None

at_set resolution(), at_get_resolution(), at_set_missing pulse delay(),

at_get _missing pulse delay(), at_get period(), at_get phase counter(), at_set set point(),
at_get _set point(), at_get_set_point_error(), at_enable_interrupts(), at disable_interrupts(),
at_clear _interrupts(), at_interrupt_active(), at_setup_cc(), at_set compare time(),

at_get capture(), setup_at()

at_interrupt_active()

Syntax:

result=at_interrupt_active(interrupt);

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example
Files:
Also See:

interrupts - an 8-bit constant specifying which AT interrupts to check if its flag is set. The
constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

AT_PERIOD_INTERRUPT

AT_CC3_INTERRUPT

AT_CC2_INTERRUPT

AT_CC1_INTERRUPT

TRUE if the specified AT interrupt's flag is set, interrupt is active, or FALSE if the flag is clear,
interrupt is not active.

To check if the specified Angular Timer interrupt flag is set.
All devices with an AT module.

Constants defined in the device's header file

#INT-AT1
voidl isr(void)
[
if (at_interrupt active (AT_PERIOD INTERRUPT))

[
handle period interrupt();
at_clear_interrupts(AT_PERIOD_INTERRUPT);

]
if (at_interrupt (active (AT PHASE INTERRUPT) ;

[
handle phase interrupt();
at_clear_interrupts (AT_PHASE INTERRUPT) ;

]

None

at_set _resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse _delay(), at_get_period(), at_get _phase_counter(), at_set_set_point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_setup_cc(), at_set _compare_time(), at_get_capture(), at_get_status(),

setup_at()

140

Built-in Functions

at_set_ compare_time()

Syntax: at_set_compare_time(which, compare_time);

Parameters: which - an 8-bit constant specifying which AT Capture/Compare module to set the compare time
for, can be 1, 2, or 3.

compare_time - a 16-bit constant or variable specifying the value to trigger an interrupt/ouput

pulse.
Returns: Nothing
Function: To set one of the Angular Timer Capture/Compare module's compare time.

Availability: All devices with an AT module.

Requires: Constants defined in the device's header file
Examples; at set compare time(1l,0x1FF);
at set compare time(3,compare time);
Example None
Files:
Also See: at_set resolution(), at_get resolution(), at set missing_pulse_delay(),

at_get missing_pulse_delay(), at_get period(), at_get phase counter(), at _set set point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_get capture(), at_get_status(),

setup_at()

at_set_missing _pulse delay()

Syntax: at_set_missing_pulse_delay(pulse_delay);

Parameters: pulse_delay - a signed 16-bit constant or variable to set the missing pulse delay.
Returns: Nothing
Function: To setup the Angular Timer Missing Pulse Delay

Availability: All devices with an AT module.

Requires: Nothing

Examples; at set missing pulse delay(pulse delay);

Example None

Files:

Also See: at_set _resolution(), at_get _resolution(), at_get missing pulse delay(), at_get period(),

at get phase_counter(), at set set point(), at_get set point(), at_get _set_point_error(),
at_enable interrupts(), at_disable interrupts(), at clear _interrupts(), at_interrupt_active(),
at_setup_cc(), at_set compare_time(), at_get capture(), at_get_status(), setup_at()

141

CCSC Manual

at_set_resolution()

Syntax: at_set_resolution(resolution);

Parameters: resolution - a 16-bit constant or variable to set the resolution.
Returns: Nothing
Function: To setup the Angular Timer Resolution

Availability: All devices with an AT module.

Requires: Nothing

Examples; at set resolution(resolution);

Example None

Files:

Also See: at_get _resolution(), at_set_missing_pulse delay(), at_get missing pulse delay(), at_get period(),

at_get phase counter(), at set set point(), at get set point(), at_get_set_point_error(),
at_enable interrupts(), at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup cc(), at_set compare_time(), at_get capture(), at_get status(), setup_at()

at_set_set point()

Syntax: at_set_set_point(set_point);

Parameters: set_point - a 16-bit constant or variable to set the set point. The set point determines the
threshold setting that the period is compared against for error calculation.

Returns: Nothing
Function: To get the Angular Timer Set Point

Availability: All devices with an AT module.

Requires: Nothing

Examples: at set set point(set point);

Example None

Files:

Also See: at_set resolution(), at_get_resolution(), at_set_missing_pulse_delay(),

at_get_missing_pulse_delay(), at_get period(), at get phase_counter(), at_get set point(),
at_get_set_point_error(), at_enable interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup cc(), at_set compare time(), at_get capture(), at_get_status(),

setup_at()

142

Built-in Functions

at_setup_cc()

Syntax: at_setup_cc(which, settings);
Parameters: which - an 8-bit constant specifying which AT Capture/Compare to setup, can be 1, 2 or 3.
settings - a 16-bit constant specifying how to setup the specified AT Capture/Compare module.
See the device's header file for all options. Some of the typical options include:
- AT_CC_ENABLED
AT_CC_DISABLED
AT_CC_CAPTURE_MODE
AT_CC_COMPARE_MODE
AT_CAPTURE_FALLING_EDGE
AT_CAPTURE_RISING_EDGE
Returns: Nothing
Function: To setup one of the Angular Timer Capture/Compare modules to the specified settings.
Availability: All devices with an AT module.
Requires: Constants defined in the device's header file
Examples: at setup cc(1l,AT CC ENABLED|AT CC_CAPTURE MODE |
AT CAPTURE FALLING EDGE|AT CAPTURE INPUT ATCAP);
at_setup cc(2,AT_CC_ENABLED|AT CC_CAPTURE MODE |
AT_CC_ACTIVE HIGH);
Example None
Files:
Also See: at_set resolution(), at get resolution(), at set missing_pulse_delay(),
at_get missing_pulse delay(), at_get period(), at get phase counter(), at set set point(),
at_get set point(), at_get_set_point_error(), at_enable interrupts(), at disable interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_set compare_time(), at get capture(),
at_get_status(), setup_at()
bit_clear()
Syntax: bit_clear(var, bit)
Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least significant bit.
Returns: undefined
Function: Simply clears the specified bit (0-7, 0-15 or 0-31) in the given variable. The least
significant bit is 0. This function is the similar to: var &= ~(1<<bit);
Availability: All devices
Requires: Nothing
Examples: int x;
x=5;

143

CCSC Manual

bit clear(x,2);
// %X is now 1

Example ex_patg.c
Files:
Also See: bit_set(), bit_test()

bit_set()

Syntax: bit_set(var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any lvalue)
bit is a number 0- 31 representing a bit number, 0 is the least significant bit.

Returns: Undefined

Function: Sets the specified bit (0-7, 0-15 or 0-31) in the given variable. The least significant bit is
0. This function is the similar to: var |= (1<<bit);

Availability: All devices

Requires: Nothing

Examples: int x;
x=5;

bit set(x,3);
// x is now 13

Example Files: ex_patg.c

Also See: bit_clear(), bit_test()
bit_test()

Syntax: value = bit_test (var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least significant bit.

Returns: Oor1l

Function: Tests the specified bit (0-7,0-15 or 0-31) in the given variable. The least significant bit is 0. This
function is much more efficient than, but otherwise similar to:
((var & (1<<bit)) !=0)

Availability: All devices

Requires: Nothing

Examples: if (bit _test(x,3) || !bit_test (x,1)){

//either bit 3 is 1 or bit 1 is 0
}

144

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

if (data!=0)

for (1=31; !bit test(data, i);i--) ;

// 1 now has the most significant bit in data
// that is set to a 1

Example
Files:

Also See:

ex_patg.c

bit_clear(), bit_set()

brownout_enable()

Syntax: brownout_enable (value)

Parameters: value — TRUE or FALSE

Returns: undefined

Function: Enable or disable the software controlled brownout. Brownout will cause the PIC to reset
if the power voltage goes below a specific set-point.

Availability: This function is only available on PICs with a software controlled brownout. This may
also require a specific configuration bit/fuse to be set for the brownout to be software
controlled.

Requires: Nothing

Examples: brownout enable (TRUE) ;

Example Files:

None

Also See: restart cause()

bsearch()

Syntax: ip = bsearch (&key, base, num, width, compare)

Parameters: key: Object to search for
base: Pointer to array of search data
num: Number of elements in search data
width: Width of elements in search data
compare: Function that compares two elements in search data

Returns: bsearch returns a pointer to an occurrence of key in the array pointed to by base. If key is
not found, the function returns NULL. If the array is not in order or contains duplicate
records with identical keys, the result is unpredictable.

Function: Performs a binary search of a sorted array

Availability: All devices

Requires: #INCLUDE <stdlib.h>

145

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Examples:

int nums([5]={1,2,3,4,5};
int compar (const void *argl,const void *arg2);

void main () {
int *ip, key;
key = 3;

ip = bsearch(&key, nums, 5, sizeof (int), compar);

}

int compar (const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return 0

else return 1;

}

Example Files: None

Also See: gsort()

calloc()

Syntax: ptr=calloc(nmem, size)

Parameters: nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The calloc function allocates space for an array of nmem objects whose size is
specified by size. The space is initialized to all bits zero.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

Example Files:

iptr=calloc(5,10);
// iptr will point to a block of memory of
// 50 bytes all initialized to 0.

None

Also See: realloc(), free(), malloc()

ceil()

Syntax: result = ceil (value)

Parameters: value is a float

Returns: A float

Function: Computes the smallest integer value greater than the argument. CEIL(12.67) is 13.00.

146

Built-in Functions

Availability: All devices
Requires: #INCLUDE<math.h>
Examples: // Calculate cost based on weight rounded

Example Files:

Also See:

// up to the next pound

cost

ceil (weight) * DollarsPerPound;
None

floor

clcl setup_gate() clc2_setup gate() clc3 _setup_gate()
clc4 _setup_gate()

Syntax: clcl_setup_gate(gate, mode);
clc2_setup_gate(gate, mode);
clc3_setup_gate(gate, mode);
clc4_setup_gate(gate, mode);
Parameters: gate — selects which data gate of the Configurable Logic Cell (CLC)
module to setup, value can be 1 to 4.
mode — the mode to setup the specified data gate of the CLC module into.
The options are:
CLC_GATE_AND
CLC_GATE_NAND
CLC_GATE_NOR
CLC_GATE_OR
CLC_GATE_CLEAR
CLC_GATE_SET
Returns: Undefined
Function: Sets the logic function performed on the inputs for the specified data gate.
Availability: On devices with a CLC module.
Returns: Undefined.
Examples: clcl setup gate CLC_GATE_AND) ;

Example Files:

Also See:

(
clcl setup gate(
clcl_setup gate(
clcl_setup gate(

4

, CLC_GATE NAND) ;
, CLC_GATE CLEAR) ;
4

1
2
3
4, CLC GATE SET);

None

setup_clex(), clex _setup_input()

147

CCSC Manual

clcl setup_input() clc2_setup_input() clc3_setup_input()
clc4_setup_input()

Syntax: clcl_setup_input(input, selection);
clc2_setup_input(input, selection);
clc3_setup_input(input, selection);
clc4_setup_input(input, selection);

Parameters: input — selects which input of the Configurable Logic Cell (CLC) module to
setup, value can be 1 to 4.

selection — the actual input for the specified input that is actually
connected to the data gates of the CLC module. The options are:

CLC_INPUT_O
CLC_INPUT 1
CLC_INPUT 2
CLC_INPUT_3
CLC_INPUT 4
CLC_INPUT 5
CLC_INPUT 6
CLC_INPUT_7

Returns: Undefined.

Function: Sets the input for the specified input number that is actually connected to all
four data gates of the CLC module. Please refer to the table CLCx DATA
INPUT SELECTION in the device's datasheet to determine which of the
above selections corresponds to actual input pin or peripheral of the device.

Availability: On devices with a CLC module.
Returns: Undefined.
Examples: clcl_setup_input(l, CLC_INPUT_ O

)
clcl_setup_input (2, CLC_INPUT_ 1)
clcl_setup_input (3, CLC_INPUT_2)
clcl setup input (4, CLC_INPUT_ 3)

’
’
’
7

Example Files: None

Also See: setup_clex(), clex_setup_gate()

clear_interrupt()

Syntax: clear_interrupt(level)

Parameters: level - a constant defined in the devices.h file

Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed for use with a

specific interrupt, thus eliminating the GLOBAL level as a possible parameter. Some
chips that have interrupt on change for individual pins allow the pin to be specified like
INT_RAL.

148

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices

Nothing

clear interrupt (int timerl);
None

enable interrupts() , #INT , Interrupts Overview
disable interrupts(), interrupt_actvie()

cog_status()

Syntax: value=cog_status();

Parameters: None

Returns: value - the status of the COG module

Function: To determine if a shutdown event occurred on the Complementary C
(COG) module.

Availability: All devices with a COG module.

Examples: if (cog status ()==COG AUTO SHUTDOWN)

Example Files:

Also See:

cog_restart();

None

setup_cog(), set_cog_dead band(), set_cog_blanking(), set_cog_pt

cog_restart()

Syntax: cog_restart();

Parameters: None

Returns: Nothing

Function: To restart the Complementary Output Generator (COG) module afte
event occurs, when not using auto-restart option of module.

Availability: All devices with a COG module.

Examples: if (cog status ()==COG AUTO SHUTDOWN)

Example Files:

Also See:

cog restart();

None

setup_cog(), set_cog_dead band(), set_cog_blanking(), set_cog_ptk

149

CCSC Manual

crc_calc()
crc_calc8()

crc_calcl6()

Syntax:

Result = crc_calc (data,[width]);

Result = crc_calc(ptr,len,[width]);

Result = crc_calc8(data,[width]);

Result = crc_calc8(ptr,len,[width]);

Result = crc_calc16(data,[width]); /lsame as crc_calc()
Result = crc_calc16(ptr,len,[width]); /lsame as crc_calc()

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

data- This is one double word, word or byte that needs to be processed when using
crc_calcl16(), or crc_calc8()

ptr- is a pointer to one or more double words, words or bytes of data

len- number of double words, words or bytes to process for function calls
crc_calcl6(), or crc_calc8()

width- optional parameter used to specify the input data bit width to use with the functions
crc_calc16(), and crc_calc8()

If not specified, it defaults to the width of the return value of the function, 8-bit for
crc_calc8(), 16-bit for crc_calc16()

For devices with a 16-bit for CRC the input data bit width is the same as the return bit
width, crc_calc16() and 8-bit crc_calc8().

Returns the result of the final CRC calculation.

This will process one data double word, word or byte or len double words, words or bytes
of data using the CRC engine.

Only the devices with built in CRC module.

Nothing

intloc datal[8];
Result = crc_calc(data,8);

None

setup_crc(); crc_init()

150

Built-in Functions

crc_init(mode)

Syntax: crc_init (data);

Parameters: data - This will setup the initial value used by write CRC shift register. Most commonly,
this register is set to 0x0000 for start of a new CRC calculation.

Returns: undefined

Function: Configures the CRCWDAT register with the initial value used for CRC calculations.
Availability: Only the devices with built in CRC module.

Requires: Nothing

Examples: crc_init (); // Starts the CRC accumulator out at 0

crc_init (0xFEEE); // Starts the CRC accumulator out at OxFEEE

Example Files: None

Also See: setup_crc(), crc_calc(), crc_calc8()

cwg_status()

Syntax: value = cwg_status();

Parameters: None

Returns: the status of the CWG module

Function: To determine if a shutdown event occured causing the module to

auto-shutdown

Availability: On devices with a CWG module.

Examples: if (cwg status() == CWG_AUTO SHUTDOWN)
cwg_restart();

Example None

Files:

Also See: setup _cwg(), cwg_restart()

cwg_restart()

Syntax: cwg_restart();
Parameters: None
Returns: Nothing

151

CCSC Manual

Function: To restart the CWG module after an auto-shutdown event occurs,
when not using auto-raster option of module.
Availability: On devices with a CWG module.
Examples: if (cwg status() == CWG AUTO SHUTDOWN)
cwg_restart();

Example None
Files:
Also See: setup_cwg(), cwg_status()
dac_write()
Syntax: dac_write (value)
Parameters: Value: 8-bit integer value to be written to the DAC module
Returns: undefined
Function: This function will write a 8-bit integer to the specified DAC channel.
Availability: Only available on devices with built in digital to analog converters.
Requires: Nothing
Examples: int i = 0;

setup_dac (DAC_VDD | DAC_OUTPUT) ;

while (1) {

i++;
dac_write(1i);

}

Also See: setup_dac(), DAC Overview, see header file for device selected

delay _cycles()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of instruction clocks (1-
255). An instruction clock is equal to four oscillator clocks.
The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices

152

Built-in Functions

Requires:

Examples:

Example Files:

Also See:

Nothing
delay cycles(1); // Same as a NOP

delay cycles(25); // At 20 mhz a 5Sus delay
ex_cust.c

delay us(), delay ms()

delay_ms()

Syntax: delay_ms (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535
Note: Previous compiler versions ignored the upper byte of an int16, now the upper
byte affects the time.

Returns: undefined

Function: This function will create code to perform a delay of the specified length. Time is
specified in milliseconds. This function works by executing a precise number of
instructions to cause the requested delay. It does not use any timers. If interrupts are
enabled the time spent in an interrupt routine is not counted toward the time.
The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices

Requires: #USE DELAY

Examples: #use delay (clock=20000000)

Example Files:

Also See:

delay ms(2);

void delay seconds(int n) {
for (;n!=0; n- -)
delay ms(1000);

}

ex_sqw.c

delay us(), delay cycles(), #USE DELAY

delay_us()

Syntax:

delay_us (time)

Parameters:

time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now the upper

153

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

byte affects the time.
undefined

Creates code to perform a delay of the specified length. Time is specified in
microseconds. Shorter delays will be INLINE code and longer delays and variable
delays are calls to a function. This function works by executing a precise number of
instructions to cause the requested delay. It does not use any timers. If interrupts are
enabled the time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

All devices

#USE DELAY
#use delay(clock=20000000)

do {
output high (PIN BO) ;
delay us(duty);
output low (PIN_BO);
delay us (period-duty);
} while (TRUE) ;

ex sgqw.c

delay ms(), delay cycles(), #USE DELAY

disable_interrupts()

Syntax: disable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Disables the interrupt at the given level. The GLOBAL level will not disable any of the
specific interrupts but will prevent any of the specific interrupts, previously enabled to
be active. Valid specific levels are the same as are used in #INT_xxx and are listed in
the devices .h file. GLOBAL will also disable the peripheral interrupts on devices that
have it. Note that it is not necessary to disable interrupts inside an interrupt service
routine since interrupts are automatically disabled. Some chips that have interrupt on
change for individual pins allow the pin to be specified like INT_RA1.

Availability: Device with interrupts (PCM and PCH)

Requires: Should have a #INT_xxxx, constants are defined in the devices .h file.

Examples: disable interrupts(GLOBAL); // all interrupts OFF

disable interrupts (INT _RDA); // RS232 OFF

enable interrupts (ADC_DONE) ;

enable interrupts (RB_CHANGE) ;
// these enable the interrupts
// but since the GLOBAL is disabled they
// are not activated until the following
// statement:

154

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

Also See:

enable interrupts (GLOBAL) ;

ex_sisr.c, ex_stwt.c

enable interrupts(), clear_interrupt (), #INT xxxx, Interrupts Overview,

interrupt _active()

div() Idiv()

Syntax: idiv=div(num, denom)
Idiv =Idiv(Inum, Idenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.
Inum and Idenom are signed longs
Inum is the numerator and Idenom is the denominator.

Returns: idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div function
returns a structure of type div_t, comprising of both the quotient and the remainder.
The Idiv function returns a structure of type Idiv_t, comprising of both the quotient and
the remainder.

Function: The div and Idiv function computes the quotient and remainder of the division of the
numerator by the denominator. If the division is inexact, the resulting quotient is the
integer or long of lesser magnitude that is the nearest to the algebraic quotient. If the
result cannot be represented, the behavior is undefined; otherwise
quot*denom(ldenom)+rem shall equal num(Inum).

Availability: All devices.

Requires: #INCLUDE <STDLIB.H>

Examples: div_t idiv;

Example Files:

Also See:

ldiv_t lidiv;
idiv=div(3,2);
//idiv will contain quot=1 and rem=1

1lidiv=1div(300,250);
//1lidiv will contain lidiv.quot=1 and lidiv.rem=50

None

None

enable_interrupts()

Syntax: enable_interrupts (level)

Parameters: level is a constant defined in the devices *.h file.

Returns: undefined.

Function: This function enables the interrupt at the given level. An interrupt procedure should

have been defined for the indicated interrupt.

155

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

The GLOBAL level will not enable any of the specific interrupts, but will allow any of
the specified interrupts previously enabled to become active. Some chips that have
an interrupt on change for individual pins all the pin to be specified, such as INT_RAL.
For interrupts that use edge detection to trigger, it can be setup in the
enable_interrupts() function without making a separate call to the set_int_edge()
function.

Enabling interrupts does not clear the interrupt flag if there was a pending interrupt
prior to the call. Use the clear_interrupt() function to clear pending interrupts before
the call to enable_interrupts() to discard the prior interrupts.

Availability: Devices with interrupts.

Requires: Should have a #INT_XXXX to define the ISR, and constants are defined in the devices
* h file.

Examples: enable interrupts (GLOBAL) ;

enable interrupts (INT TIMERO);
enable interrupts(INT_EXT H2L);

Example Files: ex_sisr.c, ex_ stwt.c
Also See: disable interrupts(), clear_interrupt (), ext_int_edge(), #INT_xxxx, Interrupts Overview,

interrupt_active()

erase_eeprom()

Syntax: erase_eeprom (address);

Parameters: address is 8 bits on PCB parts.

Returns: undefined

Function: This will erase a row of the EEPROM or Flash Data Memory.

Availability: PCB devices with EEPROM like the 12F519

Requires: Nothing

Examples; erase eeprom(0); // erase the first row of the EEPROM (8 bytes)
Example Files: None

Also See: write program eeprom(), write program memory(), Program Eeprom Overview

erase_program_eeprom()

Syntax: erase_program_eeprom (address);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts . The least significant bits

156

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

may be ignored.

undefined

Erases FLASH_ERASE_SIZE bytes to OXFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part. For example, if it is 64 bytes then
the least significant 6 bits of address is ignored.

See write_program_memory() for more information on program memory access.

Only devices that allow writes to program memory.

Nothing

for (1=0x1000; i<=0x1fff;i+=getenv ("FLASH ERASE SIZE"))
erase program memory (i) ;

None

write program eeprom(), write program memory(), Program Eeprom Overview

exp()

Syntax: result = exp (value)

Parameters: value is a float

Returns: A float

Function: Computes the exponential function of the argument. This is e to the power of value
where e is the base of natural logarithms. exp(1) is 2.7182818.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.
Range error occur in the following case:
e exp: when the argument is too large

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: // Calculate x to the power of y

Example Files:

Also See:

x power y = exp(y * log(x));

None

pow(), log(), 10g10()

157

CCSC Manual

ext_int_edge()

Syntax: ext_int_edge (source, edge)
Parameters: source is a constant 0,1 or 2 for the PIC18XXX and 0 otherwise.
Source is optional and defaults to 0.
edge is a constant H_TO_L or L_TO_H representing "high to low" and "low to high"
Returns: undefined
Function: Determines when the external interrupt is acted upon. The edge may be L_TO_H or
H_TO_L to specify the rising or falling edge.
Availability: Only devices with interrupts (PCM and PCH)
Requires: Constants are in the devices .h file
Exan”ﬂes; ext int edge(2, L TO H); // Set up PIC18 EXT2

Example Files:

Also See:

ext int edge(H TO L); // Sets up EXT
ex_wakup.c

#INT_EXT , enable_interrupts() , disable_interrupts() , Interrupts Overview

fabs()

Syntax: result=fabs (value)

Parameters: value is a float

Returns: result is a float

Function: The fabs function computes the absolute value of a float
Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: float result;

Example Files:

Also See:

result=fabs (-40.0)
// result is 40.0

None
abs(), labs()

158

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

getc() getch() getchar() fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()
Parameters: stream is a stream identifier (a constant byte)
Returns: An 8 bit character
Function: This function waits for a character to come in over the RS232 RCV pin and returns the character. If
you do not want to hang forever waiting for an incoming character use kbhit() to test for a character
available. If a built-in USART is used the hardware can buffer 3 characters otherwise GETC must
be active while the character is being received by the PIC®.
If fgetc() is used then the specified stream is used where getc() defaults to STDIN (the last USE
RS232).
Availability: All devices
Requires: #USE RS232
Examples: printf ("Continue (Y,N)?");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N");
#use rs232 (baud=9600,xmit=pin c6,
rcv=pin c7,stream=HOSTPC)
#use rs232 (baud=1200,xmit=pin bl,
rcv=pin_ b0, stream=GPS)
#use rs232(baud=9600,xmit=pin b3,
stream=DEBUG)
while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}
Example ex_stwt.c
Files:
Also See: putc(), kbhit(), printf(), #USE RS232, input.c, RS232 I/O Overview

gets() fgets()

Syntax: gets (string)
value = fgets (string, stream)
Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)
Returns: undefined

159

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Function: Reads characters (using getc()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more
versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the
last USE RS232).

Availability: All devices
Requires: #USE RS232
Examples: char string[30];

printf ("Password: ");

gets (string);

if (strcmp (string, password))
printf ("OK") ;

Example Files: None
Also See: getc(), get_string in input.c

floor()

Syntax: result = floor (value)

Parameters: value is a float

Returns: result is a float

Function: Computes the greatest integer value not greater than the argument. Floor (12.67) is
12.00.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: // Find the fractional part of a value
frac = value - floor (value);

Example Files: None

Also See: ceil()

fmod ()

Syntax: result= fmod (vall, val2)

Parameters: vall is a float
val2 is a float

Returns: result is a float

160

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Returns the floating point remainder of vall/val2. Returns the value vall - i*val2 for

some integer “i” such that, if val2 is nonzero, the result has the same sign as val1 and
magnitude less than the magnitude of val2.

All devices.

#INCLUDE <math.h>

float result;
result=fmod(3,2);
// result is 1

None

None

printf() fprintf()

Syntax:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:

Returns:

Function:

String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function name to be used
for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte). Note that format specifies do not work
in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a
specified function. Formatting is in accordance with the string argument. When
variables are used this string must be a constant. The % character is used within the
string to indicate a variable value is to be formatted and output. Longs in the printf may
be 16 or 32 bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape
character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT
(the last USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how
many characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for
floating point and %w output. t is the type and may be one of the following:

C Character

S String or character
u Unsigned int

d Signed int

Lu Long unsigned int

161

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

Also See:

Ld Long signed int

X Hex int (lower case)
X Hex int (upper case)
Lx Hex long int (lower case)

LX Hex long int (upper case)

Float with truncated decimal

Float with rounded decimal

Float in exponential format

Unsigned int with decimal place inserted. Specify two numbers for n. The
first is a total field width. The second is the desired number of decimal
places.

soQ —~

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 O00OFE
%3.1w 1.8 25.4

* Result is undefined - Assume garbage.

All Devices

#USE RS232 (unless fname is used)

byte x,y,z;

printf ("HiThere");

printf ("RTCCValue=>%2x\n\r",get rtcc());

printf ("$2u $X %4X\n\r",x,vy,z);
(

printf (LCD PUTC, "n=%u",n);

ex_admm.c, ex_lcdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 1/0 Overview

putc() putchar() fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)
Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: This function sends a character over the RS232 XMIT pin. A #USE RS232 must

appear before this call to determine the baud rate and pin used. The #USE RS232
remains in effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to STDOUT
(the last USE RS232).

162

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices

#USE RS232
putc('*");

for (i=0; 1i<10; i++)

putc (buffer(i]);
putc (13);

ex_tgetc.c

getc(), printf(), #USE RS232, RS232 I/O Overview

puts() fputs()

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using putc(). After the string is
sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general printf() is
more useful than puts().
If fputs() is used then the specified stream is used where puts() defaults to STDOUT
(the last USE RS232)

Availability: All devices

Requires: #USE RS232

Examples: puts(" —-----mm-—- ")
puts(" | HI ")
puts(" ----—-——--- ")

Example Files: None

Also See:

printf(), gets(), RS232 1/0 Overview

free()

Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc or realloc.

Returns: No value

Function: The free function causes the space pointed to by the ptr to be deallocated, that is made

available for further allocation. If ptr is a null pointer, no action occurs. If the ptr does not
match a pointer earlier returned by the calloc, malloc or realloc, or if the space has been

163

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

Also See:

deallocated by a call to free or realloc function, the behavior is undefined.
All devices.

#INCLUDE <stdlibm.h>

int * iptr;

iptr=malloc (10);

free (iptr)
// iptr will be deallocated

None

realloc(), malloc(), calloc()

frexp()

Syntax: result=frexp (value, &exp);

Parameters: value is a float
exp is a signed int.

Returns: result is a float

Function: The frexp function breaks a floating point number into a normalized fraction and an
integral power of 2. It stores the integer in the signed int object exp. The result is in
the interval [1/2 tol) or zero, such that value is result times 2 raised to power exp. If
value is zero then both parts are zero.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: float result;

Example Files:

signed int exp;
result=frexp (.5, &exp) ;
// result is .5 and exp is 0

None

Also See: Idexp(), exp(), log(), log10(), modf()
scanf()
Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)
Parameters: cstring is a constant string.

values is a list of variables separated by commas.

stream is a stream identifier.

164

Built-in Functions

Returns:

Function:

0 if a failure occurred, otherwise it returns the number of conversion specifiers that were read in,
plus the number of constant strings read in.

Reads in a string of characters from the standard RS-232 pins and formats the string according to
the format specifiers. The format specifier character (%) used within the string indicates that a
conversion specification is to be done and the value is to be saved into the corresponding
argument variable. A %% will input a single %. Formatting rules for the format specifier as
follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the last
USE RS232).

Format:
The format takes the generic form %nt. n is an option and may be 1-99 specifying the field width,
the number of characters to be inputted. t is the type and maybe one of the following:

c Matches a sequence of characters of the number specified by the field width (1 if
no field width is specified). The corresponding argument shall be a pointer to
the initial character of an array long enough to accept the sequence.

S Matches a sequence of non-white space characters. The corresponding argument
shall be a pointer to the initial character of an array long enough to accept the
sequence and a terminating null character, which will be added automatically.

u Matches an unsigned decimal integer. The corresponding argument shall be a
pointer to an unsigned integer.

Lu Matches a long unsigned decimal integer. The corresponding argument shall be a
pointer to a long unsigned integer.

d Matches a signed decimal integer. The corresponding argument shall be a pointer
to a signed integer.

Ld Matches a long signed decimal integer. The corresponding argument shall be a
pointer to a long signed integer.

(0] Matches a signed or unsigned octal integer. The corresponding argument shall be
a pointer to a signed or unsigned integer.

Lo Matches a long signed or unsigned octal integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

x or X Matches a hexadecimal integer. The corresponding argument shall be a pointer to
a signed or unsigned integer.

Lx or LX Matches a long hexadecimal integer. The corresponding argument shall be a
pointer to a long signed or unsigned integer.

i Matches a signed or unsigned integer. The corresponding argument shall be a
pointer to a signed or unsigned integer.

Li Matches a long signed or unsigned integer. The corresponding argument shall be
a pointer to a long signed or unsigned integer.

f,gore Matches a floating point number in decimal or exponential format. The
corresponding argument shall be a pointer to a float.

[Matches a non-empty sequence of characters from a set of expected characters.
The sequence of characters included in the set are made up of all character
following the left bracket ([) up to the matching right bracket (J). Unless the first
character after the left bracket is a #, in which case the set of characters contain

165

CCSC Manual

Availability:
Requires:

Examples:

Example
Files:
Also See:

all characters that do not appear between the brackets. If a - character is in the
set and is not the first or second, where the first is a , nor the last character,
then the set includes all characters from the character before the - to the
character after the -.

For example, %][a-z] would include all characters from a to z in the set and %["a-z]
would exclude all characters from a to z from the set. The corresponding
argument shall be a pointer to the initial character of an array long enough to
accept the sequence and a terminating null character, which will be added
automatically.

n Assigns the number of characters read thus far by the call to scanf() to the
corresponding argument. The corresponding argument shall be a pointer to an
unsigned integer.

An optional assignment-suppressing character (*) can be used after the format
specifier to indicate that the conversion specification is to be done, but not saved
into a corresponding variable. In this case, no corresponding argument variable
should be passed to the scanf() function.

A string composed of ordinary non-white space characters is executed by reading
the next character of the string. If one of the inputted characters differs from the
string, the function fails and exits. If a white-space character precedes the
ordinary non-white space characters, then white-space characters are first read
in until a non-white space character is read.

White-space characters are skipped, except for the conversion specifiers [, ¢ or n,
unless a white-space character precedes the [or ¢ specifiers.

All Devices

#USE RS232

char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &number, name, &time))
printf"\r\nName: %s, Number: %u, Time: %1d",name, number,time) ;

None

RS232 1/0 Overview, getc(), putc(), printf()

get _capture()

Syntax: value = get_capture(x)
Parameters: x defines which ccp module to read from.
Returns: A 16-bit timer value.

166

Built-in Functions

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

This function obtains the last capture time from the indicated CCP module
Only available on devices with Input Capture modules

None

ex_ccpmp.c

setup_ccpx()

get_capture_event()

Syntax: result = get_capture_event([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE CAPTURE.
Returns: TRUE if a capture event occurred, FALSE otherwise.

Function: To determine if a capture event occurred.

Availability: All devices.

Requires: #USE CAPTURE

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

Example Files:

Also See:

if(get_capture_event())
result = get_capture_time();

None

#use_capture, get_capture_time()

get _capture_time()

Syntax: result = get_capture_time([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE CAPTURE.
Returns: An int16 value representing the last capture time.

Function: To get the last capture time.

Availability: All devices.

167

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Requires:
Examples:

Example Files:
Also See:

#USE CAPTURE
#USE CAPTURE (INPUT=PIN7C2 , CAPTURE RISING, TIMER=1, FASTEST)
result = get capture time();

None
#use_ capture, get_capture event()

get _capture32()

Syntax: result = get_capture32(x,[wait]);

Parameters: X is 1-16 and defines which input capture result buffer modules to read from.
wait is an optional parameter specifying if the compiler should read the oldest result in
the bugger or the next result to enter the buffer.

Returns: A 32-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared, and the next result
to be sent to the buffer is returned. If wait is false, the default setting, the first value currently
in the buffer is returned. However, the buffer will only hold four results while waiting for them
to be read, so if get_capture32 is not being called for every capture event. When wait is false,
the buffer will fill with old capture values and any new results will be lost.

Availability: Only devices with a 32-bit Input Capture module

Requires: Nothing

Examples: setup_timer2 (TMR_INTERNAL | TMR DIV BY 1 | TMR 32 BIT);

Example Files:
Also See:

setup_capture (1,CAPTURE FE | CAPTURE TIMER2 | CAPTURE_ 32 BIT);
while (TRUE) {

timerValue=get capture32 (1, TRUE);

printf ("Capture 1 occurred at: SLU", timerValue);

}

None
setup_capture(), setup_compare(), get_capture(), Input Capture Overview

get_hspwm_capture()

Syntax: result=get_hspwm_capture(unit);

Parameters: unit - The High Speed PWM unit to set.

Returns: Unsigned in16 value representing the capture PWM time base value.

Function: Gets the captured PWM time base value from the leading edge detection on the current-limit

input.

168

Built-in Functions

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples; result=get hspwm capture(l);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm phase(), set_hspwm_duty(), set_hspwm event(),

setup_hspwm_blanking(), setup _hspwm _trigger(), set_hspwm _override(),
setup_hspwm_chop clock(), setup _hspwm unit _chop_clock()
setup _hspwm(), setup_hspwm_secondary()

get_nco_accumulator()

Syntax: value =get_nco_accumulator();

Parameters: none

Returns: current value of accumulator.

Availability: On devices with a NCO module.

Examples: value = get nco accumulator();

Example Files: None

Also See: setup_nco(), set nco_inc_value(), get nco_inc_value()

get_nco_inc_value()

Syntax: value =get_nco_inc_value();

Parameters: None

Returns: - current value set in increment registers.

Availability: On devices with a NCO module.

Examples: value = get nco inc value();

Example Files: None

Also See: setup_nco(), set_nco_inc_value(), get nco_accumulator()

169

CCSC Manual

get_ticks()

Syntax: value = get_ticks([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE TIMER.

Returns: —a 8, 16 or 32 bit integer. (int8, int16 or int32)

Function: Returns the current tick value of the tick timer. The size returned depends on the size of the tick
timer.

Availability: All devices.

Requires: #USE TIMER(options)

Examples: #USE TIMER (TIMER=1, TICK=1ms, BITS=16,NOISR)

void main (void) {
unsigned intl6 current tick;

current tick = get ticks();

}

Example None
Files:
Also See: #USE TIMER, set ticks()

get_timerA()

Syntax: value=get_timerA();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer reaches the

maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability: This function is only available on devices with Timer A hardware.
Requires: Nothing
Examples: set_timerA(0);

while (timerA < 200);
Example Files: none

Also See: set_timerA(), setup_timer_A(), TimerA Overview

get_timerB()

Syntax: value=get_timerB();

170

Built-in Functions

Parameters: none
Returns: The current value of the timer as an int8
Function: Returns the current value of the timer. All timers count up. When a timer reaches the

maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability: This function is only available on devices with Timer B hardware.
Requires: Nothing
Examples: set_timerB(0);

while (timerB < 200);
Example Files: none

Also See: set_timerB(), setup_timer_B(), TimerB Overview

get_timerx()

Syntax: value=get_timer0() Same as: value=get_rtcc()
value=get_timer1()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer10()
value=get_timer12()

Parameters: None

Returns: Timers 1, 3, 5 and 7 return a 16 bit int.
Timers 2 ,4, 6, 8, 10 and 12 return an 8 bit int.
Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18XXX where it returns a 16
bit int.

Function: Returns the count value of a real time clock/counter. RTCC and Timer0 are the same.
All timers count up. When a timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...).

Availability: Timer O - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3, 5 and 7 - Some PIC18 and Enhanced PIC16 devices
Timer 4,6,8,10 and 12- Some PIC18 and Enhanced PIC16 devices

Requires: Nothing

Examples: set _timer0(0);
while (get timer0() < 200) ;

Example Files: ex_stwt.c

Also See: set_timerx(), TimerQO Overview , Timerl Overview , Timer2 Overview , Timer5
Overview

171

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

get_tris_x()
Syntax: value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K()
Parameters: None
Returns: int16, the value of TRIS register
Function: Returns the value of the TRIS register of port A, B, C, D, E, F, G, H, J, or K.
Availability: All devices.
Requires: Nothing
Examples: tris a = GET TRIS A();
Example Files: None
Also See: input(), output_low(), output high()
getenv()
Syntax: value = getenv (cstring);
Parameters: cstring is a constant string with a recognized keyword
Returns: A constant number, a constant string or O
Function: This function obtains information about the execution environment. The following are
recognized keywords. This function returns a constant O if the keyword is not
understood.
FUSE_SET:fffff Returns 1 if fuse fffff is enabled
FUSE_VALID:fffff Returns 1 if fuse fffff is valid
INT:iiiii Returns 1 if the interrupt iiiii is valid
ID Returns the device ID (set by #ID)
DEVICE Returns the device name string (like "PIC16C74")

172

Built-in Functions

CLOCK
VERSION

VERSION_STRING

PROGRAM_MEMORY

STACK
SCRATCH

DATA_EEPROM

EEPROM_ADDRESS

READ_PROGRAM

ADC_CHANNELS

ADC_RESOLUTION

ICD

SPI

UsB

CAN

I2C_SLAVE

I2C_MASTER

PSP

COMP

VREF

LCD

UART

AUART

CCPx

TIMERX

Returns the MPU FOSC
Returns the compiler version as a float

Returns the compiler version as a string
Returns the size of memory for code (in words)

Returns the stack size
Returns the start of the compiler scratch area

Returns the number of bytes of data EEPROM

Returns the address of the start of EEPROM. O if
not supported by the device.

Returns a 1 if the code memory can be read
Returns the number of A/D channels

Returns the number of bits returned from
READ_ADC()

Returns a 1 if this is being compiled for a ICD
Returns a 1 if the device has SPI

Returns a 1 if the device has USB

Returns a 1 if the device has CAN

Returns a 1 if the device has 12C slave H/W
Returns a 1 if the device has 12C master H/W
Returns a 1 if the device has PSP

Returns a 1 if the device has a comparator
Returns a 1 if the device has a voltage reference
Returns a 1 if the device has direct LCD H/W
Returns the number of H/W UARTS

Returns 1 if the device has an ADV UART

Returns a 1 if the device has CCP number x

Returns a 1 if the device has TIMER number x

173

CCSC Manual

FLASH_WRITE_SIZE

FLASH_ERASE_SIZE

BYTES_PER_ADDRESS

BITS_PER_INSTRUCTION

RAM

SFR:name

BIT:name

SFR_VALID:name

BIT_VALID:name

PIN:PB
UARTX_RX
UARTx_TX
SPIx_DI
SPIXDO

SPIXCLK
ETHERNET

QEI

Smallest number of bytes that can be written to
FLASH

Smallest number of bytes that can be erased in
FLASH

Returns the number of bytes at an address location
Returns the size of an instruction in bits

Returns the number of RAM bytes available for your
device.

Returns the address of the specified special file
register. The output format can be used with the
preprocessor command #bit. name must match SFR
denomination of your target PIC (example:
STATUS, INTCON, TXREG, RCREG, etc)

Returns the bit address of the specified special file
register bit. The output format will be in
“address:bit”, which can be used with the
preprocessor command #byte. name must match
SFR.bit denomination of your target PIC (example:
C, Z, GIE, TMROIF, etc)

Returns TRUE if the specified special file register
name is valid and exists for your target PIC
(example: getenv("SFR_VALID:INTCON"))

Returns TRUE if the specified special file register bit
is valid and exists for your target PIC (example:
getenv("BIT_VALID:TMROIF"))

Returns 1 if PB is a valid 1/0O PIN (like A2)

Returns UARTXPIin (like PINXC7)

Returns UARTXPin (like PINXC6)

Returns SPIxDI Pin

Returns SPIXDO Pin

Returns SPIXCLK Pin

Returns 1 if device supports Ethernet

Returns 1 if device has QEI

174

Built-in Functions

DAC Returns 1 if device has a D/A Converter

DSP Returns 1 if device supports DSP instructions
DCI Returns 1 if device has a DCI module

DMA Returns 1 if device supports DMA

CRC Returns 1 if device has a CRC module

CWG Returns 1 if device has a CWG module

NCO Returns 1 if device has a NCO module

CLC Returns 1 if device has a CLC module

DSM Returns 1 if device has a DSM module
OPAMP Returns 1 if device has op amps

RTC Returns 1 if device has a Real Time Clock
CAP_SENSE Returns 1 if device has a CSM cap sense module

and 2 if it has a CTMU module

EXTERNAL_MEMORY Returns 1 if device supports external program
memory

INSTRUCTION_CLOCK Returns the MPU instruction clock

ENH16 Returns 1 for Enhanced 16 devices
Availability: All devices
Requires: Nothing
Examples: #IF getenv ("VERSION")<3.050

#ERROR Compiler version too old
#ENDIF

for (i=0;i<getenv ("DATA EEPROM") ;i++)
write eeprom(i,0);

#IF getenv ("FUSE VALID:BROWNOUT")

#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS”)

#bit carry flag=GETENV (“BIT:C”)
Example Files: None

175

CCSC Manual

Also See:

None

gets() fgets()

Syntax:

gets (string)
value = fgets (string, stream)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

undefined

Reads characters (using getc()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more
versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN (the
last USE RS232).

All devices
#USE RS232

char string[30];
printf ("Password: ");
gets (string);

if (strcmp (string, password))
printf ("OK") ;

None

getc(), get_string in input.c

goto_address()

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Function: This function jumps to the address specified by location. Jumps outside of the current
function should be done only with great caution. This is not a normally used function
except in very special situations.

Availability: All devices

Requires: Nothing

Examples: #define LOAD_REQUEST PIN_BI1

176

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

Also See:

#define LOADER 0x1f00

if(input(LOADiREQUEST))
goto address (LOADER) ;

setjmp.h
label address()

high_speed _adc_done()

Syntax: value = high_speed_adc_done([pair]);

Parameters: pair — Optional parameter that determines which ADC pair's ready flag to check. If not used all
ready flags are checked.

Returns: An intl6. If pair is used 1 will be return if ADC is done with conversion, 0 will be return if still busy.
If pair isn't use it will return a bit map of which conversion are ready to be read. For example a
return value of 0x0041 means that ADC pair 6, AN12 and AN13, and ADC pair 0, ANO and AN1,
are ready to be read.

Function: Can be polled to determine if the ADC has valid data to be read.

Availability: Only on dsPIC33FJxxGSxxx devices.

Requires: None

Examples: intl6 result[2]
setup _high speed adc pair (1, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc(ADC_CLOCK_ DIV 4);
read high speed adc(l, ADC START ONLY);
while (!high speed adc_done(1));
read_high speed adc (1, ADC_READ ONLY, result);
printf (“AN2 value = $LX, AN3 value = $LX\n\r”,result[0],result[l]);

Example None

Files:

Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(), read_high_speed_adc()

i12c_init()

Syntax:

i2c_init([stream],baud);

Parameters:

stream — optional parameter specifying the stream defined in #USE 12C.

baud — if baud is 0, I12C peripheral will be disable. If baud is 1, 12C peripheral is
initialized and enabled with baud rate specified in #USE 12C directive. If baud is > 1 then
12C peripheral is initialized and enabled to specified baud rate.

177

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Returns: Nothing

Function: To initialize 12C peripheral at run time to specified baud rate.

Availability: All devices.

Requires: #USE 12C

Examples: #USE 12C(MASTER,I2C1, FAST,NOINIT)
i2c_init(TRUE); /finitialize and enable 12C peripheral to baud rate specified
in /HUSE 12C
i2¢_init(500000); //initialize and enable 12C peripheral to a baud rate of 500
/IKBPS

Example Files: None

Also See: I2C POLL(), i2c_speed(), 12C_SlaveAddr(), 12C ISR _STATE() ,12C WRITE(),

I2C_READ(), _USE_12C(), 12C()

i12c_isr_state()

Syntax: state = i2c_isr_state();
state = i2c_isr_state(stream);

Parameters: None

Returns: state is an 8 bit int
0 - Address match received with R/W bit clear, perform i2c_read() to read the 12C
address.

1-0x7F - Master has written data; i2c_read() will immediately return the data

0x80 - Address match received with R/W bit set; perform i2c_read() to read the 12C
address, and use i2c_write() to pre-load the transmit buffer for the next transaction (next
12C read performed by master will read this byte).

0x81-0OxFF - Transmission completed and acknowledged; respond with i2c_write() to pre-
load the transmit buffer for the next transation (the next 12C read performed by master will
read this byte).

Function: Returns the state of 12C communications in 12C slave mode after an SSP interrupt. The
return value increments with each byte received or sent.

If Ox00 or 0x80 is returned, an i2C_read() needs to be performed to read the 12C address
that was sent (it will match the address configured by #USE 12C so this value can be

ignored)
Availability: Devices with i2c hardware
Requires: #USE 12C
Examples: #INT_SSP
void 12c_isr() {
state = i12c_isr state();
if (state==) i2c_read():;
i@c read();
if (state == 0x80)

i2c_read(2);
if (state >= 0x80)
i2c write(send buffer[state - 0x80]);
else if(state > 0)
rcv buffer[state - 1] = i2c read();

178

Built-in Functions

}

Example Files: ex_slave.c
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_write, i2c_read, #USE 12C, 12C
Overview

i2c_poll()

Syntax: i2c_poll()
i2c_poll(stream)

Parameters: stream (optional)- specify the stream defined in #USE 12C

Returns: 1 (TRUE) or O (FALSE)

Function: The 12C_POLL() function should only be used when the built-in SSP is used. This
function returns TRUE if the hardware has a received byte in the buffer. When a TRUE
is returned, a call to I2C_READ() will immediately return the byte that was received.

Availability: Devices with built in 12C

Requires: #USE 12C

Examples: if (i2c-poll())

Example Files:

Also See:

buffer [index]=i2c-read();//read data
None

i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

12c_read()

Syntax:

data =i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

Parameters:

Returns:

Function:

Availability:

ack -Optional, defaults to 1.

0 indicates do not ack.

1 indicates to ack.

2 slave only, indicates to not release clock at end of read. Use when i2c_isr_state ()
returns 0x80.

stream - specify the stream defined in #USE 12C

data - 8 bit int

Reads a byte over the 12C interface. In master mode this function will generate the
clock and in slave mode it will wait for the clock. There is no timeout for the slave, use
i2c_poll() to prevent a lockup. Use restart_wdt() in the #USE I2C to strobe the watch-
dog timer in the slave mode while waiting.

All devices.

179

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Requires: #USE 12C

Examples: i2c start();
i2c write(Oxal);
datal = i2c_read(TRUE);
data2 = i2c_read (FALSE);
i2c_stop();

Example Files: ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, #USE
12C, 12C Overview

i12c_slaveaddr()

Syntax: 12C_SlaveAddr(addr);
12C_SlaveAddr(stream, addr);

Parameters: addr = 8 bit device address
stream(optional) - specifies the stream used in #USE 12C

Returns: Nothing

Function: This functions sets the address for the 12C interface in slave mode.

Availability: Devices with built in 12C

Requires: #USE 12C

Examples: i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08);

Example Files: ex_slave.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read, #USE I12C, 12C
Overview

12c_speed()

Syntax: i2c_speed (baud)
i2c_speed (stream, baud)

Parameters: baud is the number of bits per second.
stream - specify the stream defined in #USE [2C

Returns: Nothing.

Function: This function changes the I2c bit rate at run time. This only works if the hardware 12C
module is being used.

Availability: All devices.

Requires: #USE 12C

180

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples: I2C_Speed (400000);

Example Files: none

Also See: i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE 12C,
12C Overview

12c_start()

Syntax: i2c_start()

i2c_start(stream)
i2c_start(stream, restart)

Parameters: stream: specify the stream defined in #USE 12C
restart: 2 — new restart is forced instead of start
1 — normal start is performed
0 (or not specified) — restart is done only if the compiler last encountered a
I2C_START and no 12C_STOP

Returns: undefined

Function: Issues a start condition when in the [2C master mode. After the start condition the
clock is held low until 2C_WRITE() is called. If another [2C_start is called in the same
function before an i2c_stop is called, then a special restart condition is issued. Note
that specific 12C protocol depends on the slave device. The 12C_START function will
now accept an optional parameter. If 1 the compiler assumes the bus is in the
stopped state. If 2 the compiler treats this I2C_START as a restart. If no parameter is
passed a 2 is used only if the compiler compiled a I2C_START last with no
12C_STOP since.

Availability: All devices.

Requires: #USE 12C

Examples: i2c _start();
i2c_write (0xa0); // Device address
i2c_write (address); // Data to device
i2c_start(); // Restart
i2c_write (Oxal); // to change data direction
data=i2c_read(0); // Now read from slave
i2c_stop ()

Example Files: ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE

12C, 12C Overview

12c_stop()

Syntax: i2c_stop()

181

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

i2c_stop(stream)

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

stream: (optional) specify stream defined in #USE 12C
undefined

Issues a stop condition when in the I12C master mode.

All devices.

#USE 12C

i2c start(); // Start condition
i2c_write(0xa0); // Device address
i2c_write(5); // Device command
i2c write(12); // Device data
i2c_stop(); // Stop condition

ex_extee.c with 2416.c

Also See: i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read, #USE
12C, 12C Overview

12c_write()

Syntax: i2c_write (data)
i2c_write (stream, data)

Parameters: data is an 8 bit int
stream - specify the stream defined in #USE [2C

Returns: This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if in Multi_Master
Mode.
This does not return an ACK if using i2c in slave mode.

Function: Sends a single byte over the 12C interface. In master mode this function will generate
a clock with the data and in slave mode it will wait for the clock from the master. No
automatic timeout is provided in this function. This function returns the ACK bit. The
LSB of the first write after a start determines the direction of data transfer (0 is master
to slave). Note that specific 12C protocol depends on the slave device.

Availability: All devices.

Requires: #USE 12C

Examples: long cmd;

Example Files:

Also See:

; // Start condition
xa0) ;// Device address

i2c_start()
0
cmd) ;// Low byte of command
c

i2c_write
i2c_write
i2c write
i2c_stop()

md>>8);// High byte of command
// Stop condition

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c _isr_state, i2c_read, #USE
12C, 12C Overview

182

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

input()

Built-in Functions

Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is
defined as follows: #define PIN_A3 43 .
The PIN could also be a variable. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. The tristate register is updated unless the
FAST_IO mode is set on port A. note that doing I/0 with a variable instead of a
constant will take much longer time.

Returns: 0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

Function: This function returns the state of the indicated pin. The method of I/O is dependent on
the last USE *_|O directive. By default with standard 1/O before the input is done the
data direction is set to input.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: while (!input (PIN Bl));

Example Files:

Also See:

// waits for Bl to go high

if (input (PIN AQ))
printf ("AO0 is now high\r\n");

intl6é i=PIN Bl1;

while(!'1i);
//waits for Bl to go high

ex_pulse.c

input_x(), output low(), output_high(), #USE FIXED |0, #USE FAST 10, #USE

STANDARD 10, General Purpose I/O

input_change_x()

Syntax: value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();
value = input_change_Kk();

Parameters: None

Returns: An 8-bit or 16-bit int representing the changes on the port.

183

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

This function reads the level of the pins on the port and compares them to the results the last time
the input_change_x() function was called. A 1 is returned if the value has changed, 0 if the value
is unchanged.

All devices.

None

pin_check = input change b();

None

input(), input_x(), output_x(), #USE FIXED 10, #USE FAST |0, #USE STANDARD |0,
General Purpose 1/0O

Input_state()

Syntax: value = input_state(pin)

Parameters: pin to read. Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined as
follows: #define PIN_A3 43 .

Returns: Bit specifying whether pin is high or low. A 1 indicates the pin is high and a 0 indicates it
is low.

Function: This function reads the level of a pin without changing the direction of the pin as INPUT()
does.

Availability: All devices.

Requires: Nothing

Exan”ﬂesj level = input state (pin_ A3);

Example Files:

Also See:

printf ("level: %d",level);

None

input(), set _tris_x(), output low(), output_high(), General Purpose I/O

184

Built-in Functions

input_x()

Syntax: value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()

Parameters: None

Returns: An 8 bit int representing the port input data.

Function: Inputs an entire byte from a port. The direction register is changed in accordance with the last
specified #USE *_|O directive. By default with standard 1/O before the input is done the data
direction is set to input.

Availability: All devices.

Requires: Nothing

Examples: data = input_Db();

Example ex_psp.c

Files:

Also See: input(), output_x(), #USE FIXED_ 10, #USE FAST 10, #USE STANDARD IO

interrupt_active()

Syntax: interrupt_active (interrupt)

Parameters: Interrupt — constant specifying the interrupt

Returns: Boolean value

Function: The function checks the interrupt flag of the specified interrupt and returns true in case
the flag is set.

Availability: Device with interrupts

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.

Examples: interrupt active (INT TIMERO) ;

Example Files:

Also See:

interrupt active (INT TIMERI);
None

disable interrupts() , #INT , Interrupts Overview
clear_interrupt, enable_interrupts()

185

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

isalnum(char)
isalpha(char)
iscntrl(x)
isdigit(char)
isgraph(x)
islower(char)
iIsspace(char)
iIsupper(char)
isxdigit(char)
isprint(x)
Ispunct(x)

Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

Parameters: datac is a 8 bit character
Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does match the
criteria.
Function: Tests a character to see if it meets specific criteria as follows:
isalnum(x) Xis 0.9,'A".."Z', or'a'..'z'
isalpha(x) Xis'A'..'”Z' or'a'..'z
isdigit(x) Xis'0'..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'..'Z
isspace(x) X is a space
isxdigit(x) Xis'0'..'9", 'A'..'F', or 'a'..'f
iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or number
Availability: All devices.
Requires: #INCLUDE <ctype.h>
Examples: char id[20];
if (isalpha(id[0])) {

valid id=TRUE;

for(i=1;i<strlen (id) ;i++)

valid id=valid id && isalnum(id[i]);
} else

valid id=FALSE;

186

Built-in Functions

Example Files: ex_str.c
Also See: isamong()
iIsamong()
Syntax: result = isamong (value, cstring)
Parameters: valu.e is'a character .
cstring is a constant sting
Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring
Function: Returns TRUE if a character is one of the characters in a constant string.
Availability: All devices
Requires: Nothing
Examples: char x= 'x';

Example Files:

if (isamong (x,
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is wvalid");

#INCLUDE <ctype.h>

Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(), isxdigit()
itoa()
Syntax: string = itoa(i32value, i8base, string)
Parameters: i32value is a 32 bit int
i8base is a 8 bit int
string is a pointer to a null terminated string of characters
Returns: string is a pointer to a null terminated string of characters
Function: Converts the signed int32 to a string according to the provided base and returns the
converted value if any. If the result cannot be represented, the function will return 0.
Availability: All devices
Requires: #INCLUDE <stdlib.h>
Examples: int32 x=1234;

char string[5];

itoa(x,10, string);
// string is now “1234”

187

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Example Files: None

Also See: None

jump_to_isr()

Syntax: jump_to_isr (address)

Parameters: address is a valid program memory address

Returns: No value

Function: The jump_to_isr function is used when the location of the interrupt service routines are

not at the default location in program memory. When an interrupt occurs, program
execution will jump to the default location and then jump to the specified address.

Availability: All devices
Requires: Nothing
Examples: int global

void global isr(void) {
jump to isr(isr address);

}

Example Files: ex_bootloader.c
Also See: #BUILD

kbhit()

Syntax: value = kbhit()
value = kbhit (stream)

Parameters: stream is the stream id assigned to an available RS232 port. If the stream parameter is
not included, the function uses the primary stream used by getc().

Returns: 0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if a
character is ready for getc()

Function: If the RS232 is under software control this function returns TRUE if the start bit of a
character is being sent on the RS232 RCV pin. If the RS232 is hardware this function
returns TRUE if a character has been received and is waiting in the hardware buffer for
getc() to read. This function may be used to poll for data without stopping and waiting
for the data to appear. Note that in the case of software RS232 this function should be
called at least 10 times the bit rate to ensure incoming data is not lost.

Availability: All devices.
Requires: #USE RS232
Examp|es; char timed getc() {

188

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

Also See:

long timeout;

timeout error=FALSE;
timeout=0;
while (!kbhit () && (++timeout<50000)) // 1/2
// second
delay us (10);
if (kbhit ())
return (getc());
else {
timeout error=TRUE;
return(0);

}

ex_tgetc.c
getc(), #USE RS232, RS232 1/0O Overview

label address()

Syntax: value = label_address(label);
Parameters: label is a C label anywhere in the function
Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH, PCD
Function: This function obtains the address in ROM of the next instruction after the label. This is
not a normally used function except in very special situations.
Availability: All devices.
Requires: Nothing
Examples: start:
a = (b+tc)<<2;
end:

Example Files:

Also See:

printf ("It takes %lu ROM locations.\r\n",
label address (end)-label address (start));

setjmp.h
goto_address()

labs()

Syntax: result = labs (value)

Parameters: value is a 16 bit signed long int

Returns: A 16 bit signed long int

Function: Computes the absolute value of a long integer.
Availability: All devices.

189

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Requires:

Examples:

Example Files:

Also See:

#INCLUDE <stdlib.h>

if (labs(target value - actual value) > 500)
printf ("Error is over 500 points\r\n");

None

abs

lcd_contrast()

Syntax: Icd_contrast (contrast)

Parameters: contrast is used to set the internal contrast control resistance ladder.

Returns: undefined.

Function: This function controls the contrast of the LCD segments with a value passed in between
0 and 7. A value of 0 will produce the minimum contrast, 7 will produce the maximum
contrast.

Availability: Only on select devices with built-in LCD Driver Module hardware.

Requires: None.

Examples: lcd contrast(

Example Files:

Also See:

0); // Minimum Contrast
7);

lcd contrast() // Maximum Contrast
None.

Icd_load(), lcd_symbol(), setup_lcd(), Internal LCD Overview

lcd_load()

Syntax: Icd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD, offset is the offset into the
LCD segment memory to write the data, length is the number of bytes to transfer to
the LCD segment memory.

Returns: undefined.

Function: This function will load length bytes from buffer_pointer into the LCD segment
memory beginning at offset. The Icd_symbol() function provides as easier way to
write data to the segment memory.

Availability: Only on devices with built-in LCD Driver Module hardware.

Requires Constants are defined in the devices *.h file.

Examples: lcd load(buffer, 0, 16);

190

Built-in Functions

Example Files:

Also See:

ex_92lcd.c

Ilcd_symbol(), setup lcd(), lcd_contrast(), Internal LCD Overview

lcd_symbol()

Syntax: Icd_symbol (symbol, bX_addr);

Parameters: symbol is a 8 bit or 16 bit constant.
bX_addr is a bit address representing the segment location to be used for bit X of the
specified symbol.
1-16 segments could be specified.

Returns: undefined

Function: This function loads the bits for the symbol into the segment data registers for the LCD
with each bit address specified. If bit X in symbol is set, the segment at bX_addr is set,
otherwise it is cleared. The bX_addr is a bit address into the LCD RAM.

Availability: Only on devices with built-in LCD Driver Module hardware.

Requires Constants are defined in the devices *.h file.

Exan1p|es; byte CONST DIGIT MAP[10] = {0OxFC, 0x60, OxDA, OxF2, 0x66, OxB6, O0xBE, OxEO,
OxFE, O0xE6};

Example Files:

Also See:

#define DIGITL COM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18

for(i = 0; i <= 9; i++) {
lcd symbol(DIGIT MAP[i], DIGIT1);

delay ms(1000);
}

ex_92lcd.c

setup_lcd(), lcd_load(), lcd_contrast(), Internal LCD Overview

ldexp()

Syntax: result=ldexp (value, exp);
Parameters: value is float
exp is a signed int.
Returns: result is a float with value result times 2 raised to power exp.
Function: The Idexp function multiplies a floating-point number by an integral power of 2.
Availability: All devices.
Requires: #INCLUDE <math.h>

191

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Examples: float result;
result=1ldexp(.5,0);
// result is .5

Example Files: None

Also See: frexp(), exp(), loa(), log10(), modf()

log()

Syntax: result =log (value)

Parameters: value is a float

Returns: A float

Function: Computes the natural logarithm of the float x. If the argument is less than or equal to

zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in the errno variable.
The user can check the errno to see if an error has occurred and print the error using
the perror function.

Domain error occurs in the following cases:
¢ log: when the argument is negative

Availability: All devices
Requires: #INCLUDE <math.h>
Examples: Inx = log(x);
Example Files: None

Also See: l0g10(), exp(), pow()

l0g10()

Syntax: result =1og10 (value)

Parameters: value is a float

Returns: A float

Function: Computes the base-ten logarithm of the float x. If the argument is less than or equal to

zero or too large, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

192

Built-in Functions

Availability:
Requires:
Examples:
Example Files:

Also See:

Domain error occurs in the following cases:
¢ log10: when the argument is negative

All devices

#INCLUDE <math.h>

db = 10gl0(read_adc()*(5.0/255))*10;
None

log(), exp(), pow()

longjmp()

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is 0 then the function setjmp will
return 1 instead.

Returns: After longjmp is completed, program execution continues as if the corresponding
invocation of the setjmp function had just returned the value specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: longjmp (jmpbuf, 1);

Example Files:

Also See:

None

setimp()

make8()

Syntax: i8 = MAKES8(var, offset)

Parameters: var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & 0xff) except it
is done with a single byte move.

Availability: All devices

Requires: Nothing

193

CCSC Manual

Examples: int32 x;
int y;

y = make8(x,3); // Gets MSB of x
Example Files: None

Also See: make16(), make32()

makel6()

Syntax: i16 = MAKEZ16(varhigh, varlow)

Parameters: varhigh and varlow are 8 bit integers.

Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32 bits

only the Isb is used. Same as: i16 = (int16)(varhigh&0xff)*0x100+(varlow&0xff) except
it is done with two byte moves.

Availability: All devices

Requires: Nothing

Examples: long x;
int hi,lo;

x = makel6 (hi,lo);
Example Files: [tc1298.c

Also See: make8(), make32()

make32()

Syntax: i32 = MAKE32(varl, var2, var3, var4)

Parameters: varl-4 are a 8 or 16 bit integers. var2-4 are optional.

Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note that the

number of parameters may be 1 to 4. The msb is first. If the total bits provided is less
than 32 then zeros are added at the msb.

Availability: All devices

Requires: Nothing

Examples: int32 x;
int y;
long z;

194

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

X make32(y,vy,z); // x is 0x12124321

ex_freqc.c

Also See: make8(), makel6()

malloc()

Syntax: ptr=malloc(size)

Parameters: size is an integer representing the number of byes to be allocated.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The malloc function allocates space for an object whose size is specified by size and
whose value is indeterminate.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

Example Files:

Also See:

iptr=malloc(10);
// iptr will point to a block of memory of 10 bytes.

None

realloc(), free(), calloc()

memcpy() memmove()

Syntax: memcpy (destination, source, n)
memmove(destination, source, n)
Parameters: destination is a pointer to the destination memaory.
source is a pointer to the source memory,.
n is the number of bytes to transfer
Returns: undefined
Function: Copies n bytes from source to destination in RAM. Be aware that array names are

pointers where other variable names and structure names are not (and therefore need
a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a problem).
Copying takes place as if the n characters from the source are first copied into a
temporary array of n characters that doesn't overlap the destination and source

195

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

objects. Then the n characters from the temporary array are copied to destination.

All devices

Nothing

memcpy (&structd, &structB, sizeof (structd));

memcpy (arrayA,arrayB,sizeof (arrayhd));
memcpy (&structA, &databyte, 1);

char a[20]="hello";

memmove (a,a+2,5) ;
// a is now "llo"

None

Also See: strepy(), memset()

memset()

Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory.
value is a 8 bit int
n is a 16 bit int.
On PCB and PCM parts n can only be 1-255.

Returns: undefined

Function: Sets n number of bytes, starting at destination, to value. Be aware that array names are
pointers where other variable names and structure names are not (and therefore need a
& before them).

Availability: All devices

Requires: Nothing

Exanuﬂes: memset (arrayA, 0, sizeof (arrayAdh));

Example Files:

Also See:

memset (arrayB, '?', sizeof (arrayB));
memset (&structA, O0xFF, sizeof (structhd));

None

memcpy()

modf()

Syntax:

result= modf (value, & integral)

Parameters:

value is a float
integral is a float

196

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

result is a float

The modf function breaks the argument value into integral and fractional parts, each
of which has the same sign as the argument. It stores the integral part as a float in
the object integral.

All devices
#INCLUDE <math.h>

float result, integral;
result=modf (123.987, &integral) ;
// result is .987 and integral is 123.0000

Example Files: None

Also See: None

_mul()

Syntax: prod=_mul(vall, val2);

Parameters: vall and val2 are both 8-bit or 16-bit integers

Returns: A 16-bit integer if both parameters are 8-bit integers, or a 32-bit integer if both
parameters are 16-bit integers.

Function: Performs an optimized multiplication. By accepting a different type than it returns, this
function avoids the overhead of converting the parameters to a larger type.

Availability: All devices

Requires: Nothing

Examples: int a=50, b=100;
long int c;
c = mul(a, b); //c holds 5000

Example None

Files:

Also See: None

nargs()

Syntax: void foo(char * str, int count, ...)

Parameters: The function can take variable parameters. The user can use stdarg library to create

functions that take variable parameters.
Returns: Function dependent.
Function: The stdarg library allows the user to create functions that supports variable arguments.

The function that will accept a variable number of arguments must have at least one

197

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

Also See:

actual, known parameters, and it may have more. The number of arguments is often
passed to the function in one of its actual parameters. If the variable-length argument
list can involve more that one type, the type information is generally passed as

well. Before processing can begin, the function creates a special argument pointer of
type va_list.

All devices

#INCLUDE <stdarg.h>

int foo(int num, ...)
{

int sum = 0;

int i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; 1i++)

sum = sum + va arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

void main ()

{

int total;

total = foo(2,4,6,9,10,2);
}

None

va_start(), va _end(), va _arg()

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);
Parameters: stype is a structure type name.
Field is a field from the above structure
Returns: An 8 bit byte
Function: These functions return an offset into a structure for the indicated field.
offsetof returns the offset in bytes and offsetofbit returns the offset in bits.
Availability: All devices
Requires: #INCLUDE <stddef.h>
Examples: struct time structure {

int hour, min, sec;
int zone : 4;
intl daylight savings;

x = offsetof (time structure, sec);
// x will be 2

x = offsetofbit (time structure, sec);
// x will be 16

198

Built-in Functions

x = offsetof (time structure,
daylight savings);
// x will be 3
x = offsetofbit (time structure,
daylight savings);
// x will be 28

Example Files: None
Also See: None
output_x()
Syntax: output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)
Parameters: value is a 8 bit int
Returns: undefined
Function: Output an entire byte to a port. The direction register is changed in accordance with the
last specified #USE *_|O directive.
Availability: All devices, however not all devices have all ports (A-E)
Requires: Nothing
Examples: OUTPUT B (0xfO0);

Example Files:

Also See:

ex_patg.c

input(), output_low(), output_high(), output_float(), output_bit(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output_bit()

Syntax:

output_bit (pin, value)

Parameters:

Pins are defined in the devices .h file. The actual number is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined as

follows: #define PIN_A3 43 . The PIN could also be a variable. The variable must have
a value equal to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST_10 mode is set on port A. Note that doing I/O with
a variable instead of a constant will take much longer time.

ValueisaloraO0.

199

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified I/O pin. The
method of setting the direction register is determined by the last
#USE *_10 directive.

Availability: All devices.
Requires: Pin constants are defined in the devices .h file
Examples: output bit(PIN BO, 0);

// Same as output low (pin_ BO0);

output bit(PIN BO,input(PIN Bl));
// Make pin B0 the same as Bl

output bit(PIN BO,shift left(&data,l,input (PIN Bl)));
// Output the MSB of data to

// BO and at the same time

// shift Bl into the LSB of data

intl6é i=PIN BO;

ouput bit(i,shift left (&data,l,input (PIN Bl)));
//same as above example, but

//uses a variable instead of a constant

Example Files: ex_extee.c with 9356.c

Also See: input(), output_low(), output high(), output_float(), output x(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD 10, General Purpose I/0O

output_drive()

Syntax: output_drive(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example, port
a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined as follows: #DEFINE
PIN_A3 43.

Returns: undefined

Function: Sets the specified pin to the output mode.

Availability: All devices.

Requires: Pin constants are defined in the devices.h file.

Examples: output_drive (pin A0); // sets pin A0 to output its value
output bit (pin BO, input(pin AO0)) // makes BO the same as A0

Example Files: None

Also See: input(), output_low(), output_high(), output_bit(), output x(), output_float()

200

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

output_float()

Built-in Functions

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined as
follows: #DEFINE PIN_A3 43 . The PIN could also be a variable to identify the pin. The
variable must have a value equal to one of the constants (like PIN_A1) to work
properly. Note that doing 1/0 with a variable instead of a constant will take much longer
time.

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the pin to float high to represent
a high on an open collector type of connection.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: if((data & 0x80)==0)

Example Files:

Also See:

output low(pin AO);
else
output float (pin_ A0);

None

input(), output_low(), output_high(), output_bit(), output x(), output drive(), #USE
FIXED 10, #USE FAST 10, #USE STANDARD 10, General Purpose I/O

output_high()

Syntax: output_high (pin)

Parameters: Pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is
defined as follows: #DEFINE PIN_A3 43 . The PIN could also be a variable. The
variable must have a value equal to one of the constants (like PIN_A1) to work
properly. The tristate register is updated unless the FAST_IO mode is set on port A.

Note that doing I/O with a variable instead of a constant will take much longer time.

Returns: undefined

Function: Sets a given pin to the high state. The method of I/O used is dependent on the last
USE *_10 directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_high (PIN A0);

Example Files:

Intl6 i=PIN Al;
output low (PIN Al);

ex_sqw.c

201

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Also See:

input(), output_low(), output_float(), output_bit(), output x(), #USE FIXED 10, #USE
FAST 10, #USE STANDARD IO, General Purpose I/O

output_low()

Syntax: output_low (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined as
follows: #DEFINE PIN_A3 43 . The PIN could also be a variable. The variable must
have a value equal to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST 1O mode is set on port A. Note that doing I/O with
a variable instead of a constant will take much longer time.

Returns: undefined

Function: Sets a given pin to the ground state. The method of I/O used is dependent on the last
USE *_|O directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output low (PIN A0);

Example Files:

Also See:

Intl6i=PIN Al;
output low (PIN_Al);

€X_sqw.cC

input(), output_high(), output float(), output bit(), output_x(), #USE FIXED_ |0, #USE
FAST 10, #USE STANDARD 10, General Purpose I/O

output_toggle()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For example,
port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined as
follows: #DEFINE PIN_A3 43 .

Returns: Undefined

Function: Toggles the high/low state of the specified pin.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output_toggle (PIN B4);

Example Files:

None

202

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Also See: Input(), output_high(), output_low(), output_bit(), output x()

perror()

Syntax: perror(string);

Parameters: string is a constant string or array of characters (null terminated).

Returns: Nothing

Function: This function prints out to STDERR the supplied string and a description of the last
system error (usually a math error).

Availability: All devices.

Requires: #USE RS232, #INCLUDE <errno.h>

Examples: x = sin(y);

Example Files:

Also See:

if (errno!=0)
perror ("Problem in find area");

None

RS232 1/0 Overview

pid_busy()

Syntax:

result = pid_busy();

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

None

TRUE if PID module is busy or FALSE is PID module is not busy.
To check if the PID module is busy with a calculation.

All devices with a PID module.

Nothing

pid get result (PID START ONLY, ADCResult);
while (pid busy()):;
pid_get_result(PID_READ_ONLY, &PIDResult) ;

None

setup_pid(), pid_write(), pid_get_result(), pid_read()

203

CCSC Manual

pid_get _result()

Syntax: pid_get_result(set_point, input, &output); /IStart and Read
pid_get_result(mode, set_point, input); /IStart Only
pid_get_result(mode, &output) /IRead Only
pid_get_result(mode, set_point, input, &output);

Parameters: mode- constant parameter specifying whether to only start the calculation, only read the
result, or start the calculation and read the result. The options are defined in the device's
header file as:

PID_START_READ

PID_READ_ONLY

PID_START_ONLY
set_point -a 16-bit variable or constant representing the set point of the control system,
the value the input from the control system is compared against to determine the error in
the system.
input - a 16-bit variable or constant representing the input from the control system.
output - a structure that the output of the PID module will be saved to. Either pass the
address of the structure as the parameter, or a pointer to the structure as the parameter.

Returns: Nothing

Function: To pass the set point and input from the control system to the PID module, start the PID
calculation and get the result of the PID calculation. The PID calculation starts,
automatically when the input is written to the PID module's input registers.

Availability: All devices with a PID module.

Requires: Constants are defined in the device's .h file.

Examples: pid get result(SetPoint, ADCResult, &PIDOutput); //Start and Read
pid get result(PID START ONLY, SetPoint, ADCResult); //Start Only
pid get result (PID_READ ONLY, &PIDResult); //Read Only

Example Files: None

Also See:

setup_pid(), pid_read(), pid_write(), pid_busy()

pid_read()

Syntax:

pid_read(register, &output);

Parameters:

register- constant specifying which PID registers to read. The registers that can be
written are defined in the device's header file as:
PID ADDR ACCUMULATOR

204

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

PID_ADDR_OUTPUT
PID_ADDR_Z1
PID_ADDR_Z2
PID_ADDR_K1
PID_ADDR_K2
PID_ADDR_K3

output -a 16-bit variable, 32-bit variable or structure that specified PID registers value will
be saved to. The size depends on the registers that are being read. Either pass the
address of the variable or structure as the parameter, or a pointer to the variable or
structure as the parameter.

Nothing

To read the current value of the Accumulator, Output, Z1, Z2, Set Point, K1, K2 or K3 PID
registers. If the PID is busy with a calculation the function will wait for module to finish
calculation before reading the specified register.

All devices with a PID module.

Constants are defined in the device's .h file.

pid read(PID_ADDR Zl, &value zl);

None

setup_pid(), pid_write(), pid_get result(), pid busy()

pid_write()

Syntax:

pid_write(register, &input);

Parameters:

Returns:

register- constant specifying which PID registers to write. The registers that can be
written are defined in the device's header file as:

PID_ADDR_ACCUMULATOR

PID_ADDR_OUTPUT

PID_ADDR 71

PID_ADDR _Z2

PID_ADDR Z3

PID_ADDR_K1

PID_ADDR_K2

PID_ADDR_K3

input -a 16-bit variable, 32-bit variable or structure that contains the data to be written.
The size depends on the registers that are being written. Either pass the address of the
variable or structure as the parameter, or a pointer to the variable or structure as the
parameter.

Nothing

205

CCSC Manual

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

To write a new value for the Accumulator, Output, Z1, Z2, Set Point, K1, K2 or K3 PID
registers. If the PID is busy with a calculation the function will wait for module to finish the
calculation before writing the specified register.

All devices with a PID module.

Constants are defined in the device's .h file.

pid write (PID ADDR Z1, &value zl);

None

setup _pid(), pid_read(), pid_get result(), pid busy()

port_x_pullups ()

Syntax: port_a_pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_pullups (value)
port_j_pullups (value)
port_x_pullups (upmask)
port_x_pullups (upmask, downmask)
Parameters: value is TRUE or FALSE on most parts, some parts that allow pullups to be specified on
individual pins permit an 8 bit int here, one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin basis. This mask indicates
what pins should have pullups activated. A 1 indicates the pullups is on.
downmask for ports that permit pulldowns to be specified on a pin basis. This mask
indicates what pins should have pulldowns activated. A 1 indicates the pulldowns is on.
Returns: undefined
Function: Sets the input pullups. TRUE will activate, and a FALSE will deactivate.
Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS on PCB
parts).
Requires: Nothing
Examples: port a pullups (FALSE) ;

Example Files:

Also See:

ex_lcdkb.c, kbd.c

input(), input_x(), output_float()

206

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

pow() pwr()

Built-in Functions

Syntax:

f=pow (xy)
f=pwr (xy)

Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example Files:

Also See:

x and y are of type float

A float

Calculates X to the Y power.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the

error using the perror function.

Range error occurs in the following case:
e pow: when the argument X is negative

All Devices

#INCLUDE <math.h>
area = pow (size,3.0);
None

None

printf() fprintf()

Syntax:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters:

Returns:

Function:

String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function name to be used
for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte). Note that format specifies do not work
in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first two forms) or to a
specified function. Formatting is in accordance with the string argument. When
variables are used this string must be a constant. The % character is used within the
string to indicate a variable value is to be formatted and output. Longs in the printf may
be 16 or 32 bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other escape
character that may be part of the string.

207

CCSC Manual

If fprintf() is used then the specified stream is used where printf() defaults to STDOUT
(the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to specify how
many characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to 9.9 for
floating point and %w output. t is the type and may be one of the following:

c Character

S String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)

LX Hex long int (upper case)

Float with truncated decimal

Float with rounded decimal

Float in exponential format

Unsigned int with decimal place inserted. Specify two numbers for n. The
first is a total field width. The second is the desired number of decimal
places.

s 0@ —+

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 00FE
%3.1w 1.8 25.4
* Result is undefined - Assume garbage.
Availability: All Devices
Requires: #USE RS232 (unless fname is used)
Examples: byte x,y,z;

printf ("HiThere");

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("$2u $X $4X\n\r",x,vy,z);

printf (LCD_PUTC, "n=%u",n);

Example Files: ex_admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc(), getc() (for a stream example), RS232 1/O Overview

profileout()

Syntax: profileout(string);
profileout(string, value);

208

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

profileout(value);

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

string is any constant string, and value can be any constant or variable integer. Despite
the length of string the user specifies here, the code profile run-time will actually only
send a one or two byte identifier tag to the code profile tool to keep transmission and
execution time to a minimum.

Undefined

Typically the code profiler will log and display function entry and exits, to
show the call sequence and profile the execution time of the functions.
By using profileout(), the user can add any message or display any
variable in the code profile tool. Most messages sent by profileout() are
displayed in the 'Data Messages' and 'Call Sequence' screens of the
code profile tool.

If a profileout(string) is used and the first word of string is "START", the
code profile tool will then measure the time it takes until it sees the same
profileout(string) where the "START" is replaced with "STOP". This
measurement is then displayed in the 'Statistics' screen of the code

profile tool, using string as the name (without "START" or "STOP")
Any device.

#use profile() used somewhere in the project source code.
/I send a simple string.

profileout("This is a text string");

/I send a variable with a string identifier.
profileout("RemoteSensor=", adc);

/l just send a variable.

profileout(adc);

// time how long a block of code takes to execute.
/I this will be displayed in the 'Statistics' of the

/I Code Profile tool.

profileout("start my algorithm");

/* code goes here */

profileout("stop my algorithm®);

ex_profile.c

#use profile(), #profile, Code Profile overview

psp_output_full() psp_input_full() psp_overflow()

Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error(); /[EPMP only
result = psp_timeout(); /[EPMP only
Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Slave Port (PSP) for the indicated conditions and

209

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

Also See:

return TRUE or FALSE.
This function is only available on devices with PSP hardware on chips.

Nothing

while (psp_output full()) ;
psp_data = command;
while (!psp input full()) ;
if (psp_overflow())

error = TRUE;
else

data = psp data;

€X_psp.c

setup_psp(), PSP Overview

putc() putchar() fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)

Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A #USE RS232 must
appear before this call to determine the baud rate and pin used. The #USE RS232
remains in effect until another is encountered in the file.
If fputc() is used then the specified stream is used where putc() defaults to STDOUT
(the last USE RS232).

Availability: All devices

Requires: #USE RS232

Examples: putc('*');

Example Files:

Also See:

for (i=0; 1<10; i++)
putc (buffer[i]);
putc (13);

ex_tgetc.c

getc(), printf(), #USE RS232, RS232 I/O Overview

210

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

putc_send();

Built-in Functions

fputc_send();

Syntax:

putc_send();
fputc_send(stream);

Parameters:
Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

Also See:

stream — parameter specifying the stream defined in #USE RS232.
Nothing

Function used to transmit bytes loaded in transmit buffer over RS232. Depending on the
options used in #USE RS232 controls if function is available and how it works.

If using hardware UARTx with NOTXISR option it will check if currently transmitting. If
not transmitting it will then check for data in transmit buffer. If there is data in transmit
buffer it will load next byte from transmit buffer into the hardware TX buffer, unless using
CTS flow control option. In that case it will first check to see if CTS line is at its active
state before loading next byte from transmit buffer into the hardware TX buffer.

If using hardware UARTX with TXISR option, function only available if using CTS flow
control option, it will test to see if the TBEX interrupt is enabled. If not enabled it will then
test for data in transmit buffer to send. If there is data to send it will then test the CTS
flow control line and if at its active state it will enable the TBEXx interrupt. When using the
TXISR mode the TBEX interrupt takes care off moving data from the transmit buffer into
the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will check if there is data
in transmit buffer to send. If there is data it will then check the CTS flow control line, and
if at its active state it will clock out the next data byte.

All devices

#USE RS232
#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50,NOTXISR)
printf(“Testing Transmit Buffer”);
while(TRUE)

putc_send();
}

None

USE_RS232(), RCV_BUFFER FULL(), TX BUFFER FULL(), TX BUFFER_BYTES(
), GET(), PUTC() RINTFE(), SETUP_UART(),
PUTC() SEND

puts() fputs(

)

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

211

CCSC Manual

Function: Sends each character in the string out the RS232 pin using putc(). After the string is
sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general printf() is
more useful than puts().

If fputs() is used then the specified stream is used where puts() defaults to STDOUT
(the last USE RS232)

Availability: All devices
Requires: #USE RS232
Examples: puts(" —---------- ")
puts(" | HI ")
puts(" -—-——-——-—- ")
Example Files: None
Also See: printf(), gets(), RS232 1/0 Overview
pwm_off()
Syntax: pwm_off([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE PWM.
Returns: Nothing.
Function: To turn off the PWM signal.
Availability: All devices.
Requires: #USE PWM
Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while(TRUE){
if(kbhit()){
¢ = getc();
if(c=="F")
pwm_off();
}
) }
Example Files: None
Also See: #use pwm, pwm_on(), pwm_set duty percent(), pwm_set duty(),

pwm_set frequency()

pwm_on()

Syntax: pwm_on([stream]);

212

Built-in Functions

Parameters:
Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

stream — optional parameter specifying the stream defined in #USE PWM.
Nothing.

To turn on the PWM signal.
All devices.

#USE PWM

#USE PWM(OUTPUT=PIN7C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {
c = getc();

if (c=='0")
pwm_on () ;
}
}
None

#use pwm, pwm_off(), pwm_set duty percent(), pwm_set duty,
pwm_set frequency()

pwm_set_duty()

Syntax: pwm_set_duty([stream],duty);

Parameters: stream — optional parameter specifying the stream defined in #USE PWM.
duty — an int16 constant or variable specifying the new PWM high time.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. The duty cycle percentage
depends on the period of the PWM signal. This function is faster than
pwm_set_duty_percent(), but requires you to know what the period of the
PWM signal is.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

Example Files:

Also See:

None

#use pwm, pwm_on, pwm_off(), pwm_set frequency(),
pwm_set duty percent()

pwm_set_duty percent

Syntax:

pwm_set_duty_percent([stream]), percent

213

CCSC Manual

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

stream — optional parameter specifying the stream defined in #USE PWM.

percent- an int16 constant or variable ranging from 0 to 1000 specifying the new PWM

duty cycle, D is 0% and 1000 is 100.0%.

Nothing.

To change the duty cycle of the PWM signal. Duty cycle percentage is based off the

current frequency/period of the PWM signal.

All devices.

#USE PWM

#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set duty percent (500) ; //set PWM duty cycle to 50%
None

#use pwm, pwm_on(), pwm_off(), pwm_set frequency(), pwm_set duty()

pwm_set frequency

Syntax: pwm_set_frequency([stream],frequency);

Parameters: stream — optional parameter specifying the stream defined in #USE PWM.
frequency — an int32 constant or variable specifying the new PWM
frequency.

Returns: Nothing.

Function: To change the frequency of the PWM signal. Warning this may change the
resolution of the PWM signal.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set frequency (1000); //set PWM frequency to 1kHz

Example Files: None

Also See:

#use pwm, pwm_on(), pwm_off(), pwm_set duty percent,

pwm_set duty()

214

Built-in Functions

gei_get _count()

Syntax: value = gei_get_count([type]);

Parameters: type - Optional parameter to specify which counter to get, defaults to position counter. Defined in
devices .h file as:

QEI_GET_POSITION_COUNT
QEI_GET_VELOCITY_COUNT

Returns: The 16-bit value of the position counter or velocity counter.
Function: Reads the current 16-bit value of the position or velocity counter.
Availability: Devices that have the QEI module.
Requires: Nothing.
Examples; value = gei get counter (QEI GET POSITION COUNT) ;

value = gei get counter();

value = gei get counter (QEI GET VELOCITY COUNT) ;
Example None
Files:
Also See: setup _gei() , gei_set count() , gei_status().

gei_set_count()

Syntax: gei_set_count(value);

Parameters: value- The 16-bit value of the position counter.
Returns: void

Function: Write a 16-bit value to the position counter.
Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: gel set counter (value);

Example Files: None

Also See: setup_gei() , gei_get_count() , gei_status().

gei_status()

Syntax: status = gei_status();

215

CCSC Manual

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

None

The status of the QEI module.
Returns the status of the QEI module.
Devices that have the QEI module.
Nothing.

status = gei status();

None

setup _qgei() , gei_set count() , gei_get count().

gsort()

Syntax: gsort (base, num, width, compare)

Parameters: base: Pointer to array of sort data
num: Number of elements
width: Width of elements
compare: Function that compares two elements

Returns: None

Function: Performs the shell-metzner sort (not the quick sort algorithm). The contents of the array
are sorted into ascending order according to a comparison function pointed to by
compare.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int nums[5]={ 2,3,1,5,4};

Example Files:

Also See:

int compar (void *argl,void *arg2);

void main () {
gsort (nums, 5, sizeof (int), compar);
}
int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O

else return 1;

}
ex_gsort.c
bsearch()

216

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

rand()

Built-in Functions

Syntax: re=rand()
Parameters: None
Returns: A pseudo-random integer.
Function: The rand function returns a sequence of pseudo-random integers in the range of 0 to
RAND_MAX.
Availability: All devices
Requires: #INCLUDE <STDLIB.H>
Examples: int I;
I=rand();
Example Files: None
Also See: srand()

rcv_buffer _bytes()

Syntax: value =rcv_buffer_bytes([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE RS232.

Returns: Number of bytes in receive buffer that still need to be retrieved.

Function: Function to determine the number of bytes in receive buffer that still need to be retrieved.
Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=100)

Example Files:

void main(void) {
charc;
if(rcv_buffer_bytes() > 10)
¢ = getc();

}

None

217

CCSC Manual

rcv_buffer_full()

Syntax: value = rcv_buffer_full([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE RS232.
Returns: TRUE if receive buffer is full, FALSE otherwise.
Function: Function to test if the receive buffer is full.
Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=100)
void main(void) {
char c;
if(rcv_buffer_full())
¢ = getc();
Example Files: None
Also See: USE RS232(),RCV_BUFFER BYTES(), TX BUFFER BYTES()
,IX BUFFER FULL(), GETC(), PUTC(), PRINTF(), SETUP_UART(), PUTC SEND(
)
read _adc()
Syntax: value =read_adc ([mode])
Parameters: mode is an optional parameter. If used the values may be:

ADC_START_AND_READ (continually takes readings, this is the default)
ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Returns: Either a 8 or 16 bit int depending on #DEVICE ADC-= directive.

Function: This function will read the digital value from the analog to digital converter. Calls to
setup_adc(), setup_adc_ports() and set_adc_channel() should be made sometime
before this function is called. The range of the return value depends on number of bits
in the chips A/D converter and the setting in the #DEVICE ADC= directive as follows:

#DEVICE __ 8bit___ 10 bit 11 bit 12 bit 16 bit
ADC=8 00-FF 00-FF O0-FF 00-FF 00-FF
ADC=10 «x 0-3FF X 0-3FF X
ADC=11 «x X 0-7FF X x

ADC=16 OFF00 O-FFCO 0-FFEO 0-FFFO 0-FFFF
Note: x is not defined

Availability: This function is only available on devices with A/D hardware.
Requires: Pin constants are defined in the devices .h file.
Examples: setup adc(ADC CLOCK INTERNAL);

setup_adc_ports(ALL_ANALOG) ;

set_adc_channel (1);

while (input (PIN_BO)) {
delay ms(5000);
value = read adc();

printf ("A/D value $2x\n\r", value);

218

Built-in Functions

Example
Files:
Also See:

read adc (ADC_START ONLY) ;
sleep();
value=read_adc (ADC_READ ONLY) ;

ex_admm.c, ex 14kad.c

setup_adc(), set_adc _channel(), setup adc ports(), #DEVICE, ADC
Overview

read_bank()

Syntax: value = read_bank (bank, offset)

Parameters: bank is the physical RAM bank 1-3 (depending on the device)
offset is the offset into user RAM for that bank (starts at 0),

Returns: 8 bit int

Function: Read a data byte from the user RAM area of the specified memory bank. This function
may be used on some devices where full RAM access by auto variables is not
efficient. For example, setting the pointer size to 5 bits on the PIC16C57 chip will
generate the most efficient ROM code. However, auto variables can not be above 1Fh.
Instead of going to 8 bit pointers, you can save ROM by using this function to read from
the hard-to-reach banks. In this case, the bank may be 1-3 and the offset may be 0-15.

Availability: All devices but only useful on PCB parts with memory over 1Fh
and PCM parts with memory over FFh.

Requires: Nothing

Examples: // See write bank() example to see

Example Files:

Also See:

// how we got the data
// Moves data from buffer to LCD

i=0;

do {
c=read bank (1,i++);
if (c!=0x13)

lcd_putc(c);
} while (c!=0x13);

ex _psp.c

write_bank(), and the "Common Questions and Answers" section for more information.

read calibration()

Syntax: value =read_calibration (n)

Parameters: n is an offset into calibration memory beginning at 0

Returns: An 8 bit byte

Function: The read_calibration function reads location "n" of the 14000-calibration memory.

219

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Availability:
Requires:
Examples:
Example Files:

Also See:

This function is only available on the PIC14000.
Nothing
fin = read_calibration(16);

ex_14kad.c with 14kcal.c

None

read_configuration_memory()

Syntax: read_configuration_memory([offset], ramPtr, n)

Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer
offset is an optional parameter specifying the offset into configuration memory to start
reading from, offset defaults to zero if not used.

Returns: undefined

Function: For PIC18-Reads n bytes of configuration memory and saves the values to ramPtr.
For Enhanced16 devices function reads User ID, Device ID and configuration memory
regions.

Availability: All PIC18 Flash and Enhanced16 devices

Requires: Nothing

Examples: int dataf[6];

Example Files:

Also See:

read_configuration memory (data, 6);
None

write _configuration _memory(), read program_memory(), Configuration Memory
Overview

read _eeprom()

Syntax: value =read_eeprom (address)

Parameters: address is an 8 bit or 16 bit int depending on the part

Returns: An 8 bit int

Function: Reads a byte from the specified data EEPROM address. The address begins at 0 and
the range depends on the part.

Availability: This command is only for parts with built-in EEPROMS

220

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Requires: Nothing

Examples: #define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

Example Files: None

Also See: write _eeprom(), Data Eeprom Overview

read_extended ram()

Syntax: read_extended_ram(page,address,data,count);

Parameters: page — the page in extended RAM to read from
address — the address on the selected page to start reading from
data — pointer to the variable to return the data to
count — the number of bytes to read (0-32768)

Returns: Undefined

Function: To read data from the extended RAM of the PIC.

Availability: On devices with more then 30K of RAM.

Requires: Nothing

Examples: unsigned int8 data[8];
read_extended_ram(1,0x0000,data,8) ;

Example Files: None

Also See: read_extended_ram(), Extended RAM Overview

read_program_memory()

read _external_memory()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);
READ_EXTERNAL_MEMORY (address, dataptr, count);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts . The least significant bit
should always be 0 in PCM.
dataptr is a pointer to one or more bytes.
count is a 8 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Reads count bytes from program memory at address to RAM at dataptr. B oth of these
functions operate exactly the same.

Availability: Only devices that allow reads from program memory.

221

CCSC Manual

Requires:

Examples:

Example Files:

Also See:

Nothing

char buffer[64];
read external memory(0x40000, buffer, 64);

None

write program memory(), External memory overview , Program Eeprom Overview

read _high_speed _adc()

Syntax:

read_high_speed_adc(pair,mode,result); /l Individual start and read or

/I read only
read_high_speed_adc(pair,result); /I Individual start and read
read_high_speed_adc(pair); /I Individual start only
read_high_speed_adc(mode,result); /I Global start and read or

I/l read only
read_high_speed_adc(result); /I Global start and read
read_high_speed_adc(); /I Global start only

Parameters:

Returns:

Function:

pair — Optional parameter that determines which ADC pair number to start and/or read.
Valid values are 0 to total number of ADC pairs. 0 starts and/or reads ADC pair ANO
and AN1, 1 starts and/or reads ADC pair AN2 and AN3, etc. If omitted then a global
start and/or read will be performed.

mode — Optional parameter, if used the values may be:
- ADC_START_AND_READ (starts conversion and reads result)
- ADC_START_ONLY (starts conversion and returns)
- ADC_READ_ONLY(reads conversion result)

result — Pointer to return ADC conversion too. Parameter is optional, if not used the
read_fast_adc() function can only perform a start.

Undefined

This function is used to start an analog to digital conversion and/or read
the digital value when the conversion is complete. Calls to
setup_high_speed_adc() and setup_high_speed_adc_pairs() should be
made sometime before this function is called.

When using this function to perform an individual start and read or
individual start only, the function assumes that the pair's trigger source
was set to INDIVIDUAL_SOFTWARE_TRIGGER.

When using this function to perform a global start and read, global start
only, or global read only. The function will perform the following steps:

1. Determine which ADC pairs are set for
GLOBAL_SOFTWARE_TRIGGER.

2. Clear the corresponding ready flags (if doing a start).

3. Set the global software trigger (if doing a start).

4. Read the corresponding ADC pairs in order from lowest
to highest (if doing a read).

5. Clear the corresponding ready flags (if doing a read).

When using this function to perform a individual read only. The function

222

Built-in Functions

can read the ADC result from any trigger source.

Availability: Only on dsPIC33FJxxGSxxx devices.
Requires: Constants are define in the device .h file.
Examples: //Individual start and read

intl6 result[2];

setup_high speed adc (ADC_CLOCK DIV 4);
setup_high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
read high speed adc(0, result); //starts conversion for ANO and ANl and
stores
//result in result[0] and result[1l]

//Global start and read
intl6 result[4];

setup_high speed adc (ADC_CLOCK DIV 4);
setup_high speed adc pair (0, GLOBAL SOFTWARE TRIGGER) ;
setup high speed adc pair (4, GLOBAL SOFTWARE TRIGGER) ;
read high speed adc(result); //starts conversion for ANO, ANI,
//BAN8 and AN9 and
//stores result in result[0], result //[1],

result[2]
and result[3]
Example Files: None
Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(), high_speed_adc_done()

read _program_eeprom()

Syntax: value =read_program_eeprom (address)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts
Returns: 16 bits

Function: Reads data from the program memory.

Availability: Only devices that allow reads from program memory.
Requires: Nothing

Examples: checksum = 0;

for (i=0;1<8196;i++)
checksum”=read program eeprom(i);
printf ("Checksum is %2X\r\n",checksum) ;

Example Files: None

Also See: write_program_eeprom(), write_eeprom(), read _eeprom(), Program Eeprom Overview

223

CCSC Manual

read_rom_memory()

Syntax: READ_ROM_MEMORY (address, dataptr, count);
Parameters: address is 32 bits. The least significant bit should always be 0.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer
Returns: undefined
Function: Reads count bytes from program memory at address to dataptr. Due to the 24 bit program
instruction size on the PCD devices, three bytes are read from each address location.
Availability: Only devices that allow reads from program memory.
Requires: Nothing
Examples: char buffer[64];
read program memory (0x40000, buffer, 64);
Example None
Files:
Also See: write_program_eeprom() , write_eeprom(), read_eeprom(), Program eeprom overview

read sd _adc()

Syntax: value =read_sd_adc();

Parameters: None

Returns: A signed 32 bit int.

Function: To poll the SDRDY bit and if set return the signed 32 bit value stored in the SD1IRESH and
SD1RESL registers, and clear the SDRDY bit. The result returned depends on settings made with
the setup_sd_adc() function, but will always be a signed int32 value with the most significant bits
being meaningful. Refer to Section 66, 16-bit Sigma-Delta A/D Converter, of the PIC24F Family
Reference Manual for more information on the module and the result format.

Availability: ~ Only devices with a Sigma-Delta Analog to Digital Converter (SD ADC) module.

Examples: value = read_sd_adc()

Example None

Files:

Also See: setup_sd_adc(), set sd adc_calibration(), set sd adc_channel()

realloc()

Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc or malloc or realloc

224

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

function, size is an integer representing the number of byes to be allocated.
A pointer to the possibly moved allocated memory, if any. Returns null otherwise.

The realloc function changes the size of the object pointed to by the ptr to the size
specified by the size. The contents of the object shall be unchanged up to the lesser of
new and old sizes. If the new size is larger, the value of the newly allocated space is
indeterminate. If ptr is a null pointer, the realloc function behaves like malloc function for
the specified size. If the ptr does not match a pointer earlier returned by the calloc,
malloc or realloc, or if the space has been deallocated by a call to free or realloc
function, the behavior is undefined. If the space cannot be allocated, the object pointed
to by ptr is unchanged. If size is zero and the ptr is not a null pointer, the object is to be
freed.

All devices

#INCLUDE <stdlibm.h>
int * iptr;
iptr=malloc (10);

realloc (iptr,20)

// iptr will point to a block of memory of 20 bytes, if available.

None

Also See: malloc(), free(), calloc()

release io()

Syntax: release_io();

Parameters: none

Returns: nothing

Function: The function releases the 1/0 pins after the device wakes up from deep sleep, allowing
the state of the 1/O pins to change

Availability: Devices with a deep sleep module.

Requires: Nothing

Examples: unsigned intl6 restart;

Example Files:

Also See:

restart = restart cause();
if (restart == RTC_FROM DS)

release io();
None

sleep()

reset_cpu()

Syntax:

reset_cpu()

225

CCSC Manual

Parameters: None
Returns: This function never returns
Function: This is a general purpose device reset. It will jump to location 0 on PCB and PCM

parts and also reset the registers to power-up state on the PIC18XXX.

Availability: All devices
Requires: Nothing
Examples: if (checksum!=0)

reset cpu();
Example Files: None

Also See: None

restart_cause()

Syntax: value =restart_cause()
Parameters: None
Returns: A value indicating the cause of the last processor reset. The actual values are device

dependent. See the device .h file for specific values for a specific device. Some
example values are: WDT_FROM_SLEEP, WDT_TIMEOUT, MCLR_FROM_SLEEP
and NORMAL_POWER_UP.

Function: Returns the cause of the last processor reset.
Availability: All devices

Requires: Constants are defined in the devices .h file.
Examples: switch (restart cause()) {

case WDT_FROM SLEEP:
case WDT_TIMEOUT:

handle error();

}

Example Files: ex_wdt.c

Also See: restart wdt(), reset_cpu()

restart_wdt()

Syntax: restart_wdt()

Parameters: None

226

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns: undefined

Function: Restarts the watchdog timer. If the watchdog timer is enabled, this must
be called periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software
appears to be stuck.

The timer must be enabled, the timeout time set and software must
periodically restart the timer. These are done differently on the
PCB/PCM and PCH parts as follows:

PCB/PCM PCH

Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

Availability: All devices

Requires: #FUSES

Examples: #fuses WDT // PCB/PCM example

// See setup wdt for a
// PIC18 example
main () {
setup_ wdt (WDT_2304MS) ;
while (TRUE) {
restart wdt();
perform activity();
}
}

Example ex_wdt.c
Files:
Also See: #FUSES, setup_wdt(), WDT or Watch Dog Timer Overview

rotate left()

Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with.

Returns: undefined
Function: Rotates a bit through an array or structure. The address may be an array identifier or

an address to a byte or structure (such as &data). Bit O of the lowest BYTE in RAM is
considered the LSB.

Availability: All devices
Requires: Nothing
Examples: x = 0x86;

rotate left(&x, 1);
// x is now 0x0d

Example Files: None

227

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Also See:

rotate right(), shift_left(), shift right()

rotate_right()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory,
bytes is a count of the number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array identifier or an
address to a byte or structure (such as &data). Bit O of the lowest BYTE in RAM is
considered the LSB.

Availability: All devices

Requires: Nothing

Examples: struct {

Example Files:

Also See:

int cell 1 : 4;
int cell 2 : 4;
int cell 3 : 4;
int cell 4 : 4; } cells;
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3

None

rotate left(), shift left(), shift_right()

rtc_alarm_read()

Syntax: rtc_alarm_read(&datetime);
Parameters: datetime- A structure that will contain the values to be written to the alarm in the RTCC
module.
Structure used in read and write functions are defined in the device header file
as rtc_time_t
Returns: void
Function: Reads the date and time from the alarm in the RTCC module to structure datetime.
Availability: Devices that have the RTCC module.
Requires: Nothing.
Examples: rtc_alarm read(&datetime);

Example Files:

None

228

Built-in Functions

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);
Parameters: datetime- A structure that will contain the values to be written to the alarm in the RTCC
module.

Structure used in read and write functions are defined in the device header file as

rtc_time_t.

Returns: void

Function: Writes the date and time to the alarm in the RTCC module as specified in the structure

date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_alarm write (&datetime);

Example Files: None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_read()

Syntax: rtc_read(&datetime);

Parameters: datetime- A structure that will contain the values returned by the RTCC module.
Structure used in read and write functions are defined in the device header file as
rtc_time_t.

Returns: void

Function: Reads the current value of Time and Date from the RTCC module and stores the
structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_read(&datetime);

Example Files: ex_rtcc.c

229

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc

rtc_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the RTCC module.
Struc_:ture used in read and write functions are defined in the device header file as
rtc_time_t.

Returns: void

Function: Writes the date and time to the RTCC module as specified in the structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_write (&datetime);

Example Files:

Also See:

ex_rtcc.c

rtc_read() , rtc_alarm read() , rtc_alarm_write() , setup_rtc_alarm() , rtc_write(),
setup_rtc

rtos_await()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)

Parameters: expre is a logical expression.

Returns: None

Function: This function can only be used in an RTOS task. This function waits for expre to be true
before continuing execution of the rest of the code of the RTOS task. This function
allows other tasks to execute while the task waits for expre to be true.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_await(kbhit());

Also See: None

230

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

rtos_disable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_disable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.

Returns: None

Function: This function disables a task which causes the task to not execute until enabled by
rtos_enable(). All tasks are enabled by default.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_disable (toggle green)

Also See: rtos enable()

rtos_enable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.
Returns: None

Function: This function enables a task to execute at it's specified rate.
Availability: All devices

Requires: #USE RTOS

Examples: rtos_enable (toggle green);

Also See: rtos disable()

rtos_msg_poll()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

231

CCSC Manual

Syntax: i =rtos_msg_poll()

Parameters: None

Returns: An integer that specifies how many messages are in the queue.

Function: This function can only be used inside an RTOS task. This function returns the number of
messages that are in the queue for the task that the rtos_msg_poll() function is used in.

Availability: All devices

Requires: #USE RTOS

Examples: if (rtos_msg_poll())

Also See: rtos msqg send(), rtos msq read()

rtos_msg_read()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: b =rtos_msg_read()
Parameters: None
Returns: A byte that is a message for the task.
Function: This function can only be used inside an RTOS task. This function reads in the next
(message) of the queue for the task that the rtos_msg_read() function is used in.
Availability: All devices
Requires: #USE RTOS
Examples: if (rtos_msg poll()) {
b = rtos_msg read();
Also See: rtos msq poll(), rtos msg send()

rtos_msg_send()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_msg_send(task, byte)

Parameters: task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

Returns: None

Function: This function can be used anytime after rtos_run() has been called.

This function sends a byte long message (byte) to the task identified by task.

232

Built-in Functions

Availability:
Requires:

Examples:

Also See:

All devices

#USE RTOS

if (kbhit ())

{ rtos_msg_send(echo, getc());

}

rtos_msg_poll(), rtos_msqg_read()

rtos_overrun()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_overrun([task])

Parameters: task is an optional parameter that is the identifier of a function that is being used as an
RTOS task

Returns: A 0 (FALSE) or 1 (TRUE)

Function: This function returns TRUE if the specified task took more time to execute than it was
allocated. If no task was specified, then it returns TRUE if any task ran over it's alloted
execution time.

Availability: All devices

Requires: #USE RTOS(statistics)

Examples: rtos_overrun ()

Also See: None

rtos_run()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()

Parameters: None

Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This function controls the
execution of the RTOS tasks at the allocated rate for each task. This function will return
only when rtos_terminate() is called.

Availability: All devices

Requires: #USE RTOS

233

CCSC Manual

Examples:

Also See:

rtos_run()

rtos terminate()

rtos_signal()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_signal (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function increments sem to let
waiting tasks know that a shared resource is available for use.

Availability: All devices

Requires: #USE RTOS

Examples: rtos signal (uart use)

Also See: rtos wait

rtos_stats()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,&stat)
Parameters: task is the identifier of a function that is being used as an RTOS task.
stat is a structure containing the following:
struct rtos_stas_struct {
unsigned int32 task_total_ticks; //number of ticks the task has
/lused
unsigned int16 task_min_ticks; //the minimum number of ticks
/lused
unsigned int16 task_max_ticks; //the maximum number of ticks
/lused
unsigned int16 hns_per_tick; /lus = (ticks*hns_per_tick)/10
Ji
Returns: Undefined
Function: This function returns the statistic data for a specified task.
Availability: All devices
Requires: #USE RTOS(statistics)

234

Built-in Functions

Examples:

Also See:

rtos_stats(echo, &stats)

None

rtos_terminate()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the program will
continue with the first line of code after the rtos_run() call in the program. (This function
causes rtos_run() to return.)

Availability: All devices

Requires: #USE RTOS

Examples: rtos terminate ()

Also See: rtos run

rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_wait (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function waits for sem to be
greater than O (shared resource is available), then decrements sem to claim usage of the
shared resource and continues the execution of the rest of the code the RTOS task. This
function allows other tasks to execute while the task waits for the shared resource to be
available.

Availability: All devices

Requires: #USE RTOS

Examples: rtos wait (uart_use)

Also See: rtos signal()

235

CCSC Manual

rtos_vyield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()
Parameters: None
Returns: None
Function: This function can only be used in an RTOS task. This function stops the execution of
the current task and returns control of the processor to rtos_run(). When the next task
executes, it will start it's execution on
the line of code after the rtos_yield().
Availability: All devices
Requires: #USE RTOS
Examples: void yield(void)
{
printf (“Yielding...\r\n”);
rtos_yield();
printf (“Executing code after yield\r\n”);
}
Also See: None

set_adc_channel()

Syntax: set_adc_channel (chan [,neq]))

Parameters: chan is the channel number to select. Channel numbers start at 0 and are labeled in the data
sheet ANO, AN1. For devices with a differential ADC it sets the positive channel to use.
neg is optional and is used for devices with a differential ADC only. It sets the negative channel to
use, channel numbers can be 0 to 6 or VSS. If no parameter is used the negative channel will be
set to VSS by default.

Returns: undefined

Function: Specifies the channel to use for the next read_adc() call. Be aware that you must wait a short time
after changing the channel before you can get a valid read. The time varies depending on the
impedance of the input source. In general 10us is good for most applications. You need not
change the channel before every read if the channel does not change.

Availability: This function is only available on devices with A/D hardware.

Requires: Nothing

Examples: set_adc_channel (2);
delay us(10);
value = read adc();

Example ex_admm.c

236

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Files:
Also See:

read adc(), setup _adc(), setup_adc_ports(), ADC Overview

set_analog_pins()

Syntax: set_analog_pins(pin, pin, pin, ...)

Parameters: pin - pin to set as an analog pin. Pins are defined in the device's .h file. The actual value is a bit
address. For example, bit 3 of port A at address 5, would have a value of 5*8+3 or 43. This is
defined as follows:

#define PIN_A3 43

Returns: undefined

Function: To set which pins are analog and digital. Usage of function depends on method device has for
setting pins to analog or digital. For devices with ANSELX, x being the port letter, registers the
function is used as described above. For all other devices the function works the same as
setup_adc_ports() function.

Refer to the setup adc ports() page for documentation on how to use.

Availability: ~ On all devices with an Analog to Digital Converter

Requires: Nothing

Examples; set analog pins(PIN_AO,PIN Al,PIN E1,PIN BO,PIN B5);

Example

Files:

Also See: setup_adc_reference(), set adc_channel(), read adc(), setup_adc(), setup_adc_ports(),

ADC Overview

scanf()

Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)

Parameters: cstring is a constant string.
values is a list of variables separated by commas.
stream is a stream identifier.

Returns: 0 if a failure occurred, otherwise it returns the number of conversion specifiers that were read in,
plus the number of constant strings read in.

Function: Reads in a string of characters from the standard RS-232 pins and formats the string according to

the format specifiers. The format specifier character (%) used within the string indicates that a
conversion specification is to be done and the value is to be saved into the corresponding

237

CCSC Manual

argument variable. A %% will input a single %. Formatting rules for the format specifier as

follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults to STDIN (the last

USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-99 specifying the field width,
the number of characters to be inputted. t is the type and maybe one of the following:

c

Lu

Ld

Lo

x or X

Lx or LX

Li

f,gore

Matches a sequence of characters of the number specified by the field width (1 if
no field width is specified). The corresponding argument shall be a pointer to
the initial character of an array long enough to accept the sequence.

Matches a sequence of non-white space characters. The corresponding argument
shall be a pointer to the initial character of an array long enough to accept the
sequence and a terminating null character, which will be added automatically.

Matches an unsigned decimal integer. The corresponding argument shall be a
pointer to an unsigned integer.

Matches a long unsigned decimal integer. The corresponding argument shall be a
pointer to a long unsigned integer.

Matches a signed decimal integer. The corresponding argument shall be a pointer
to a signed integer.

Matches a long signed decimal integer. The corresponding argument shall be a
pointer to a long signed integer.

Matches a signed or unsigned octal integer. The corresponding argument shall be
a pointer to a signed or unsigned integer.

Matches a long signed or unsigned octal integer. The corresponding argument
shall be a pointer to a long signed or unsigned integer.

Matches a hexadecimal integer. The corresponding argument shall be a pointer to
a signed or unsigned integer.

Matches a long hexadecimal integer. The corresponding argument shall be a
pointer to a long signed or unsigned integer.

Matches a signed or unsigned integer. The corresponding argument shall be a
pointer to a signed or unsigned integer.

Matches a long signed or unsigned integer. The corresponding argument shall be
a pointer to a long signed or unsigned integer.

Matches a floating point number in decimal or exponential format. The
corresponding argument shall be a pointer to a float.

Matches a non-empty sequence of characters from a set of expected characters.
The sequence of characters included in the set are made up of all character
following the left bracket ([) up to the matching right bracket (]). Unless the first
character after the left bracket is a #, in which case the set of characters contain
all characters that do not appear between the brackets. If a - character is in the
set and is not the first or second, where the first is a ~, nor the last character,
then the set includes all characters from the character before the - to the
character after the -.

For example, %[a-z] would include all characters from a to z in the set and %["a-z]
would exclude all characters from a to z from the set. The corresponding
argument shall be a pointer to the initial character of an array long enough to

238

Built-in Functions

Availability:
Requires:

Examples:

Example
Files:
Also See:

All Devices

#USE RS232

accept the sequence and a terminating null character, which will be added
automatically.

Assigns the number of characters read thus far by the call to scanf() to the
corresponding argument. The corresponding argument shall be a pointer to an
unsigned integer.

An optional assignment-suppressing character (*) can be used after the format
specifier to indicate that the conversion specification is to be done, but not saved
into a corresponding variable. In this case, no corresponding argument variable
should be passed to the scanf() function.

A string composed of ordinary non-white space characters is executed by reading
the next character of the string. If one of the inputted characters differs from the
string, the function fails and exits. If a white-space character precedes the
ordinary non-white space characters, then white-space characters are first read
in until a non-white space character is read.

White-space characters are skipped, except for the conversion specifiers [, ¢ or n,
unless a white-space character precedes the [or ¢ specifiers.

char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &snumber, name, &time))
printf"\r\nName: %s, Number: %u, Time: %1d",name, number,time) ;

None

RS232 1/0 Overview, getc(), putc(), printf()

set_cog_blanking()

Syntax: set_cog_blanking(falling_time, rising_time);
Parameters: falling time - sets the falling edge blanking time.
rising time - sets the rising edge blanking time.
Returns: Nothing
Function: To set the falling and rising edge blanking times on the Complemen

Output Generator (COG) module. The time is based off the source
module, the times are either a 4-bit or 6-bit value, depending on the
device's datasheet for the correct width.

239

CCSC Manual

Availability: All devices with a COG module.

Examples: set cog blanking(10,10);

Example Files: None

Also See: setup cog(), set cog phase(), set cog dead band(), cog status(),

set_cog dead band()

Syntax: set_cog_dead_band(falling_time, rising_time);

Parameters: falling time - sets the falling edge dead-band time.
rising time - sets the rising edge dead-band time.

Returns: Nothing

Function: To set the falling and rising edge dead-band times on the Complem
Output Generator (COG) module. The time is based off the source

module, the times are either a 4-bit or 6-bit value, depending on the
device's datasheet for the correct width.

Availability: All devices with a COG module.

Examples: set_cog dead band(16,32);

Example Files: None

Also See: setup_cog(), set_cog_phase(), set_cog_blanking(), cog_status(), cc

set_cog_phase()

Syntax: set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters: falling time - sets the falling edge phase time.

rising time - sets the rising edge phase time.

240

Built-in Functions

Returns:

Function:

Availability:

Examples:

Example Files:

Also See:

Nothing

To set the falling and rising edge phase times on the Complement:
Output Generator (COG) module. The time is based off the sourct
module, the times are either a 4-bit or 6-bit value, depending on th
Some devices only have a rising edge delay, refer to the device's (
All devices with a COG module.

set cog phase(10,10);

None

setup_cog(), set_cog_dead band(), set_cog_blanking(), cog_statt

set_compare_time()

Syntax: set_compare_time(x, ocr, [ocrs]])
Parameters: x is 1-16 and defines which output compare module to set time for
ocr is the compare time for the primary compare register.
ocrs is the optional compare time for the secondary register. Used for dual compare mode.
Returns: None
Function: This function sets the compare value for the output compare module. If the output compare
module is to perform only a single compare than the ocrs register is not used. If the output
compare module is using double compare to generate an output pulse, the ocr signifies the start
of the pulse and ocrs defines the pulse termination time.
Availability: ~ Only available on devices with output compare modules.
Requires: Nothing
EX&H“NESZ // Pin OCl will be set when timer 2 is equal to 0xF000
setup timer2 (IMR _INTERNAL | TIMER DIV BY 8);
setup_ compare time (1, 0xF000);
setup_ compare (1, COMPARE SET ON MATCH | COMPARE TIMERZ2) ;
Example None
Files:
Also See: get_capture(), setup_compare(), Output Compare, PWM Overview

set_hspwm_duty()

Syntax:

setup_hspwm_duty(duty);
set_hspwm_duty(unit, primary, [secondary]);

241

CCSC Manual

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

duty - A 16-bit constant or variable to set the master duty cycle

unit - The High Speed PWM unit to set.

primary - A 16-bit constant or variable to set the primary duty cycle.

secondary - An optional 16-bit constant or variable to set the secondary duty cycle. Secondary
duty cycle is only used in Independent PWM mode. Not available on all devices, refer to device
datasheet for availability.

undefined

Sets up the specified High Speed PWM unit.

Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXMCxxX,

and dsPIC33EVxxxGMxxx devices)

Constants are defined in the device's .h file

set hspwm duty (0x7FFF) ;
set hspwm duty(l, Ox3FFF);

//sets the High Speed PWM master duty cycle
//sets unit 1's primary duty cycle

None

setup _hspwm_unit(), set hspwm_phase(), set_hspwm_event(),

setup _hspwm_blanking(), setup _hspwm_trigger(), set_hspwm _override(),
get_hspwm capture(), setup_hspwm_chop_clock(), setup _hspwm unit_chop clock()
setup_hspwm(), setup _hspwm_secondary()

set_hspwm_event()

set_hspwm_event_secondary()

Syntax: set_hspwm_event(settings, compare_time);
set_shwpm_event_secondary(settings, compare_time); //if available
Parameters: settings - special event timer setting or'd with a value from 1 to 16 to set the prescaler. The
following are the settings available for the special event time:
HSPWM_SPECIAL_EVENT_INT_ENABLED
HSPWM_SPECIAL_EVENT_INT_DISABLED
compare_time - the compare time for the special event to occur.
Returns: undefined
Function: Sets up the specified High Speed PWM unit.
Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCxxX,
and dsPIC33EVxxxGMxxx devices)
Requires: Constants are defined in the device's .h file
Examples: set hspwm event (HSPWM SPECIAL EVENT INT ENABLED, 0x1000);

242

Built-in Functions

Example None
Files:
Also See: setup _hspwm unit(), set hspwm_phase(), set_hspwm_duty(),

setup _hspwm_blanking(), setup _hspwm trigger(), set_hspwm override(),
get_hspwm capture(), setup_hspwm chop clock(), setup _hspwm unit _chop clock()
setup_hspwm(), setup _hspwm_secondary()

set_hspwm_override()

Syntax: set_hspwm_override(unit, setting);

Parameters: unit - the High Speed PWM unit to override.

settings - the override settings to use. The valid options vary depending on the device. See the
device's .h file for all options. Some typical options include:
. HSPWM_FORCE_H_1

HSPWM_FORCE_H_0

HSPWM_FORCE_L 1

HSPWM_FORCE_L_0

Returns: Undefined
Function: Setup and High Speed PWM uoverride settings.
Availability: Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPxxxMCxxx,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples: setup hspwm override (1, HSPWM FORCE H 1|HSPWM FORCE L 0);

Example None

Files:

Also See: setup _hspwm_unit(), set hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm _blanking(), setup _hspwm trigger(), get hspwm _capture(),
setup_hspwm_chop_clock(), setup_hspwm_unit_chop_clock()
setup_hspwm(), setup _hspwm_secondary()

set_hspwm_phase()

Syntax: set_hspwm_phase(unit, primary, [secondary]);

Parameters: unit - The High Speed PWM unit to set.

primary - A 16-bit constant or variable to set the primary duty cycle.

243

CCSC Manual

Returns:
Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

secondary - An optional 16-bit constant or variable to set the secondary duty cycle. Secondary
duty cycle is only used in Independent PWM mode. Not available on all devices, refer to device
datasheet for availability.

undefined

Sets up the specified High Speed PWM unit.

Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXMCxxX,

and dsPIC33EVxxxGMxxx devices)

Constants are defined in the device's .h file

set hspwm(1,0x1000,0x8000) ;

None

setup _hspwm_unit(), set_hspwm _duty(), set_hspwm_event(),

setup _hspwm_blanking(), setup _hspwm_trigger(), set_hspwm _override(),
get_hspwm capture(), setup_hspwm chop _clock(), setup _hspwm unit_chop clock()
setup_hspwm(), setup _hspwm_secondary()

set_nco_inc_value()

Syntax: set_nco_inc_value(value);
Parameters: value- 16-bit value to set the NCO increment registers to (0 - 65535)
Returns: Undefined
Function: Sets the value that the NCO's accumulator will be incremented by on
each clock pulse. The increment registers are double buffered so the
new value won't be applied until the accumulator rolls-over.
Availability: On devices with a NCO module.
Examples: set nco _inc value (inc value); //sets the new increment value
Example None
Files:
Also See: setup_nco(), get nco_accumulator(), get nco_inc_value()
Syntax: set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)
set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)
set_open_drain_k(value)
Parameters: value — is a bitmap corresponding to the pins of the port. Setting a bit causes the

244

Built-in Functions

Returns:
Function

Availability
Examples:

Example Files:

corresponding pin to act as an open-drain output.
Nothing

Enables/Disables open-drain output capability on port pins. Not all ports or port pins
have open-drain capability, refer to devices datasheet for port and pin availability.
On device that have open-drain capability.

set_open_drain_b(0x0001); //enables open-drain output on

PIN_BQO, disable on all //other port B pins.

None.

set_power_pwm_override()

Syntax: set_power_pwm_override(pwm, override, value)

Parameters: pwm is a constant between 0 and 7
Override is true or false
Valueis 0 or 1

Returns: undefined

Function: pwm selects which module will be affected.
Override determines whether the output is to be determined by the OVDCONS register
or the PDC registers. When override is false, the PDC registers determine the output.
When override is true, the output is determined by the value stored in OVDCONS.
value determines if pin is driven to it's active staet or if pin will be inactive. | will be driven
to its active state, 0 pin will be inactive.

Availability: All devices equipped with PWM.

Requires: None

Examples: set power pwm override(l, true, 1); //PWMl will be

Example Files:

Also See:

//overridden to active
//state

set _power pwm override(l, false, 0); //PMWl will not be
//overidden

None

setup_power pwm(), setup _power pwm_pins(), set_power pwmX_duty()

set_power_pwmx_duty()

Syntax: set_power_pwmX_duty(duty)
Parameters: Xis 0, 2, 4, or 6
Duty is an integer between 0 and 16383.
Returns: undefined
Function: Stores the value of duty into the appropriate PDCXL/H register. This duty value is the

245

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

Also See:

amount of time that the PWM output is in the active state.
All devices equipped with PWM.

None

set_power pwmx_duty (4000) ;

None

setup power pwm(), setup power pwm_pins(),
set_power pwm_override()

set_pullup()

Syntax: set_Pullup(state, [pin])
Parameters:
Pins are defined in the devices .h file. The actual number is a bit address. For example, port a
(byte 5) bit 3 would have a value of 5*8+3 or 43. This is defined as follows: #DEFINE PIN_A3 43 .
The pin could also be a variable that has a value equal to one of the predefined pin constants.
Note if no pin is provided in the function call, then all of the pins are set to the passed in state.
State is either true or false.
Returns: undefined
Function: Sets the pin's pull up state to the passed in state value. If no pin is included in the function call,
then all valid pins are set to the passed in state.
Availability: All devices.
Requires: Pin constants are defined in the devices .h file.
Examples: set pullup (true, PIN BO);
//Sets pin BO's pull up state to true
set pullup (false);
//Sets all pin's pull up state to false
Example None
Files:
Also See: None

set_ pwml duty() set pwm2_duty() set pwm3_duty()
set_pwm4 _duty() set_ pwm5_duty()

Syntax:

set_pwm1_duty (value)
set_pwm2_duty (value)
set_pwm3_duty (value)
set_pwm4_duty (value)

246

Built-in Functions

set_pwmb5_duty (value)

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value may be an 8 or 16 bit constant or variable.
undefined

Writes the 10-bit value to the PWM to set the duty. An 8-bit value may be used if the
most significant bits are not required. The 10 bit value is then used to determine the
duty cycle of the PWM signal as follows:

o] duty cycle =value/[4* (PR2 +1)]

If an 8-bit value is used, the duty cycle of the PWM signal is determined as follows:
o[duty cycle=value/(PR2+1)

Where PR2 is the maximum value timer 2 will count to before toggling the output pin.
This function is only available on devices with CCP/PWM hardware.
None

// For a 20 mhz clock, 1.2 khz frequency,

// t2DIV set to 16, PR2 set to 200

// the following sets the duty to 50% (or 416 us).
long duty;

duty = 408; // [408/(4*(200+1))]=0.5=50%
set pwml duty(duty);
ex_pwm.c

setup _ccpX(), set_ccpX_compare_time(), set_timer_period_ccpX(),
set_timer_ccpX(), get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

set_rtcc() set_timerO() set timerl() set timer2()
set_timer3() set_timer4() set_timer5()

Syntax: set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)
Parameters: Timers 1 & 5 get a 16 bit int.
Timer 2 and 4 gets an 8 bit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit
int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18
Returns: undefined
Function: Sets the count value of a real time clock/counter. RTCC and TimerO are the same. All

timers count up. When a timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...)

247

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Availability:

Requires:

Examples:

Example Files:

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set timer0 (81); // 256-(.000035/(4/20000000))

€ex_patg.c

Also See: set timerl(), get timerX() TimerQ Overview, TimerlOverview, Timer2 Overview,
Timer5 Overview

set_ticks()

Syntax: set_ticks([stream],value);

Parameters: stream — optional parameter specifying the stream defined in #USE TIMER
value — a 8, 16 or 32 bit integer, specifying the new value of the tick timer. (int8, int16 or
int32)

Returns: void

Function: Sets the new value of the tick timer. Size passed depends on the size of the tick timer.

Availability: All devices.

Requires: #USE TIMER(options)

Examples: #USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)

Example Files:
Also See:

void main (void) {
unsigned intl6 value = 0x1000;

set_ticks(value);

}

None
#USE TIMER, get_ticks()

setup_sd_adc_calibration()

Syntax:

setup_sd_adc_calibration(model);

Parameters:

mode- selects whether to enable or disable calibration mode for the SD ADC module. The

following defines are made in the device's .h file:

1
2

SDADC_START_CALIBRATION_MODE
SDADC_END_CALIBRATION_MODE

248

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:

Function:

Availability:

Examples:

Example
Files:
Also See:

Nothing

To enable or disable calibration mode on the Sigma-Delta Analog to Digital
Converter (SD ADC) module. This can be used to determine the offset error of the
module, which then can be subtracted from future readings.

Only devices with a SD ADC module.

signed int 32 result, calibration;
set_sd_adc_calibration(SDADC_START_CALIBRATION_MODE);

calibration = read_sd_adc();
set_sd_adc_calibration(SDADC_END_CALIBRATION_MODE);

result = read_sd_adc() - calibration;

None

setup_sd_adc(), read_sd_adc(), set_sd_adc_channel()

set_sd_adc_channel()

Syntax: setup_sd_adc(channel);

Parameters: channel- sets the SD ADC channel to read. Channel can be 0 to read the difference between
CHO+ and CHO-, 1 to read the difference between CH1+ and CH1-, or one of the following:
1 SDADC_CHI1SE_SVSS
2 SDADC_REFERENCE

Returns: Nothing

Function: To select the channel that the Sigma-Delta Analog to Digital Converter (SD ADC) performs the
conversion on.

Availability: Only devices with a SD ADC module.

Examples: set_sd_adc_channel(0);

Example None

Files:

Also See: setup sd_adc(), read_sd adc(), set_sd_adc_calibration()

set_timerA()

Syntax: set_timerA(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches the

maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

249

CCSC Manual

Availability: This function is only available on devices with Timer A hardware.
Requires: Nothing
Examples: // 20 mhz clock, no prescaler, set timer A

// to overflow in 35us

set_timerA(81); // 256-(.000035/(4/20000000))
Example Files: none

Also See: get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax: set_timerB(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches the

maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability: This function is only available on devices with Timer B hardware.
Requires: Nothing
Examples: // 20 mhz clock, no prescaler, set timer B

// to overflow in 35us

set_timerB(81); // 256-(.000035/(4/20000000))

Example Files: none
Also See: get timerB(), setup_timer_B(), TimerB Overview

set_timerx()

Syntax: set_timerX(value)
Parameters: A 16 bit integer, specifiying the new value of the timer. (int16)
Returns: void
Function: Allows the user to set the value of the timer.
Availability: This function is available on all devices that have a valid timerX.
Requires: Nothing
Examples: if (EventOccured())
set timer2(0);//reset the timer.
Example None
Files:

250

Built-in Functions

Also See:

Timer Overview, set_timerX()

set_rtcc() set_timerO() set timerl() set timer2()
set_timer3() set_timer4() set_timer5()

Syntax:

set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a 16 bit
int.

Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

undefined

Sets the count value of a real time clock/counter. RTCC and TimerQ are the same. All
timers count up. When a timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...)

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set timer0 (81); // 256-(.000035/(4/20000000))

ex_patg.c

Also See: set _timerl(), get _timerX() Timer0O Overview, TimerlOverview, Timer2 Overview,
Timer5 Overview

set_tris_x()

Syntax: set_tris_a (value)

set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)

251

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

set_tris_h (value)
set_tris_j (value)
set_tris_k (value)

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value is an 8 bit int with each bit representing a bit of the 1/O port.

undefined

These functions allow the I/O port direction (TRI-State) registers to be set. This must
be used with FAST_|O and when I/O ports are accessed as memory such as when a #
BYTE directive is used to access an /O port. Using the default standard I/O the built in
functions set the 1/O direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input and a O indicates
it is output.

All devices (however not all devices have all I/O ports)

Nothing

SET_TRIS B(0xO0F);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0 are inputs

Icd.c

#USE FAST 10, #USE FIXED 10, #USE STANDARD_10, General Purpose 1/O

set_uart_speed()

Syntax: set_uart_speed (baud, [stream, clock])
Parameters: baud is a constant representing the number of bits per second.
stream is an optional stream identifier.
clock is an optional parameter to indicate what the current clock is if it is different
from the #use delay value
Returns: undefined
Function: Changes the baud rate of the built-in hardware RS232 serial port at run-time.
Availability: This function is only available on devices with a built in UART.
Requires: #USE RS232
Examples: // Set baud rate based on setting

Example Files:

Also See:

// of pins BO and Bl

switch(input b() & 3) {

case 0 : set uart speed(2400); break;
case 1 : set uart speed(4800); break;
case 2 : set_uart_speed(9600); break;
case 3 : set_uart speed(19200); break;

}
loader.c

#USE RS232, putc(), getc(), setup uart(), RS232 I/O Overview,

252

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

setimp()

Syntax: result = setjmp (env)

Parameters: env: The data object that will receive the current environment

Returns: If the return is from a direct invocation, this function returns 0.
If the return is from a call to the longjmp function, the setjmp function returns a nonzero
value and it's the same value passed to the longjmp function.

Function: Stores information on the current calling context in a data object of type jmp_buf and
which marks where you want control to pass on a corresponding longjmp call.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: result = setjmp (jmpbuf) ;

Example Files:

Also See:

None

longimp()

setup_adc(mode)

Syntax: setup_adc (mode);
setup_adc2(mode);
Parameters: mode- Analog to digital mode. The valid options vary depending on the device. See
the devices .h file for all options. Some typical options include:
e ADC_OFF
e ADC_CLOCK_INTERNAL
e ADC_CLOCK_DIV_32
Returns: undefined
Function: Configures the analog to digital converter.
Availability: Only the devices with built in analog to digital converter.
Requires: Constants are defined in the devices .h file.
Examples: setup_adc_ports(ALL ANALOG) ;

Example Files:

Also See:

setup_adc (ADC_CLOCK_INTERNAL) ;
set adc _channel(0);

value = read adc();

setup_adc(ADC_OFF) ;

ex_admm.c

setup_adc ports(), set_adc_channel(), read adc(), #DEVICE, ADC Overview,
see header file for device selected

253

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

setup_adc_ports()

Syntax: setup_adc_ports (value)
setup_adc_ports (ports, [reference])

Parameters: value - a constant defined in the devices .h file

ports - is a constant specifying the ADC pins to use
reference - is an optional constant specifying the ADC reference to use
By default, the reference voltage are Vss and Vdd

Returns: undefined

Function: Sets up the ADC pins to be analog, digital, or a combination and the voltage reference to use when
computing the ADC value. The allowed analog pin combinations vary depending on the chip and are
defined by using the bitwise OR to concatenate selected pins together. Check the device include file for
a complete list of available pins and reference voltage settings. The constants ALL_ANALOG and
NO_ANALOGS are valid for all chips. Some other example pin definitions are:

Also See: setup_adc(), read adc(), set adc_channel(), ADC Overview

setup_adc_reference()

Syntax: setup_adc_reference(reference)
Parameters: reference - the voltage reference to set the ADC. The valid options depend on the device, see
the device's .h file for all options. Typical options include:
- VSS_VDD
VSS_VREF
VREF_VREF
VREF_VDD
Returns: undefined
Function: To set the positive and negative voltage reference for the Analog to Digital Converter (ADC)
uses.
Availability: Only on devices with an ADC and has ANSELX, x being the port letter, registers for setting which
pins are analog or digital.
Requires: Nothing
Examples: set adc_ reference (VSS _VREF) ;
Example
Files:
Also See: set_analog_pins(), set_adc_channel(), read_adc(), setup_adc(), setup_adc_ports(),

ADC Overview

254

Built-in Functions

setup_at()
Syntax: setup_at(settings);
Parameters: settings - the setup of the AT module. See the device's header file for all options. Some typical
options include:
- AT_ENABLED
AT_DISABLED
AT_MULTI_PULSE_MODE
AT_SINGLE_PULSE_MODE
Returns: Nothing
Function: To setup the Angular Timer (AT) module.
Availability: All devices with an AT module.
Requires: Constants defined in the device's .h file
Examp|es; setup at (AT ENABLED|AT MULTI PULSE MODE|AT INPUT ATIN) ;
Example None
Files:
Also See: at_set resolution(), at_get resolution(), at_set missing_pulse_delay(),

at_get _missing_pulse delay(), at_get_period(), at_get phase_counter(), at_set_set_point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(), at_set_compare_time(),

at_get capture(), at_get_status()

setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4()
setup_ccp5() setup_ccp6()

Syntax: setup_ccpl (mode) or setup_ccpl (mode, pwm)
setup_ccp?2 (mode) or setup_ccp2 (mode, pwm)
setup_ccp3 (mode) or setup_ccp3 (mode, pwm)
setup_ccp5 (mode) or setup_ccp5 (mode, pwm)
setup_ccp6 (mode) or setup_ccp6 (mode, pwm)
Parameters: mode is a constant. Valid constants are defined in the devices .h file and refer to

devices .h file for all options, some options are as follows:

Disable the CCP:

CCP_OFF
Set CCP to capture mode:
CCP_CAPTURE_FE Capture on falling edge
CCP_CAPTURE_RE Capture on rising edge
CCP_CAPTURE_DIV_4 Capture after 4 pulses
CCP_CAPTURE_DIV_16 Capture after 16 pulses

Set CCP to compare mode:

CCP_COMPARE_SET_ON_MATCH Output high on compare

CCP_COMPARE_CLR_ON_MATCH Output low on compare

255

CCSC Manual

CCP_COMPARE_INT interrupt on compare
CCP_COMPARE_RESET_TIMER Reset timer on compare

Set CCP to PWM mode:
CCP_PWM Enable Pulse Width Modulator

Constants used for ECCP modules are as follows:

CCP_PWM H_H
CCP_PWM_H_L
CCP_PWM_L_H
CCP_PWM_L_L

CCP_PWM_FULL_BRIDGE
CCP_PWM_FULL_BRIDGE_REV
CCP_PWM_HALF_BRIDGE

CCP_SHUTDOWN_ON_COMP1 shutdown on Comparator 1 change
CCP_SHUTDOWN_ON_COMP2 shutdown on Comparator 2 change
CCP_SHUTDOWN_ON_COMP Either Comp. 1 or 2 change
CCP_SHUTDOWN_ON_INTO VIL on INT pin

CCP_SHUTDOWN_ON_COMP1_INTO VIL on INT pin or Comparator 1 change
CCP_SHUTDOWN_ON_COMP2_INTO VIL on INT pin or Comparator 2 change

CCP_SHUTDOWN_ON_COMP_INTO VIL on INT pin or Comparator 1 or 2
change

CCP_SHUTDOWN_AC_L Drive pins A and C high
CCP_SHUTDOWN_AC_H Drive pins A and C low
CCP_SHUTDOWN_AC_F Drive pins A and C tri-state

CCP_SHUTDOWN_BD_L Drive pins B and D high
CCP_SHUTDOWN_BD_H Drive pins B and D low
CCP_SHUTDOWN_BD_F Drive pins B and D tri-state
CCP_SHUTDOWN_RESTART the device restart after a shutdown event
CCP_DELAY use the dead-band delay

pwm parameter is an optional parameter for chips that includes ECCP module. This
parameter allows setting the shutdown time. The value may be 0-255.

Returns: Undefined

Function: Initialize the CCP. The CCP counters may be accessed using the long variables CCP_1
and CCP_2. The CCP operates in 3 modes. In capture mode it will copy the timer 1
count value to CCP_x when the input pin event occurs. In compare mode it will trigger
an action when timer 1 and CCP_x are equal. In PWM mode it will generate a square
wave. The PCW wizard will help to set the correct mode and timer settings for a
particular application.

Availability: This function is only available on devices with CCP hardware.

Requires: Constants are defined in the devices .h file.

256

Built-in Functions

Examples: setup ccpl (CCP_CAPTURE RE);
Example Files: ex_pwm.c, ex_ccpmp.c, ex_ccpls.c
Also See: set_ pwmX_duty(), set_ccpX_compare_time(), set_timer_period_ccpX(),

set_timer_ccpX(), get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

setup_clcl() setup_clc2() setup_clc3() setup_clc4()

Syntax: setup_clcl(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);

Parameters: mode — The mode to setup the Configurable Logic Cell (CLC) module into.
See the device's .h file for all options. Some typical options include:
CLC_ENABLED
CLC_OUTPUT
CLC_MODE_AND_OR
CLC_MODE_OR_XOR

Returns: Undefined.
Function: Sets up the CLC module to performed the specified logic. Please refer to

the device datasheet to determine what each input to the CLC module
does for the select logic function

Availability: On devices with a CLC module.

Returns: Undefined.

Examples: setup_clcl (CLC_ENABLED | CLC_MODE AND OR);
Example Files: None

Also See: clex_setup gate(), clex_setup_input()

setup_comparator()

Syntax: setup_comparator (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file refer to devices .h file for
valid options. Some typical options are as follows:

AO_A3_Al_A2
AO0_A2_Al_A2

NC_NC_A1 A2

NC_NC_NC_NC

AO_VR A1 VR

A3_VR_A2_VR

AO0_A2 Al A2 OUT ON A3 A4

257

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink3.click()

CCSC Manual

Returns:

Function:

Availability:
Requires

Examples:

Example Files:

Also See:

A3 A2 Al_A2
undefined

Sets the analog comparator module. The above constants have four parts representing
the inputs: C1-, C1+, C2-, C2+

This function is only available on devices with an analog comparator.

Constants are defined in the devices .h file.

// Sets up two independent comparators (Cl and C2),
// Cl uses A0 and A3 as inputs (- and +), and C2

// uses Al and A2 as inputs

setup comparator (A0_A3 Al A2);

€x_comp.c

Analog Comparator overview

setup_counters()

Syntax: setup_counters (rtcc_state, ps_state)

Parameters: rtcc_state may be one of the constants defined in the devices .h file. For example:
RTCC_INTERNAL, RTCC_EXT_L_TO Hor RTCC_EXT H _TO L
ps_state may be one of the constants defined in the devices .h file.
For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_186,
RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256, WDT_18MS,
WDT_36MS, WDT_72MS, WDT_144MS, WDT_288MS, WDT_576MS, WDT_1152MS,
WDT_2304MS

Returns: undefined

Function: Sets up the RTCC or WDT. The rtcc_state determines what drives the RTCC. The PS
state sets a prescaler for either the RTCC or WDT. The prescaler will lengthen the
cycle of the indicated counter. If the RTCC prescaler is set the WDT will be set to
WDT_18MS. If the WDT prescaler is set the RTCC is set to RTCC_DIV_1.
This function is provided for compatibility with older versions. setup_timer_0 and
setup_WDT are the recommended replacements when possible. For PCB devices if an
external RTCC clock is used and a WDT prescaler is used then this function must be
used.

Availability: All devices

Requires: Constants are defined in the devices .h file.

Exanuﬂes: setup_counters (RTCC_INTERNAL, WDT 2304MS);

Example Files:

Also See:

None

setup wdt(), setup_timer 0(), see header file for device selected

258

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

setup_cog()

Built-in Functions

Syntax:

setup_cog(mode, [shutdown]);
setup_cog(mode, [shutdown], [sterring]);

Parameters:

Returns:

Function:

Availability:

Examples:

Example Files:

Also See:

mode- the setup of the COG module. See the device's .h file for all optiol
Some typical options include:

COG_ENABLED
COG_DISABLED
COG_CLOCK_HFINTOSC
COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG module.
See the device's .h file for all the options. Some typical options include:

. COG_AUTO_RESTART
. COG_SHUTDOWN_ON_C10UT
. COG_SHUTDOWN_ON_C20UT

steering- optional parameter for steering the PWM signal to COG output
the COG pins static level. Used when COG is set for steered PWM or sy
PWM modes. Not available on all devices, see the device's .h file if avail
Some typical options include:

3 COG_PULSE_STEERING_A

3 COG_PULSE_STEERING_B

3 COG_PULSE_STEERING_C

o COG_PULSE_STEERING_D

undefined

Sets up the Complementary Output Generator (COG) module, the auto-s
the module and if available steers the signal to the different output pins.

All devices with a COG module.

setup_cog (COG_ENABLED | COG_PWM | COG FALLING SOURCE PWM3 |
COG_RISING SOURCE PWM3, COG NO AUTO SHUTDOWN,

COG_PULSE STEERING A | COG_PULSE STEERING B);

None

set_cog_dead band(), set_cog_phase(), set_cog_blanking(), cog_status

setup_crc()

Syntax:

setup_crc(polynomial terms)

259

CCSC Manual

Parameters: polynomial- This will setup the actual polynomial in the CRC engine. The power of ea
term is passed separated by a comma. 0 is allowed, but ignored. The following define
is added to the device's header file to enable little-endian shift direction:

CRC_LITTLE_ENDIAN

Returns: Nothing

Function: Configures the CRC engine register with the polynomial.

Availability: Only devices with a built-in CRC module.

Examples: setup crc(l2, 5); // CRC Polynomial is x™+x°+1
setup _crc(l6, 15, 3, 1); // CRC Polynomial is x™®+x'+x’+x'+1

Example None

Files:

Also See: crc_init(), crc_calc(), crc_calc8()

setup_cwg()

Syntax: setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)

Parameters: mode- the setup of the CWG module. See the device's .h file for all options.
Some typical options include:

CWG_ENABLED
CWG_DISABLED

CWG_OUTPUT B
CWG_OUTPUT_A

shutdown- the setup for the auto-shutdown feature of CWG module.
See the device's .h file for all the options. Some typical options include:

CWG_AUTO_RESTART
CWG_SHUTDOWN_ON)COMP1
CWG_SHUTDOWN_ON_FLT
CWG_SHUTDOWN_ON_CLC2

dead_time_rising- value specifying the dead time between A and B on the
rising edge. (0-63)

dead_time_rising- value specifying the dead time between A and B on the
falling edge. (0-63)

Returns: undefined

Function: Sets up the CWG module, the auto-shutdown feature of module and the rising
and falling dead times of the module.

Availability: All devices with a CWG module.

Examples: setup cwg (CWG_ENABLED|CWG OUTPUT A|CWG OUTPUT B|
CWG_INPUT PWM1,CWG_ SHUTDOWN ON FLT, 60,30);

Example None

Files:

260

Built-in Functions

Also See:

cwg_status(), cwg_restart()

setup_dac()

Syntax: setup_dac(mode);

Parameters: mode- The valid options vary depending on the device. See the devices .h file for all
options. Some typical options include:
- DAC_OUTPUT

Returns: undefined

Function: Configures the DAC including reference voltage.

Availability: Only the devices with built in digital to analog converter.

Requires: Constants are defined in the devices .h file.

Examples: setup_dac (DAC_VDD | DAC_OUTPUT) ;

Example Files:

Also See:

dac write(value);
None

dac_write(), DAC Overview, See header file for device selected

setup_external_memory()

Syntax: SETUP_EXTERNAL_MEMORY(mode);

Parameters: mode is one or more constants from the device header file OR'ed together.
Returns: undefined

Function: Sets the mode of the external memory bus.

Availability: Only devices that allow external memory.

Requires: Constants are defined in the device.h file

Examples: setup external memory (EXTMEM WORD WRITE

Example Files:

[EXTMEM WAIT 0);
setup_external memory (EXTMEM DISABLE) ;

None

261

CCSC Manual

Also See: WRITE PROGRAM EEPROM() , WRITE PROGRAM MEMORY(), External Memory
Overview

setup_high_speed _adc()

Syntax: setup_high_speed_adc (mode);

Parameters: mode — Analog to digital mode. The valid options vary depending on the device. See the devices
.h file for all options. Some typical options include:

- ADC_OFF
- ADC_CLOCK_DIV_1
- ADC_HALT_IDLE — The ADC will not run when PIC is idle.

Returns: Undefined

Function: Configures the High-Speed ADC clock speed and other High-Speed ADC options including, when
the ADC interrupts occurs, the output result format, the conversion order, whether the ADC pair is
sampled sequentially or simultaneously, and whether the dedicated sample and hold is
continuously sampled or samples when a trigger event occurs.

Availability: Only on dsPIC33FJxxGSxxx devices.

Requires: Constants are define in the device .h file.

Examples: setup_high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc (ADC_CLOCK DIV 4);

read high speed adc (0, START AND READ, result);
setup high speed adc (ADC OFF);

Example None
Files:
Also See: setup _high speed adc pair(), read high speed adc(), high speed adc done()

setup_high_speed _adc_pair()

Syntax: setup_high_speed_adc_pair(pair, mode);

Parameters: pair — The High-Speed ADC pair number to setup, valid values are 0 to total number of ADC
pairs. 0 sets up ADC pair ANO and AN1, 1 sets up ADC pair AN2 and AN3, etc.

mode — ADC pair mode. The valid options vary depending on the device. See the devices .h file
for all options. Some typical options include:

- INDIVIDUAL_SOFTWARE_TRIGGER
* GLOBAL_SOFTWARE_TRIGGER

- PWM_PRIMARY_SE_TRIGGER

* PWM_GEN1_PRIMARY_TRIGGER

- PWM_GEN2_PRIMARY_TRIGGER

Returns: Undefined

262

Built-in Functions

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

Sets up the analog pins and trigger source for the specified ADC pair. Also sets up whether ADC
conversion for the specified pair triggers the common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins will be set to digital
pins.

Only on dsPIC33FJIxxGSxxx devices.
Constants are define in the device .h file.

setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc pair(l, GLOBAL SOFTWARE TRIGGER) ;

setup high speed adc pair(2, 0) - sets AN4 and AN5 as digital pins.
None

setup_high speed adc(), read high speed adc(), high speed adc done()

setup_hspwm_blanking()

Syntax: setup_hspwm_blanking(unit, settings, delay);

Parameters: unit - The High Speed PWM unit to set.
start_delay - Optional value from 0 to 63 specifying then umber of PWM cycles to wait before
generating the first trigger event. For some devices, one of the following may be optional or'd in
with the value:

HSPWM_COMBINE_PRIMARY_AND_SECONDARY_TRIGGER
HSPWM_SEPERATE_PRIMARY_AND_SECONDARY_TRIGGER

divider - optional value from 1 to 16 specifying the trigger event divisor.
trigger_value - optional 16-bit value specifying the primary trigger compare time.
strigger_value - optional 16-bit value specifying the secondary trigger compare time. Not
available on all devices, see the device datasheet for availability.

Returns: undefined

Function: Sets up the High Speed PWM Trigger event.

Availability: ~ Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples; setup_hspwm trigger (1, 10, 1, 0x2000);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),

263

CCSC Manual

setup hspwm _trigger(), set_hspwm _override(),

get_hspwm_capture(), setup_hspwm_chop clock(), setup _hspwm _unit_chop_clock()

setup_hspwm(), setup _hspwm_secondary()

setup_hspwm_chop_clock()

Syntax: setup_hspwm_chop_clock(settings);
Parameters: settings - a value from 1 to 1024 to set the chop clock divider. Also one of the following can be
or'd with the value:
HSPWM_CHOP_CLK_GENERATOR_ENABLED
HSPWM_CHOP_CLK_GENERATOR_DISABLED
Returns: Undefined
Function: Setup and High Speed PWM Chop Clock Generator and divisor.
Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXMCxxX,
and dsPIC33EVxxxGMxxx devices)
Requires: None
Examples; setup _hspwm chop clock (HSPWM CHOP CLK GENERATOR ENABLED|32);
Example None
Files:
Also See: setup _hspwm _unit(), set _hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm_blanking(), setup_hspwm _trigger(), set_hspwm_override(),
get _hspwm_capture(), setup_hspwm _unit_chop clock()
setup_hspwm(), setup_hspwm_secondary()

setup_hspwm_trigger()

Syntax:

setup_hspwm_trigger(unit, [start_ delay], [divider], [trigger_value], [strigger_value]);

Parameters:

unit - The High Speed PWM unit to set.

settings - Settings to setup the High Speed PWM Leading-Edge Blanking. The valid options vary

depending on the device. See the device's header file for all options. Some typical options

include:

- HSPWM_RE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_FE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_RE_PWML_TRIGGERS_LE_BLANKING
HSPWM_FE_PWML_TRIGGERS_LE_BLANKING
HSPWM_LE_BLANKING_APPLIED_TO_FAULT_INPUT
HSPWM_LE_BLANKING_APPLIED_TO_CURRENT_LIMIT_INPUT

264

Built-in Functions

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

delay - 16-bit constant or variable to specify the leading-edge blanking time.

undefined

Sets up the Leading-Edge Blanking and leading-edge blanking time of the High Speed PWM.
Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXxXMCxxX,

and dsPIC33EVxxxGMxxx devices)

None

setup hspwm blanking (HSPWM RE PWMH TRIGGERS LE BLANKING, 10);

None

setup _hspwm unit(), set hspwm phase(), set_hspwm_duty(), set hspwm_event(),
setup_hspwm_blanking(), set_hspwm_override(),

get_hspwm capture(), setup_hspwm chop_clock(), setup _hspwm unit_chop clock()
setup _hspwm(), setup _hspwm_secondary()

setup_hspwm_unit()

Syntax:

setup_hspwm_unit(unit, mode, [dead_time], [alt_dead_time]);
set_hspwm_duty(unit, primary, [secondary));

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example

unit - The High Speed PWM unit to set.

mode - Mode to setup the High Speed PWM unit in. The valid option vary depending on the
device. See the device's header file for all options. Some typical options include:
- HSPWM_ENABLE

HSPWM_ENABLE_H

HSPWM_ENABLE_L

HSPWM_COMPLEMENTARY

HSPWM_PUSH_PULL

dead_time - Optional 16-bit constant or variable to specify the dead time for this PWM unit,
defaults to 0 if not specified.

alt_dead_time - Optional 16-bit constant or variable to specify the alternate dead time for this
PWM unit, default to 0 if not specified.

undefined

Sets up the specified High Speed PWM unit.

Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Constants are defined in the device's .h file

setup_hspwm unit (1,HSPWM ENABLE|SHPWM COMPLEMENTARY, 100,100);

None

265

CCSC Manual

Files:

Also See: set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup_hspwm_blanking(), setup _hspwm _trigger(), set_hspwm _override(),
get_hspwm_capture(), setup_hspwm_chop_clock(), setup _hspwm _unit_chop_clock()
setup _hspwm(), setup hspwm secondary()

setup_hspwm()

setup_hspwm_secondary()

Syntax: setup_hspwm(mode, value);
setup_hspwm_secondary(mode, value); /if available

Parameters: mode - Mode to setup the High Speed PWM module in. The valid options vary depending on the
device. See the device's .h file for all options. Some typical options include:
HSPWM_ENABLED
HSPWM_HALT WHEN_IDLE
HSPWM_CLOCK_DIV_1

value - 16-bit constant or variable to specify the time bases period.

Returns: undefined
Function: To enable the High Speed PWM module and set up the Primary and Secondary Time base of the
module.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples: setup_hspwm (HSPWM_ENABLED | HSPWM CLOCK DIV_BY4, 0x8000);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm_blanking(), setup_hspwm_trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(), setup _hspwm_unit_chop_clock()
setup _hspwm_secondary()

setup_hspwm _unit_chop_clock()

Syntax: setup_hspwm_unit_chop_clock(unit, settings);

Parameters: unit - the High Speed PWM unit chop clock to setup.

settings - a settings to setup the High Speed PWM unit chop clock. The valid options vary
depending on the device. See the device's .h file for all options. Some typical options include:
HSPWM_PWMH_CHOPPING_ENABLED
HSPWM_PWML_CHOPPING_ENABLED

266

Built-in Functions

Returns:
Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

HSPWM_CHOPPING_DISABLED
HSPWM_CLOP_CLK_SOURCE_PWM2H
HSPWM_CLOP_CLK_SOURCE_PWM1H
HSPWM_CHOP_CLK_SOURCE_CHOP_CLK_GENERATOR

Undefined
Setup and High Speed PWM unit's Chop Clock

Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXMCXxX,
and dsPIC33EVxxxGMxxx devices)

None

setup_hspwm unit chop clock(1l,HSPWM PWMH CHOPPING_ ENABLED|
HSPWM PWML CHOPPIJNG ENABLED|
HSPWM CLOP_CLK_SOURCE PWM2H) ;

None

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm trigger(), set_hspwm _override(),
get_hspwm capture(), setup_hspwm chop_clock(),

setup _hspwm(), setup _hspwm_secondary()

setup_lcd()

Syntax: setup_lcd (mode, prescale, [segments0_31],[segments32_47]);
Parameters: Mode may be any of the following constants to enable the LCD and may be or'ed with
other constants in the devices *.h file:
. LCD_DISABLED, LCD_STATIC, LCD_MUX12, LCD_MUX13,
LCD_MUX14
See the devices .h file for other device specific options.
Prescale may be 1-16 for the LCD clock.
Segments0-31 may be any of the following constants or'ed together when using the
PIC16C92X series of chips::
. SEGO0_4, SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEG20_26,
SEG27_28, SEG29_31 ALL_LCD_PINS
When using the PIC16F/LF1xxx or PIC18F/LFxxxx series of chips, each of the
segments are enabled individually. A value of 1 will enable the segment, 0 will disable it
and use the pin for normal I/O operation.
Segments 32-47 when using a chip with more than 32 segments, this enables
segments 32-47. A value 1 will enable the segment, O will disable it. Bit O corresponds
to segment 32 and bit 15 corresponds to segment 47.
Returns: undefined.
Function: This function is used to initialize the LCD Driver Module on the PIC16C92X and

PIC16F/LF193X series of chips.

267

CCSC Manual

Availability:
Requires

Examples:

Example Files:

Also See:

Only on devices with built-in LCD Driver Module hardware.

Constants are defined in the devices *.h file.

* setup_lcd(LCD MUX14 | LCD STOP ON SLEEP, 2, ALL LCD PINS);

// PIC16C92X
- setup_lcd(LCD MUX13 | LCD REF ENABLED | LCD B HIGH POWER, O,
0xFF0429) ;

// PICl6F/LF193X - Enables Segments 0, 3, 5, 10, 16, 17, 18,
19, 20, 21, 22, 23

ex_92lcd.c

Ilcd_symbol(), lcd load(), lcd contrast(), Internal LCD Overview

setup_low_volt_detect()

Syntax: setup_low_volt_detect(mode)

Parameters: mode may be one of the constants defined in the devices .h file. LVD_LVDIN,
LVD_45, LVD_42, LVD_40, LVD_38, LVD_36, LVD_35, LVD 33, LVD_30, LVD_28,
LVD_27, LVD_25, LVD_23, LVD 21, LVD_19
One of the following may be or'ed(via |) with the above if high voltage detect is also
available in the device
LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

Returns: undefined

Function: This function controls the high/low voltage detect module in the device. The mode
constants specifies the voltage trip point and a direction of change from that point
(available only if high voltage detect module is included in the device). If the device
experiences a change past the trip point in the specified direction the interrupt flag is
set and if the interrupt is enabled the execution branches to the interrupt service
routine.

Availability: This function is only available with devices that have the high/low voltage detect
module.

Requires Constants are defined in the devices.h file.

Exan“ﬂes; setup_low volt detect(LVD TRIGGER BELOW | LVD 36);

This would trigger the interrupt when the voltage is below 3.6 volts

setup_nco()

Syntax:

setup_nco(settings,inc_value)

Parameters:

settings- setup of the NCO module. See the device's .h file for all options.
Some typical options include:

NCO_ENABLE
NCO_OUTPUT

268

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:
Function:
Availability:
Examples:
Example

Files:
Also See:

NCO_PULSE_FREQ_MODE
NCO_FIXED_DUTY_MODE

inc_value- intl6 value to increment the NCO 20 bit accumulator by.

Undefined

Sets up the NCO module and sets the value to increment the 20-bit accumulator by.

On devices with a NCO module.

setup nco (NCO ENABLED|NCO OUTPUT |NCO FIXED DUTY MODE |
NCO CLOCK FOSC,8192) ;

None

get _nco_accumulator(), set_nco _inc_value(), get nco_inc_value()

setup_opampl() setup_opamp2()

Syntax: setup_opampl(enabled)
setup_opamp2(enabled)
Parameters: enabled can be either TRUE or FALSE.
Returns: undefined
Function: Enables or Disables the internal operational amplifier peripheral of certain PICmicros.
Availability: Only parts with a built-in operational amplifier (for example, PIC16F785).
Requires: Only parts with a built-in operational amplifier (for example, PIC16F785).
Examples: setup opampl (TRUE) ;

Example Files:
Also See:

setup_opamp2 (boolean flag);

None
None

setup_opampl() setup_opamp?2()

Syntax: setup_opamp1l(enabled)
setup_opamp2(enabled)
Parameters: enabled can be either TRUE or FALSE.
Returns: undefined
Function: Enables or Disables the internal operational amplifier peripheral of certain PICmicros.
Availability: Only parts with a built-in operational amplifier (for example, PIC16F785).

269

CCSC Manual

Requires: Only parts with a built-in operational amplifier (for example, PIC16F785).

Examples: setup opampl (TRUE) ;
setup opamp2 (boolean flag);

Example Files: None
Also See: None

setup_oscillator()

Syntax: setup_oscillator(mode, finetune)

Parameters: mode is dependent on the chip. For example, some chips allow speed setting such as
OSC_8MHZ or OSC_32KHZ. Other chips permit changing the source like OSC_TIMERL1.

The finetune (only allowed on certain parts) is a signed int with a range of -31 to +31.

Returns: Some chips return a state such as OSC_STATE_STABLE to indicate the oscillator is
stable .
Function: This function controls and returns the state of the internal RC oscillator on some parts.

See the devices .h file for valid options for a particular device.

Note that if INTRC or INTRC_IO is specified in #fuses and a #USE DELAY is used for a
valid speed option, then the compiler will do this setup automatically at the start of main().

WARNING: If the speed is changed at run time the compiler may not generate the correct
delays for some built in functions. The last #USE DELAY encountered in the file is always
assumed to be the correct speed. You can have multiple #USE DELAY lines to control
the compilers knowledge about the speed.

Availability: Only parts with a OSCCON register.
Requires: Constants are defined in the .h file.
Examples: setup_oscillator(OSC_2MHZ);
Example Files: None

Also See: #FUSES, Internal oscillator Overview

setup_pid()

Syntax: setup_pid(,pde.[mode,[K1],[K2],[K3]);

Parameters: mode- the setup of the PID module. The options for setting up the module are defined in

the device's header file as:

- PID_MODE_PID
PID_MODE_SIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_SIGNED_ADD_MULTIPLY
PID_MODE_UNSIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_UNSIGNED_ADD_MULTIPLY
PID_OUTPUT_LEFT_JUSTIFIED

270

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

PID_OUTPUT_RIGHT_JUSTIFIED

K1 - optional parameter specifying the K1 coefficient, defaults to zero if not specified.
The K1 coefficient is used in the PID and ADD_MULTIPLY modes. When in PID mode
the K1 coefficient can be calculated with the following formula:

K1=Kp +Ki*T+Kd/T
When in one of the ADD_MULTIPLY modes K1 is the multiple value.

K2 - optional parameter specifying the K2 coefficient, defaults to zero if not specified.
The K2 coefficient is used in the PID mode only and is calculated with the following
formula:

K2 = -(Kp + 2Kd/T)
K3 - optional parameter specifying the K3 coefficient, defaults to zero if not specified.
The K3 coefficient is used in the PID mode, only and is calculated with the following
formula:

K3 = Kd/T
T is the sampling period in the above formulas.
Nothing

To setup the Proportional Integral Derivative (PID) module, and to set the input
coefficients (K1, K2 and K3).

All devices with a PID module.

Constants are defined in the device's .h file.

setup_pid(PID MODE_PID, 10, -3, 50);

None

pid get result(), pid_read(), pid_write(), pid busy()

setup_pmp(option,address_mask)

Syntax:

setup_pmp(options,address_mask);

Parameters:

options- The mode of the Parallel Master Port that allows to set the Master Port mode,
read-write strobe options and other functionality of the PMPort module. See the device's
.h file for all options. Some typical options include:

PAR_PSP_AUTO_INC
PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW /lInterrupt on read write

PAR_INC_ADDR /lincrement address by 1 every
/lread/write cycle

PAR_MASTER_MODE_1 //Master Mode 1

PAR_WAITE4 /l4 Tcy Wait for data hold after
/I strobe

address_mask- this allows the user to setup the address enable register with a 16-bit
value. This value determines which address lines are active from the available 16 address
lines PMAO:PMA15.

271

CCSC Manual

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Undefined.

Configures various options in the PMP module. The options are present in the device's .h
file and they are used to setup the module. The PMP module is highly configurable and
this function allows users to setup configurations like the Slave module, Interrupt options,
address increment/decrement options, Address enable bits, and various strobe and delay
options.

Only the devices with a built-in Parallel Master Port module.

Constants are defined in the device's .h file.

setup_psp (PAR_ENABLE | //Sets up Master mode with address
PAR MASTER MODE 1|PAR //lines PMAQ:PMA7
STOP_IN IDLE, 0x00FF);

None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output full(), psp_input full(), psp_overflow(), pmp_output_full(), pmp_input_full(),
pmp_overflow()

See header file for device selected

setup_power_pwm()

Syntax: setup_power_pwm(modes, postscale, time_base, period, compare,
compare_postscale, dead_time)
Parameters: modes values may be up to one from each group of the following:

PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_186,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_DISABLED, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale is an integer between 1 and 16. This value sets the PWM time base output
postscale.

time_base is an integer between 0 and 65535. This is the initial value of the PWM base

period is an integer between 0 and 4095. The PWM time base is incremented until it
reaches this number.

compare is an integer between 0 and 255. This is the value that the PWM time base is

272

Built-in Functions

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

compared to, to determine if a special event should be triggered.

compare_postscale is an integer between 1 and 16. This postscaler affects compare,
the special events trigger.

dead_time is an integer between 0 and 63. This value specifies the length of an off
period that should be inserted between the going off of a pin and the going on of itis a
complementary pin.

undefined

Initializes and configures the motor control Pulse Width Modulation (PWM) module.
All devices equipped with motor control or power PWM module.

None

setup power pwm(PWM CLOCK DIV 4 | PWM FREE RUN |
PWM_DEAD CLOCK_DIV_4,1,10000,1000,0,1,0);

None

set_power pwm_override(), setup_power pwm_pins(), set_power pwmX_duty()

setup_power_pwm_pins()

Syntax: setup_power_pwm_pins(module0,modulel,module2,module3)
Parameters: For each module (two pins) specify:
PWM_PINS_DISABLED, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY
Returns: undefined
Function: Configures the pins of the Pulse Width Modulation (PWM) device.
Availability: All devices equipped with a power control PWM.
Requires: None
Exan”ﬂesj setup power pwm pins (PWM PINS DISABLED, PWM PINS DISABLED,

Example Files:

Also See:

PWM PINS DISABLED,

PWM_PINS DISABLED) ;
setup_power pwm pins (PWM_COMPLEMENTARY,

PWM COMPLEMENTARY, PWM PINS DISABLED, PWM PINS DISABLED);

None

setup _power pwm(), set power pwm_override(),set_power pwmX_duty()

setup_psp(option,address_mask)

Syntax:

setup_psp (options,address_mask);

273

CCSC Manual

setup_psp(options);

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:
Also See:

Option- The mode of the Parallel slave port. This allows to set the slave port mode,
read-write strobe options and other functionality of the PMP/EPMP module. See the
devices .h file for all options. Some typical options include:

- PAR_PSP_AUTO_INC
. PAR_CONTINUE_IN_IDLE

- PAR_INTR_ON_RW /lInterrupt on read write

- PAR_INC_ADDR /lincrement address by 1 every
/lread/write cycle

- PAR_WAITE4 /4 Tcy Wait for data hold after
/Istrobe

address_mask- This allows the user to setup the address enable register with a 16 bit
or 32 bit (EPMP) value. This value determines which address lines are active from the
available 16 address lines PMAO: PMA15 or 32 address lines PMAO:PMA31 (EPMP
only).

Undefined.

Configures various options in the PMP/EPMP module. The options are present in the
device.h file and they are used to setup the module. The PMP/EPMP module is highly
configurable and this function allows users to setup configurations like the Slave mode,
Interrupt options, address increment/decrement options, Address enable bits and
various strobe and delay options.

Only the devices with a built in Parallel Port module or Enhanced Parallel Master Port
module.

Constants are defined in the devices .h file.

setup psp (PAR PSP AUTO_INC| //Sets up legacy slave
//mode with
PAR STOP_ IN_IDLE, OxQO0FF); //read and write buffers

//auto increment.

None
psp_output full(), psp_input_full(), psp_overflow(),
See header file for device selected.

setup_pwml1() setup_pwm?2() setup_pwm3()
setup_pwmd4()

Syntax:

setup_pwml(settings);
setup_pwmz2(settings);
setup_pwma3(settings);
setup_pwm4(settings);

Parameters:

Returns:

settings- setup of the PWM module. See the device's .h file for all
options.
Some typical options include:

PWM_ENABLED
PWM_OUTPUT
PWM_ACTIVE_LOW

Undefined

274

Built-in Functions

Function:
Availability:
Examples:
Example

Files:
Also See:

Sets up the PWM module.
On devices with a PWM module.
setup pwml (PWM ENABLED|PWM OUTPUT) ;

None

set pwm_duty()

setup_qei()

Syntax:

setup_gei(options, filter, maxcount);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Options- The mode of the QEI module. See the devices .h file for all options
Some common options are:

- QEI_MODE_X2

- QEI_MODE_X4

filter - This parameter is optional, the user can enable the digital filters and specify the
clock divisor.

maxcount - Specifies the value at which to reset the position counter.
void

Configures the Quadrature Encoder Interface. Various settings
like mode and filters can be setup.

Devices that have the QEI module.
Nothing.

setup gei (QEI MODE X2 |QEI RESET WHEN MAXCOUNT,
QEI FILTER ENABLE QEA|QEI FILTER DIV 2,0x1000);

None

gei_set _count() , gei_get count() , gei_status()

setup_rtc()

Syntax: setup_rtc() (options, calibration);

Parameters: Options- The mode of the RTCC module. See the devices .h file for all options

Calibration- This parameter is optional and the user can specify an 8 bit value that will get
written to the calibration configuration register.

275

CCSC Manual

Returns: void

Function: Configures the Real Time Clock and Calendar module. The module requires an external 32.768
kHz clock crystal for operation.

Availability: Devices that have the RTCC module.
Requires: Nothing.
Examples: setup rtc(RTC ENABLE | RTC OUTPUT SECONDS, 0x00);

// Enable RTCC module with seconds clock and no calibration

Example None
Files:
Also See: ric_read(), rtc_alarm_read(), rtc_alarm_write(), setup _rtc_alarm(),

rtc_write(, setup_rtc()

setup_rtc_alarm()

Syntax: setup_rtc_alarm(options, mask, repeat);

Parameters: options- The mode of the RTCC module. See the devices .h file for all options
mask- specifies the alarm mask bits for the alarm configuration.

repeat- Specifies the number of times the alarm will repeat. It can have a max value of 255.

Returns: void

Function: Configures the alarm of the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: setup rtc alarm(RTC_ALARM ENABLE, RTC ALARM HOUR, 3);

Example Files: None

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(), setup_rtc()

setup_sd_adc()

Syntax: setup_sd_adc(settingsl, settings 2, settings3);

Parameters: settings1- settings for the SD1CONL1 register of the SD ADC module. See the device's .h file for
all options. Some options include:

SDADC_ENABLED

SDADC_NO_HALT

SDADC_GAIN_1

SDADC_NO_DITHER

A WN -

276

Built-in Functions

Returns:
Function:
Availability:

Examples:

Example
Files:
Also See:

5 SDADC_SVDD_SVSS
6 SDADC_BW_NORMAL

settings2- settings for the SD1CONZ2 register of the SD ADC module. See the device's .h file for
all options. Some options include:

7 SDADC_CHOPPING_ENABLED

8 SDADC_INT_EVERY_SAMPLE

9 SDADC_RES UPDATED_EVERY_INT

10 SDADC_NO_ROUNDING

settings3- settings for the SD1CONS register of the SD ADC module. See the device's .h file for
all options. Some options include:

11 SDADC_CLOCK_DIV_1

12 SDADC_OSR_1024

13 SDADC_CLK_SYSTEM

Nothing

To setup the Sigma-Delta Analog to Digital Converter (SD ADC) module.
Only devices with a SD ADC module.

setup_sd_adc(SDADC_ENABLED | SDADC_DITHER_LOW,
SDADC_CHOPPING_ENABLED | SDADC_INT_EVERY_5TH_SAMPLE |
SDADC_RES_UPDATED_EVERY_INT, SDADC_CLK_SYSTEM |
SDADC_CLOCK_DIV_4);

None

set sd adc channel(), read sd adc(), set sd adc calibration()

setup_smtx()

Syntax: setup_smtl1(mode,[period]);
setup_smt2(mode,[period]);
Parameters: mode - The setup of the SMT module. See the device's .h file for al
typical options include:
SMT_ENABLED
SMT_MODE_TIMER
SMT_MODE_GATED_TIMER
SMT_MODE_PERIOD_DUTY_CYCLE_ACQ
period - Optional parameter for specifying the overflow value of the
to maximum value if not specified.
Returns: Nothing
Function: Configures the Signal Measurement Timer (SMT) module.
Availability: Only devices with a built-in SMT module.
Examples: setup smtl (SMT ENABLED | SMT MODE PERIOD DUTY CYCLE ACQ|

Example Files:

SMT REPEAT DATA ACQ MODE | SMT CLK FOSC);

None

277

CCSC Manual

Also See: smtx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_res
smtx_read(), smtx_write()

setup_spi() setup_spi2()

Syntax: setup_spi (mode)
setup_spi2 (mode)

Parameters: mode may be:
o SPI_MASTER, SPI_SLAVE, SPI_SS DISABLED
o SPI L_TO H, SPI_H TO L
o SPI_CLK_DIV_4, SPI_CLK_DIV_186,
o SPI_CLK_DIV_64, SPI_CLK_T2
3 SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H
° Constants from each group may be or'ed together with |.
Returns: undefined
Function: Initializes the Serial Port Interface (SPI). This is used for 2 or 3 wire serial devices that follow a
common clock/data protocol.
Also See: spi_write(), spi_read(), spi_data_is_in(), SPI Overview

setup_timer_A()

Syntax: setup_timer_A (mode);

Parameters: mode values may be:
- TA_OFF, TA_INTERNAL, TA_EXT H TO L, TA_ EXT L TO H
-TA DIV_1, TA_DIV_2, TA DIV_4, TA_DIV_8, TA DIV_16, TA_DIV_32,
TA_DIV_64, TA DIV_128, TA DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer A.

Availability: This function is only available on devices with Timer A hardware.
Requires: Constants are defined in the device's .h file.

Examples: setup_timer A(TA OFF);

setup_timer A(TA INTERNAL | TA DIV 256);
setup timer A(TA EXT L TO H | TA DIV 1);

Example Files: none

Also See: get_timerA(), set_timerA(), TimerA Overview

278

Built-in Functions

setup_timer_B()

Syntax: setup_timer_B (mode);
Parameters: mode values may be:
- TB_OFF, TB_INTERNAL, TB_EXT H_TO_L, TB_EXT_L TO_H
-TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16, TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256
- constants from different groups may be or'ed together with |.
Returns: undefined
Function: sets up Timer B
Availability: This function is only available on devices with Timer B hardware.
Requires: Constants are defined in device's .h file.
Examples: setup_timer B(TB OFF);

Example Files:

Also See:

setup_timer B(TB INTERNAL | TB DIV 256);
setup _timer B(TA EXT L TO H | TB DIV 1);

none

get_timerB(), set_timerB(), TimerB Overview

setup_timer_0()

Syntax: setup_timer_0 (mode)
Parameters: mode may be one or two of the constants defined in the devices .h
file. RTCC_INTERNAL, RTCC_EXT_L_TO_Hor RTCC_EXT _H_TO_L
RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16, RTCC_DIV_32,
RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256
PIC18XXX only: RTCC_OFF, RTCC_8_BIT
One constant may be used from each group or'ed together with the | operator.
Returns: undefined
Function: Sets up the timer 0 (aka RTCC).
Warning: On older PIC16 devices, set-up of the prescaler may undo the WDT prescaler.
Availability: All devices.
Requires: Constants are defined in the devices .h file.
Examples: setup timer 0 (RICC DIV 2|RTCC EXT L TO H);

Example Files:
Also See:

get_timer0(), set_timer0(), setup counters()

279

CCSC Manual

setup_timer_1()

Syntax: setup_timer_1 (mode)
Parameters: mode values may be:
. T1 DISABLED, T1_INTERNAL, T1_EXTERNAL,
T1_EXTERNAL_SYNC
. T1 CLK_OUT
. T1 DIV_BY_1,T1 DIV_BY_2,T1 DIV_BY_4,T1 DIV_BY_8
° constants from different groups may be or'ed together with |.
Returns: undefined
Function: Initializes timer 1. The timer value may be read and written to using SET_TIMER1()
and GET_TIMER1()Timer 1 is a 16 bit timer.
With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the timer will
increment every 1.6us. It will overflow every 104.8576ms.
Availability: This function is only available on devices with timer 1 hardware.
Requires: Constants are defined in the devices .h file.
Examples: setup timer 1 (Tl DISABLED);

Example Files:
Also See:

setup timer 1 (T1 INTERNAL | T1 DIV BY 4);
setup timer 1 (T1 INTERNAL | T1 DIV BY 8);

get timerl(), set _timerl() , Timerl Overview

setup_timer_2()

Syntax: setup_timer_2 (mode, period, postscale)
Parameters: mode may be one of:
° T2_DISABLED
. T2_DIV_BY_1, T2 DIV_BY_4,T2 DIV_BY_16
Period is a int 0-255 that determines when the clock value is reset
Postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, an so on)
Returns: undefined
Function: Initializes timer 2. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER2() and SET_TIMERZ2().
2 is a 8-bit counter/timer.
Availability: This function is only available on devices with timer 2 hardware.
Requires: Constants are defined in the devices .h file.
Examples: setup_timer 2 (T2 DIV _BY 4, 0xc0, 2) //at 20mhz, the timer will

280

Built-in Functions

Example Files:

Also See:

//increment every 800ns

//will overflow every 154.4us,

//and will interrupt every
308.us

get_timer2(), set_timer2() , Timer2 Overview

setup_timer_3()

Syntax: setup_timer_3 (mode)
Parameters: Mode may be one of the following constants from each group or'ed (via |) together:
o T3 _DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC
° T3 _DIV_BY_1, T3 DIV_BY_2, T3 DIV_BY_ 4, T3 DIV_BY_8
Returns: undefined
Function: Initializes timer 3 or 4.The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER3() and SET_TIMER3().
Timer 3 is a 16 bit counter/timer.
Availability: This function is only available on devices with timer 3 hardware.
Requires: Constants are defined in the devices .h file.
Exanuﬂes; setup timer 3 (T3 INTERNAL | T3 DIV BY 2);

Example Files:

Also See:

None

get_timer3(), set_timer3()

setup_timer_4()

Syntax: setup_timer_4 (mode, period, postscale)
Parameters: mode may be one of:
. T4 _DISABLED, T4 DIV_BY_1, T4 DIV_BY_ 4, T4 DIV_BY_16

period is a int 0-255 that determines when the clock value is reset,
postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, and so on).

Returns: undefined

Function: Initializes timer 4. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER4() and SET_TIMERA4().
Timer 4 is a 8 bit counter/timer.

Availability: This function is only available on devices with timer 4 hardware.

281

CCSC Manual

Requires: Constants are defined in the devices .h file

Examples: setup timer 4 (T4 DIV BY 4, 0xc0, 2);
// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,
// and will interrupt every 307.2us.

Example Files:
Also See: get_timer4(), set_timer4()

setup_timer_5()

Syntax: setup_timer_5 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or T5_EXTERNAL_SYNC
T5_DIV_BY_1, T5 DIV_BY_ 2, T5 DIV_BY 4, T5 DIV_BY_8
T5_ONE_SHOT, T5_DISABLE_SE_RESET, or T5_ ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor (from the oscillator clock).

The timer value may be read and written to using GET_TIMER5() and SET_TIMERS5().
Timer 5 is a 16 bit counter/timer.

Availability: This function is only available on devices with timer 5 hardware.
Requires: Constants are defined in the devices .h file.

Examples: setup_timer 5 (T5 INTERNAL | T5 DIV BY 2);

Example Files: None

Also See: get timer5(), set_timer5(), Timer5 Overview

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters: baud is a constant representing the number of bits per second. A one or zero may also be passed
to control the on/off status.
Stream is an optional stream identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:

282

Built-in Functions

UART_AUTODETECT Waits for O0x55 character and sets the UART baud rate to match.
UART_AUTODETECT_NOWAIT Same as above function, except returns before 0x55 is
received. KBHIT() will be true when the match is made. A call to GETC() will clear the character.
UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from high to low

clock - If specified this is the clock rate this function should assume. The default comes from the

#USE DELAY.

Returns: undefined

Function: Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is turned on, and if
0 is passed, UART is turned off. If a BAUD rate is passed to it, the UART is also turned on, if not
already on.

Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232
Examples: setup uart (9600) ;
setup_uart (9600, rsOut);
Example None
Files:
Also See: #USE RS232, putc(), getc(), RS232 1/0O Overview

setup_vref()

Syntax: setup_vref (mode | value)
Parameters: mode may be one of the following constants:
o FALSE (off)
o VREF_LOW for VDD*VALUE/24
o VREF_HIGH for VDD*VALUE/32 + VDD/4
o any may be or'ed with VREF_A2.

value is an int 0-15.

Also See: Voltage Reference Overview

setup_wdt()

Syntax: setup_wdt (mode)

Parameters: Constants like: WDT_18MS, WDT_36MS, WDT_72MS, WDT_144MS ,WDT_288MS,
WDT_576MS, WDT_1152MS, WDT_2304MS

For some parts: WDT_ON, WDT_OFF

Warning: On older PIC16 devices, set-up of the prescaler may undo the timer0 prescaler.

283

CCSC Manual

Also See:

#FUSES , restart_wdt() , WDT or Watch Dog Timer Overview

Internal Oscillator Overview

setup_zdc()

Syntax: setup_zdc(mode);
Parameters: mode- the setup of the ZDC module. The options for setting up tt
° ZCD_ENABLED
° ZCD_DISABLED
o ZCD_INVERTED
. ZCD_INT_L_TO_H
. ZCD_INT_H_TO_L
Returns: Nothing
Function: To set-up the Zero_Cross Detection (ZCD) module.
Availability: All devices with a ZCD module.
Examples: setup zcd (ZCD_ENABLE|ZCD INT H TO L);

Example Files:

Also See:

None

zcd_status()

shift_left()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory.
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or an address to a
structure (such as &data). Bit O of the lowest byte in RAM is treated as the LSB.

Availability: All devices

Requires: Nothing

Examples: byte buffer[3];

for (i=0; 1i<=24; ++i){
// Wait for clock high
while (!input (PIN A2));

284

Built-in Functions

shift left (buffer, 3, input (PIN_A3));

// Wait for clock low

while (input (PIN A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

Example ex_extee.c, 9356.c
Files:
Also See: shift_right(), rotate right(), rotate left(),

shift_right()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array identifier or an address to a
structure (such as &data). Bit O of the lowest byte in RAM is treated as the LSB.

Availability: All devices

Requires: Nothing
Examples: // reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2
struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (i=0; i<=16; ++i) {
while (!input (PIN_A2));
shift right (&msg, 3, input (PIN Al));
while (input (PIN A2)) ;}

// This shifts 8 bits out PIN_AO, LSB first.
for (i=0;1i<8;++1)
output bit (PIN AQ0,shift right(&data,1,0));

Example ex_extee.c, 9356.c
Files:
Also See: shift_left(), rotate_right(), rotate_left(),

sleep()

Syntax: sleep(mode)
Parameters: mode - for most chips this is not used. Check the device header for special options on
some chips.

285

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Undefined

Issues a SLEEP instruction. Details are device dependent. However, in general the
part will enter low power mode and halt program execution until woken by specific
external events. Depending on the cause of the wake up execution may continue after
the sleep instruction. The compiler inserts a sleep() after the last statement in main().
All devices

Nothing

SLEEP () ;

ex_wakup.c
reset cpu()

sleep_ulpwu()

Syntax: sleep_ulpwu(time)

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-low power wakeup pin
(by outputting a high on PIN_AO0).

Returns: undefined

Function: Charges the ultra-low power wake-up capacitor on PIN_AO for time microseconds, and
then puts the PIC to sleep. The PIC will then wake-up on an 'Interrupt-on-Change' after
the charge on the cap is lost.

Availability: Ultra Low Power Wake-Up support on the PIC (example, PIC12F683)

Requires: #USE DELAY

Examples: while (TRUE)

Example Files:

Also See:

{
if (input (PIN_Al))
//do something

else
sleep ulpwu(10); //cap will be charged for 10us,
//then goto sleep
}
None
#USE DELAY

sleep_ulpwu()

Syntax:

sleep_ulpwu(time)

Parameters:

time specifies how long, in us, to charge the capacitor on the ultra-low power wakeup pin
(by outputting a high on PIN_BO).

286

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns: undefined

Function: Charges the ultra-low power wake-up capacitor on PIN_BO for time microseconds, and
then puts the PIC to sleep. The PIC will then wake-up on an 'Interrupt-on-Change' after
the charge on the cap is lost.

Availability: Ultra Low Power Wake-Up support on the PIC (example, PIC124F32KA302)
Requires: #USE DELAY
Examples: while (TRUE)

{
if (input (PIN_Al))
//do something

else
sleep ulpwu(10); //cap will be charged for 10us,
//then goto sleep
}
Example Files: None
Also See: #USE DELAY
smtx_read()
Syntax: value_smtl_read(which);
value_smt2_read(which);
Parameters: which - Specifies which SMT registers to read. The following define
in the device's header file to select which registers are read:
SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG
SMT_TMR_REG
SMT_PERIOD_REG
Returns: 32-bit value
Function: To read the Capture Period Registers, Capture Pulse Width Registe
Timer Registers or Period Registers of the Signal Measurement Tinr
Availability: Only devices with a built-in SMT module.
Examples: unsigned int32 Period;
Period = Smtl_read(SMT_CAPTURED_PERIOD_REG);
Example Files: None
Also See: smtx_status(), stmx_start(), smtx_stop(), smtx_update(), smtx_re:

setup SMTx(), smtx write()

287

CCSC Manual

smtx_reset_timer()

Syntax: smtl_reset_timer();
smt2_reset_timer();
Parameters: None
Returns: Nothing
Function: To manually reset the Timer Register of the Signal Measureme
Availability: Only devices with a built-in SMT module.
Examples: smtl reset timer();

Example Files:

Also See:

None

setup _smtx(), stmx_start(), smtx stop(), smtx update(), smt
smtx_read(), smtx_write()

smtx_start()

Syntax: smtl_start();
smt2_start();
Parameters: None
Returns: Nothing
Function: To have the Signal Measurement Timer (SMT) module start ac
Availability: Only devices with a built-in SMT module.
Examples: smtl start();

Example Files:

Also See:

None

smtx_status(), setup smtx(), smtx stop(), smtx _update(), sn
smtx_read(), smitx_write()

smtx_status()

Syntax: value = smtl_status();
value = smt2_status();
Parameters: None

288

Built-in Functions

Returns:
Function:

Availability:
Examples:

Example Files:

Also See:

The status of the SMT module.
To return the status of the Signal Measurement Timer (SMT) |

Only devices with a built-in SMT module.
status = smtl status();

None

setup_smtx(), stmx_start(), smtx_stop(), smtx_update(), s
smtx_read(), smtx_write()

smtx_stop()

Syntax: smtl_stop();
smt2_stop();
Parameters: None
Returns: Nothing
Function: Configures the Signal Measurement Timer (SMT) module.
Availability: Only devices with a built-in SMT module.
Examples: smtl_stop ()
Example Files: None

Also See:

smtx_status(), stmx_start(), setup _smtx(), smtx update(), sn
smtx_read(), smitx_write()

smtx_write()

Syntax: smtl_write(which,value);
smt2_write(which,value);
Parameters: which - Specifies which SMT registers to write. The following defin
in the device's header file to select which registers are written:
SMT_TMR_REG
SMT_PERIOD_REG
value - The 24-hit value to set the specified registers.
Returns: Nothing
Function: To write the Timer Registers or Period Registers of the Signal Meas

289

CCSC Manual

Timer (SMT) module

Availability: Only devices with a built-in SMT module.

Examples: smtl write (SMT PERIOD REG, 0x100000000) ;

Example Files: None

Also See: smtx_status(), stmx_start(), setup smtx(), smtx update(), smtx_r

smtx_read(), setup smtx()

smtx_update()

Syntax: smtl_update(which);
smt2_update(which);

Parameters: which - Specifies which capture registers to manually update. The
following defines have been made in the device's header file to select
which registers are updated:

SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG

Returns: Nothing

Function: To manually update the Capture Period Registers or the Capture Pulse Width
Registers of the Signal Measurement Timer module.

Availability: Only devices with a built-in SMT module.

Examples: smtl update (SMT CAPTURED PERIOD REG);

Example None

Files:

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_status(), smtx_reset_timer(),

smtx_read(), smtx_write()

spi_data is_in() spi_data_is_in2()

Syntax: result = spi_data_is_in()
result = spi_data_is_in2()

Parameters: None

Returns: 0 (FALSE) or 1 (TRUE)

290

Built-in Functions

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

Returns TRUE if data has been received over the SPI.
This function is only available on devices with SPI hardware.

Nothing

(!spi data is in() && input (PIN B2));
if (spi_data_is in())
data = spi read();

None

spi_read(), spi_write(), SPI Overview

spi_init()

Syntax:

spi_init(baud);
spi_init(stream,baud);

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

stream — is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
band- the band rate to initialize the SPI module to. If FALSE it will disable the SPI
module, if TRUE it will enable the SPI module to the band rate specified in #use SPI.

Nothing.

Initializes the SPI module to the settings specified in #USE SPI.
This function is only available on devices with SPI hardware.
#USE SPI

#use spi (MATER, SPI1, baud=1000000, mode=0, stream=SPI1 MODEO)

spi_init (SPI1 _MODEO, TRUE); //initialize and enable SPI1 to setting in
#USE SPI

spi_init (FALSE); //disable SPI1

spi init (250000);//initialize and enable SPI1 to a baud rate of 250K

None

#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

spi_prewrite(data);

Syntax: spi_prewrite(data);
spi_prewrite(stream, data);

Parameters: stream — is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
data- the variable or constant to transfer via SPI

Returns: Nothing.

Function: Writes data into the SPI buffer without waiting for transfer to be completed. Can be used

in conjunction with spi_xfer() with no parameters to transfer more then 8 bits for PCM
and PCH device, or more then 8 bits or 16 bits (XFER16 option) for PCD. Function is
useful when using the SSP or SSP2 interrupt service routines for PCM and PCH device,
or the SPIx interrupt service routines for PCD device.

291

CCSC Manual

Availability:
Requires:

Examples:
Example Files:

Also See:

This function is only available on devices with SPI hardware.

#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI slave
device

spi_prewrite(data_out);

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_xfer_in(), spi_init(), spi_speed()

spi_read() spi_read2()

Syntax: value = spi_read ([data])
value = spi_read?2 ([data])

Parameters: data — optional parameter and if included is an 8 bit int.

Returns: An 8 bit int

Function: Return a value read by the SPI. If a value is passed to the spi_read() the data will be
clocked out and the data received will be returned. If no data is ready, spi_read() will
wait for the data is a SLAVE or return the last DATA clocked in from spi_write().
If this device is the MASTER then either do a spi_write(data) followed by a spi_read()
or do a spi_read(data). These both do the same thing and will generate a clock. If
there is no data to send just do a spi_read(0) to get the clock.
If this device is a SLAVE then either call spi_read() to wait for the clock and data or
use_spi_data_is_in() to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples: data_in = spi read(out data);

Example Files: ex_spi.c

Also See:

spi_write(), , , spi_data_is_in(), SPI Overview

spi_read_16()

spi_read2 16()
spi_read3 16()
spi_read4 16()

Syntax: value = spi_read_16([data]);

value = spi_read2_16([data]);

value = spi_read3_16([data]);

value = spi_read4_16([data]);
Parameters: data — optional parameter and if included is a 16 bit int
Returns: A 16 bit int

292

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function: Return a value read by the SPI. If a value is passed to the spi_read_16() the data will be clocked
out and the data received will be returned. If no data is ready, spi_read_16() will wait for the data
is a SLAVE or return the last DATA clocked in from spi_write_16().

If this device is the MASTER then either do a spi_write_16(data) followed by a spi_read_16() or
do a spi_read_16(data). These both do the same thing and will generate a clock. If there is no
data to send just do a spi_read_16(0) to get the clock.

If this device is a slave then either call spi_read_16() to wait for the clock and data or
use_spi_data_is_in() to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.

Requires: NThat the option SPI_MODE_16B be used in setup_spi() function, or that the option XFER16 be
used in #use SPI(

Examples: data in = spi read 16 (out data);

Example None

Files:

Also See: spi_read(), spi_write(), spi_write_16(), spi_data_is_in(), SPI Overview

spi_speed

Syntax: spi_speed(baud);

spi_speed(stream,baud);
spi_speed(stream,baud,clock);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name option in #USE
SPI.
band- the band rate to set the SPI module to
clock- the current clock rate to calculate the band rate with.
If not specified it uses the value specified in #use delay ().

Returns: Nothing.

Function: Sets the SPI module's baud rate to the specified value.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI

Examples: spi_speed(250000);

Example Files:

Also See:

spi_speed(SPI1_MODEO, 250000);
spi_speed(SPI1_MODEO, 125000, 8000000);
None

#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()

spi_write() spi_write2()

Syntax: spi_write([wait],value);
spi_write2([wait],value);
Parameters: value is an 8 bit int

293

CCSC Manual

wait- an optional parameter specifying whether the function will wait for the SPI
transfer to complete before exiting. Default is TRUE if not specified.

Returns: Nothing
Function: Sends a byte out the SPI interface. This will cause 8 clocks to be generated. This

function will write the value out to the SPI. At the same time data is clocked out data
is clocked in and stored in a receive buffer. spi_read() may be used to read the

buffer.
Availability: This function is only available on devices with SPI hardware.
Requires: Nothing
Examples: spi_write(data_out);

data_in = spi_read();

Example Files: ex_spi.c
Also See: spi_read(), spi_data_is_in(), SPI Overview, spi_write_16(), spi_read_16()

spi_xfer()

Syntax: spi_xfer(data)
spi_xfer(stream, data)
spi_xfer(stream, data, bits)
result = spi_xfer(data)
result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Parameters: data is the variable or constant to transfer via SPI. The pin used to transfer data is
defined in the DO=pin option in #use spi. stream is the SPI stream to use as defined in
the STREAM=name option in #USE SPI.

bits is how many bits of data will be transferred.

Returns: The data read in from the SPI. The pin used to transfer result is defined in the DI=pin
option in #USE SPI.

Function: Transfers data to and reads data from an SPI device.
Availability: All devices with SPI support.

Requires: #USE SPI

Examples: int 1 = 34;

spi_xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi xfer (trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI
Example Files: None

Also See: #USE SPI

294

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

SPII_XFER_IN()

Syntax: value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);

Parameters: stream — is the SPI stream to use as defined in the STREAM=name option in #USE SPI.
bits — is how many bits of data to be received.

Returns: The data read in from the SPI

Function: Reads data from the SPI, without writing data into the transmit buffer first.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI slave
device.

Examples: data in = spi xfer in();

Example Files:

Also See:

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf()

Syntax: sprintf(string, cstring, values...);
bytes=sprintf(string, cstring, values...)

Parameters: string is an array of characters.
cstring is a constant string or an array of characters null terminated.
Values are a list of variables separated by commas. Note that format specifies do not work in
ram band strings.

Returns: Bytes is the number of bytes written to string.

Function: This function operates like printf() except that the output is placed into the specified string. The
output string will be terminated with a null. No checking is done to ensure the string is large
enough for the data. See printf() for details on formatting.

Availability: All devices.

Requires: Nothing

Examples: char mystring[20];
long mylong;

mylong=1234;
sprintf (mystring, "<%1lu>",mylong) ;
// mystring now has:

//

Example None

Files:

Also See: printf()

<12 34>\0

295

CCSC Manual

sqrt()

Syntax: result = sqrt (value)

Parameters: value is a float

Returns: A float

Function: Computes the non-negative square root of the float value x. If the argument is
negative, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Domain error occurs in the following cases:

sgrt: when the argument is negative

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: distance = sqrt(pow((x1-x2),2)+pow((yl-y2),2));

Example Files: None

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be returned by
subsequent calls to rand.

Returns: No value.

Function: The srand() function uses the argument as a seed for a new sequence of pseudo-
random numbers to be returned by subsequent calls to rand. If srand() is then called
with same seed value, the sequence of random numbers shall be repeated. If rand is
called before any call to srand() have been made, the same sequence shall be
generated as when srand() is first called with a seed value of 1.

Availability: All devices.

Requires: #INCLUDE <STDLIB.H>

Examples: srand (10) ;

I=rand();

Example Files: None

Also See: rand()

296

Built-in Functions

STANDARD STRING FUNCTIONS() memchr() memcmp()
strcat() strchr() strcmp() strcoll() strcspn() strerror()
stricmp() strlen() strlwr() strncat() strncmp() strncpy()
strpbrk() strrchr() strspn() strstr() strxfrm()

Syntax: ptr=strcat (s1, s2) Concatenate s2 onto s1
ptr=strchr (s1, c) Find c in s1 and return &s1[i]
ptr=strrchr (sl, c) Same but search in reverse
cresult=strcmp (s1, s2) Compare sl to s2
iresult=strncmp (s1, s2, n) Compare sl to s2 (n bytes)
iresult=stricmp (s1, s2) Compare and ignore case
ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
iresult=strcspn (s1, s2) Count of initial chars in s1 not in s2
iresult=strspn (s1, s2) Count of initial chars in s1 also in s2
iresult=strlen (s1) Number of characters in s1
ptr=striwr (s1) Convert string to lower case
ptr=strpbrk (s1, s2) Search sl for first char also in s2
ptr=strstr (sl, s2) Search for s2 in s1
ptr=strncat(s1,s2, n) Concatenates up to n bytes of s2 onto s1
iresult=strcoll(s1,s2) Compares sl to s2, both interpreted as appropriate
to the current locale.
res=strxfrm(s1,s2,n) Transforms maximum of n characters of s2 and
places them in s1, such that strcmp(s1,s2) will give
the same result as strcoll(s1,s2)
iresult=memcmp(m1,m2,n) Compare m1 to m2 (n bytes)
ptr=memchr(m1,c,n) Find c in first n characters of m1 and return &m1[i]
ptr=strerror(errnum) Maps the error number in errnum to an error
message string. The parameters 'errnum'’is an
unsigned 8 bit int. Returns a pointer to the string.
Parameters: s1 and s2 are pointers to an array of characters (or the name of an array). Note that s1
and s2 MAY NOT BE A CONSTANT (like "hi").
n is a count of the maximum number of character to operate on.
c is a 8 bit character
m1 and m2 are pointers to memory.
Returns: ptr is a copy of the s1 pointer
iresult is an 8 bit int
result is -1 (less than), O (equal) or 1 (greater than)
res is an integer.
Function: Functions are identified above.
Availability: All devices.
Requires: #include <string.h>
Exanuﬂes; char stringl[10], string2[10];

strcpy(stringl,"hi ");

strcpy (string2, "there");
strcat (stringl, string2) ;

printf ("Length is %ul\r\n", strlen(stringl));

297

CCSC Manual

Example Files:

Also See:

// Will print 8
ex_str.c

strepy(), strtok()

strcpy() strcopy()

Syntax: strcpy (dest, src)
strcopy (dest, src)
Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a constant string.
Returns: undefined
Function: Copies a constant or RAM string to a RAM string. Strings are terminated with a 0.
Availability: All devices.
Requires: Nothing
Examples: char string[10], string2[10];

strcpy (string, "Hi There");

strcpy (string2,string);

Example Files: ex str.c

Also See: strxxxx()

strtod()

Syntax: result=strtod(nptr,& endptr)

Parameters: nptr and endptr are strings

Returns: result is a float.
returns the converted value in result, if any. If no conversion could be performed, zero
is returned.

Function: The strtod function converts the initial portion of the string pointed to by nptr to a float
representation. The part of the string after conversion is stored in the object pointed to
endptr, provided that endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

298

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Requires:

Examples:

Example Files:

#INCLUDE <stdlib.h>

float result;

char str[12]="123.45hello";

char *ptr;

result=strtod(str, &ptr) ;

//result is 123.45 and ptr is "hello"

None

Also See: strtol(), strtoul()

strtok()

Syntax: ptr = strtok(s1, s2)

Parameters: s1 and s2 are pointers to an array of characters (or the name of an array). Note that
sl and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to indicate a continue
operation.

Returns: ptr points to a characterin sl oris 0

Function: Finds next token in s1 delimited by a character from separator string s2 (which can be
different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT contained in s2
and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then searches
from there for a character contained in s2.

If none are found, current token extends to the end of s1, and subsequent searches for
a token will return null.

If one is found, it is overwritten by "\0', which terminates current token. Function saves
pointer to following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved
pointer.

Availability: All devices.

Requires: #INCLUDE <string.h>

Examples: char string[30], term[3], *ptr;

Example Files:

strcpy(string, "one, two, three;");
strcpy (term, ", ;") ;

ptr = strtok(string, term);
while (ptr!=0) {
puts (ptr) ;
ptr = strtok (0, term);
}
// Prints:
one
two
three

ex_str.c

299

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

Also See: strxxxx(), strepy()

strtol()

Syntax: result=strtol(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer

Returns: result is a signed long int.
returns the converted value in result , if any. If no conversion could be performed,
zero is returned.

Function: The strtol function converts the initial portion of the string pointed to by nptr to a
signed long int representation in some radix determined by the value of base. The
part of the string after conversion is stored in the object pointed to endptr, provided
that endptr is not a null pointer. If nptr is empty or does not have the expected form,
no conversion is performed and the value of nptr is stored in the object pointed to by
endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: signed long result;

Example Files:

char str[9]="123hello";

char *ptr;
result=strtol (str, &ptr, 10);
//result is 123 and ptr is "hello"

None

Also See: strtod(), strtoul()

strtoul()

Syntax: result=strtoul(nptr,endptr, base)

Parameters: nptr and endptr are strings pointers and base is an integer 2-36.

Returns: result is an unsigned long int.
returns the converted value in result, if any. If no conversion could be performed, zero
is returned.

Function: The strtoul function converts the initial portion of the string pointed to by nptr to a long

int representation in some radix determined by the value of base. The part of the string
after conversion is stored in the object pointed to endptr, provided that endptr is not a
null pointer. If nptr is empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object pointed to by endptr, provided
endptr is not a null pointer.

300

Built-in Functions

Availability: All devices.
Requires: STDLIB.H must be included
Examples: long result;

char str[9]="123hello";

char *ptr;
result=strtoul (str, &ptr, 10);
//result is 123 and ptr is "hello"

Example Files: None

Also See: strtol(), strtod()

swap()

Syntax: swap (lvalue)

Parameters: Ivalue is a byte variable

Returns: undefined - WARNING: this function does not return the result

Function: Swaps the upper nibble with the lower nibble of the specified byte. This is the same
as:

byte = (byte << 4) | (byte >> 4);

Availability: All devices.

Requires: Nothing

Examples: x=0x45;
swap (x) ;

//x now is 0x54
Example Files: None

Also See: rotate right(), rotate left()

tolower() toupper()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)

Parameters: cvalue is a character
Returns: An 8 bit character
Function: These functions change the case of letters in the alphabet.

301

CCSC Manual

Availability:
Requires:

Examples:

Example Files:

Also See:

TOLOWER(X) will return 'a'..'z' for X in 'A'".."Z" and all other characters are unchanged.
TOUPPER(X) will return 'A'..'Z' for X in 'a’..'z' and all other characters are unchanged.

All devices.

Nothing

switch (toupper (getc())) {
case 'R' : read cmd(); break;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;

}

ex_str.c

None

touchpad_getc()

Syntax: input = TOUCHPAD_GETC();

Parameters: None

Returns: char (returns corresponding ASCIl number is “input” declared as int)

Function: Actively waits for firmware to signal that a pre-declared Capacitive Sensing Module
(CSM) or charge time measurement unit (CTMU) pin is active, then stores the pre-
declared character value of that pin in “input”.

Note: Until a CSM or CTMU pin is read by firmware as active, this instruction will cause
the microcontroller to stall.

Availability: All PIC's with a CSM or CTMU Module

Requires: #USE TOUCHPAD (options)

Exan“ﬂes; //When the pad connected to PIN BO is activated, store the letter 'A'

Example Files:

Also See:

#USE TOUCHPAD (PINiBO:'A')
void main (void) {

char c;

enable interrupts (GLOBAL) ;

c = TOUCHPAD GETC();

//will wait until one of declared pins is detected
//if PIN BO is pressed, c will get value 'A'

None

#USE TOUCHPAD, touchpad_state()

302

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

touchpad_hit()

Syntax: value = TOUCHPAD_HIT()

Parameters: None

Returns: TRUE or FALSE

Function: Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time Measurement Unit
(CTMU) key has been pressed. If TRUE, then a call to touchpad_getc() will not cause the
program to wait for a key press.

Availability: All PIC's with a CSM or CTMU Module

Requires: #USE TOUCHPAD (options)

Examples: // When the pad connected to PIN BO is activated, store the letter 'A'

Example Files:

Also See:

#USE TOUCHPAD (PIN7B0='A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;

while (TRUE) {
if | TOUCHPAD HIT ())
//wait until key on PIN B0 is pressed
c = TOUCHPAD GETC(); //get key that was pressed
} //c will get value 'A'
}

None

#USE TOUCHPAD (), touchpad_state(), touchpad getc()

touchpad_state()

Syntax: TOUCHPAD_STATE (state);
Parameters: state is a literal 0, 1, or 2.
Returns: None
Function: Sets the current state of the touchpad connected to the Capacitive Sensing Module
(CSM). The state can be one of the following three values:
0 : Normal state
1 : Calibrates, then enters normal state
2 : Test mode, data from each key is collected in the int1l6 array TOUCHDATA
Note: If the state is set to 1 while a key is being pressed, the touchpad will not calibrate
properly.
Availability: All PIC's with a CSM Module
Requires: #USE TOUCHPAD (options)
Examples: #USE TOUCHPAD (THRESHOLD=5, PIN D5='5', PIN B0='C')

void main (void) {

303

CCSC Manual

Example Files:

Also See:

char c;

TOUCHPAD STATE (1) ; //calibrates, then enters normal state
enable interrupts (GLOBAL) ;

while (1) {

c = TOUCHPAD GETC();
//will wait until one of declared pins is detected

//if PIN BO is pressed, c will get value 'C'
} //if PIN D5 is pressed, c will get value '5'

None

#USE TOUCHPAD, touchpad getc(), touchpad hit()

tx_buffer_available()

Syntax: value = tx_buffer_available([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
RS232.

Returns: Number of bytes that can still be put into transmit buffer

Function: Function to determine the number of bytes that can still be put into transmit buffer before
it overflows. Transmit buffer is implemented has a circular buffer, so be sure to check to
make sure there is room for at least one more then what is actually needed.

Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232 (UART1, BAUD=9600, TRANSMIT BUFFER=50)

Example Files:

Also See:

void main (void) {
unsigned int8 Count = 0;

while (TRUE) {
if (tx buffer available()>13)
printf ("/r/nCount=%3u",Count++) ;
}
}
None

USE _RS232(), rev(), TX BUFFER FULL(), RCV_BUFFER _BYTES(), GET(),
PUTC() ,PRINTE(), SETUP_UART(), PUTC SEND()

tx_buffer_bytes()

Syntax:

value = tx_buffer_bytes([stream]);

Parameters:

stream — optional parameter specifying the stream defined in #USE
RS232.

304

Built-in Functions

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

Number of bytes in transmit buffer that still need to be sent.

Function to determine the number of bytes in transmit buffer that still need to be sent.
All devices

#USE RS232

#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50)
void main(void) {

char string[] = “Hello”;

if(tx_buffer_bytes() <= 45)

printf(“%s”,string);
}

None

USE RS232(), RCV_BUFFER FULL(), TX BUFFER FULL(),
RCV_BUFFER BYTES(), GET(), PUTC() ,PRINTF(), SETUP_UART(),

PUTC_SEND()

tx_buffer_full()

Syntax: value = tx_buffer_full([stream])
Parameters: stream — optional parameter specifying the stream defined in #USE
RS232
Returns: TRUE if transmit buffer is full, FALSE otherwise.
Function: Function to determine if there is room in transmit buffer for another character.
Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50)

Example Files:

Also See:

void main(void) {
char c;

if('tx_buffer_full())
putc(c);
}

None

USE_RS232(), RCV_BUFFER FULL(), TX BUFFER FULL().,
RCV_BUFFER_BYTES(), GETC(), PUTC(), PRINTFE(), SETUP_UART().,
PUTC_SEND()

305

CCSC Manual

va_arg()

Syntax: va_arg(argptr, type)

Parameters: argptr is a special argument pointer of type va_list
type — This is data type like int or char.

Returns: The first call to va_arg after va_start return the value of the parameters after that
specified by the last parameter. Successive invocations return the values of the
remaining arguments in succession.

Function: The function will return the next argument every time it is called.

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

Example Files:

{

int sum = 0;

int i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (1i=0; i<num; i++)
sum = sum + va_ arg(argptr, int);

va_end(argptr); // end variable processing
return sum;

}

None

Also See: nargs(), va_end(), va_start()

va_end()

Syntax: va_end(argptr)

Parameters: argptr is a special argument pointer of type va_list.

Returns: None

Function: A call to the macro will end variable processing. This will facillitate a normal return from
the function whose variable argument list was referred to by the expansion of va_start().

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

{

int sum = 0;
int 1i;
va_ list argptr; // create special argument pointer
va start (argptr,num); // initialize argptr
fo;(i:O; i<num; i++)

sum = sum + va arg(argptr, int);

306

Built-in Functions

Example Files:

va_end(argptr); // end variable processing
return sum;

}

None

Also See: nargs(), va_start(), va_ard()

va_start

Syntax: va_start(argptr, variable)

Parameters: argptr is a special argument pointer of type va_list
variable — The second parameter to va_start() is the name of the last parameter before
the variable-argument list.

Returns: None

Function: The function will initialize the argptr using a call to the macro va_start().

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

Example Files:

Also See:

{

int sum = 0;

int 1i;
va_list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; i++)

sum = sum + va arg(argptr, int);
va_end(argptr) ; // end variable processing
return sum;
}
None

nargs(), va_start(), va_arg()

write_bank()

Syntax: write_bank (bank, offset, value)
Parameters: bank is the physical RAM bank 1-3 (depending on the device)
offset is the offset into user RAM for that bank (starts at 0)
value is the 8 bit data to write
Returns: undefined
Function: Write a data byte to the user RAM area of the specified memory bank. This function

may be used on some devices where full RAM access by auto variables is not
efficient. For example on the PIC16C57 chip setting the pointer size to 5 bits will

307

CCSC Manual

Availability:

Requires:

Examples:

Example Files:

Also See:

generate the most efficient ROM code however auto variables can not be above 1Fh.
Instead of going to 8 bit pointers you can save ROM by using this function to write to
the hard to reach banks. In this case the bank may be 1-3 and the offset may be 0-15.

All devices but only useful on PCB parts with memory over 1Fh and PCM parts with
memory over FFh.

Nothing
i=0; // Uses bank 1 as a RS232 buffer
do {
c=getc();
write bank (1l,i++,c);
} while (c!=0x13);
ex_psp.c

See the "Common Questions and Answers" section for more information.

write_configuration_memory()

Syntax: write_configuration_memory ([offset], dataptr,count)

Parameters: dataptr: pointer to one or more bytes
count: a 8 bit integer
offset is an optional parameter specifying the offset into configuration memory to start
writing to, offset defaults to zero if not used.

Returns: undefined

Function: For PIC18 devices-Erases all fuses and writes count bytes from the dataptr to the
configuration memory.
For Enhanced16 devices - erases and write User ID memory.

Availability: All PIC18 Flash and Enhanced16 devices

Requires: Nothing

Examples: int dataf[6];

Example Files:

Also See:

write configuration memory(data, 6)
None

write_program_memory(), Configuration Memory Overview

write_eeprom()

Syntax: write_eeprom (address, value)

Parameters: address is a (8 bit or 16 bit depending on the part) int, the range is device dependent
value is an 8 bit int

Returns: undefined

308

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Write a byte to the specified data EEPROM address. This function may take several
milliseconds to execute. This works only on devices with EEPROM built into the core
of the device.

For devices with external EEPROM or with a separate EEPROM in the same package
(like the 12CE671) see EX_EXTEE.c with CE51X.c, CE61X.c or CE67X.c.

In order to allow interrupts to occur while using the write operation, use the #DEVICE
option WRITE_EEPROM = NOINT. This will allow interrupts to occur while the
write_eeprom() operations is polling the done bit to check if the write operations has
completed. Can be used as long as no EEPROM operations are performed during an
ISR.

This function is only available on devices with supporting hardware on chip.

Nothing

#define LAST VOLUME 10 // Location in EEPROM

volume++;
write eeprom(LAST VOLUME,volume);

ex_intee.c, ex _extee.c, ce51x.c, ce62x.c, ce67x.c

read eeprom(), write_program_eeprom(), read program_eeprom(), data Eeprom
Overview

write_external_memory()

Syntax: write_external_memory(address, dataptr, count)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts
dataptr is a pointer to one or more bytes
count is a 8 bit integer

Returns: undefined

Function: Writes count bytes to program memory from dataptr to address. Unlike
write_program_eeprom() and read_program_eeprom() this function does not use any
special EEPROM/FLASH write algorithm. The data is simply copied from register
address space to program memory address space. This is useful for external RAM or to
implement an algorithm for external flash.

Availability: Only PCH devices.

Requires: Nothing

Examples: for (1=0x1000;i<=0x1fff;i++) {

Example Files:

Also See:

value=read adc();
write external memory (i, value, 2);
delay ms(1000) ;

}

ex_load.c, loader.c

write _program eeprom(), erase program eeprom(), Program Eeprom Overview

309

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink3.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink4.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink5.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

CCSC Manual

write_extended _ram()

Syntax: write_extended_ram (page,address,data,count);

Parameters: page - the page in extended RAM to write to
address — the address on the selected page to start writing to
data — pointer to the data to be written
count — the number of bytes to write (0-32768)

Returns: undefined

Function: To write data to the extended RAM of the PIC.

Availability: On devices with more then 30K of RAM.

Requires: Nothing

Examples: unsigned int8 data([8] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write extended ram(1l,0x0000,data,8);
Example Files: None

Also See: read extended ram(), Extended RAM Overview

write_program_eeprom()

Syntax: write_program_eeprom (address, data)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts, data is 16 bits. The least
significant bit should always be 0 in PCH.

Returns: undefined

Function: Writes to the specified program EEPROM area.

See our write_program_memory() for more information on this function.

Availability: Only devices that allow writes to program memory.

Requires: Nothing

Examples: write program eeprom(0,0x2800) ; //disables program

Example Files: ex_load.c, loader.c

Also See: read program_eeprom(), read_eeprom(), write_eeprom(), write_program_memory(),

erase_program_eeprom(), Program Eeprom Overview

write_program_memory()

Syntax: write_program_memory(address, dataptr, count);

310

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Additional Notes:

address is 16 bits on PCM parts and 32 bits on PCH parts .
dataptr is a pointer to one or more bytes
count is a 8 bit integer on PIC16 and 16-bit for PIC18

undefined

Writes count bytes to program memory from dataptr to address. This function is most
effective when count is a multiple of FLASH_WRITE_SIZE. Whenever this function is
about to write to a location that is a multiple of FLASH_ERASE_SIZE then an erase is
performed on the whole block.

Only devices that allow writes to program memory.

Nothing

for (1=0x1000;i<=0x1fff;i++) {
value=read_adc();
write program memory (i, value, 2);
delay ms (1000);

}

loader.c

write_program_eeprom , erase_program_eeprom , Program Eeprom Overview

Clarification about the functions to write to program memory:

In order to get the desired results while using write_program_memory(), the block of
memory being written to needs to first be read in order to save any other variables
currently stored there, then erased to clear all values in the block before the new values

can be written. This is because the write_program_memory() function does not save any

values in memory and will only erase the block if the first location is written to. If this
process is not followed, when new values are written to the block, they will appear as
garbage values.

For chips where
getenv(“FLASH_ERASE_SIZE”) > getenv(“‘FLASH_WRITE_SIZE”")

write_program_eeprom() - Writes 2 bytes, does not erase (use
erase_program_eeprom())

write_program_memory() - Writes any number of bytes, will erase a block

whenever the first (lowest) byte in a block is written to. If the first address is not the

start of a block that block is not erased.

erase_program_eeprom() - Will erase a block. The lowest address bits are not
used.

For chips where
getenv(“FLASH_ERASE_SIZE”) = getenv(“FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, no erase is needed.

write_program_memory() - Writes any number of bytes, bytes outside the range of

the write block are not changed. No erase is needed.

erase_program_eeprom() - Not available

311

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

CCSC Manual

zdc_status()

Syntax: value=zcd_status()
Parameters: None
Returns: value - the status of the ZCD module. The following defines are made in
header file and are as follows:
. ZCD_IS_SINKING
. ZCD_IS_SOURCING
Function: To determine if the Zero-Cross Detection (ZCD) module is currently sinki
If the ZCD module is setup to have the output polarity inverted, the value
Availability: All devices with a ZCD module.
Examples: value=zcd status():
Example Files: None
Also See: setup _zcd()

312

STANDARD C INCLUDE FILES

errno.h

erro.h

EDOM Domain error value

ERANGE Range error value

errno error value

float.h

float.h

FLT_RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number with q decimal
digits can be rounded into a floating point number with p radix b digits and back
again without change to the g decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a

FLT_MIN_10_EXP:
FLT_MAX_EXP:
FLT_MAX_10_EXP:

FLT_MAX:
FLT_EPSILON:

FLT_MIN:
DBL_MANT_DIG:
DBL_DIG:
DBL_MIN_EXP:

DBL_MIN_10_EXP:

DBL_MAX_EXP:

DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:
LDBL_MANT _DIG:
LDBL_DIG:

normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power minus 1 is a
representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the range
representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is representable in
the given floating point type.

Minimum normalized positive floating point number

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with g decimal
digits can be rounded into a floating point number with p radix b digits and back
again without change to the g decimal digits.

Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
normalized floating point number.

Minimum negative integer such that 10 raised to that power is in the range of
normalized floating point numbers.

Maximum negative integer such that FLT_RADIX raised to that power minus 1 is a
representable finite floating point number.

Maximum negative integer such that 10 raised to that power is in the range of
representable finite floating point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is representable in
the given floating point type.

Minimum normalized positive floating point number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with q decimal
digits can be rounded into a floating point number with p radix b digits and back
again without change to the g decimal digits.

313

CCSC Manual

LDBL_MIN_EXP:
LDBL_MIN_10_EXP:
LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:

LDBL_EPSILON:

Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power minus 1 is a
representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the range of
representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is representable in
the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h
limits.h
CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG_MAX: Maximum value for an object of type unsigned long int
locale.h
locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setjimp.h

setimp.h

jmp_buf: An array used by the following functions

setjmp: Marks a return point for the next longjmp

314

Standard C Include Files

longjmp: Jumps to the last marked point
stddef.h
stddef.h
ptrdiff_t: The basic type of a pointer
size_t: The type of the sizeof operator (int)
wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)
stdio.h
stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE RS232)
stdout The standard output stream (USE RS232 specified as stream last USE RS232)
stdin The standard input s stream (USE RS232 specified as stream last USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and rem).
Idiv_t structure type that contains two signed longs (quot and rem
EXIT_FAILURE returns 1

EXIT_SUCCESS returns 0

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns 0(not supported)

Multibyte character and string Multibyte characters not supported

functions:

MBLEN() Returns the length of the string.

MBTOWC() Returns 1.

WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.

WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

315

ERROR MESSAGES

Compiler Error Messages

ENDIF with no corresponding #IF

Compiler found a #ENDIF directive without a corresponding #IF.

#ERROR

A #DEVICE required before this line

The compiler requires a #device before it encounters any statement or compiler directive that may cause it to
generate code. In general #defines may appear before a #device but not much more.

ADDRESSMOD function definition is incorrect

ADDRESSMOD range is invalid

A numeric expression must appear here

Some C expression (like 123, A or B+C) must appear at this spot in the code. Some expression that will evaluate to
a value.

Arrays of bits are not permitted

Arrays may not be of SHORT INT. Arrays of Records are permitted but the record size is always rounded up to the
next byte boundary.

Assignment invalid: value is READ ONLY

Attempt to create a pointer to a constant

Constant tables are implemented as functions. Pointers cannot be created to functions. For example CHAR
CONST MSG[9]={"HI THERE"} is permitted, however you cannot use &MSG. You can only reference MSG with
subscripts such as MSG[i] and in some function calls such as Printf and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)

An attempt was made to apply #INLINE or #SEPARATE to something other than a function.

Bad ASM syntax

Bad expression syntax

This is a generic error message. It covers all incorrect syntax.

Baud rate out of range

The compiler could not create code for the specified baud rate. If the internal UART is being used the combination of
the clock and the UART capabilities could not get a baud rate within 3% of the requested value. If the built in UART
is not being used then the clock will not permit the indicated baud rate. For fast baud rates, a faster clock will be
required.

BIT variable not permitted here

Addresses cannot be created to bits. For example &X is not permitted if X is a SHORT INT.

Branch out of range

Cannot change device type this far into the code

The #DEVICE is not permitted after code is generated that is device specific. Move the #DEVICE to an area before
code is generated.

Character constant constructed incorrectly

Generally this is due to too many characters within the single quotes. For example 'ab'is an error as is '\nr'. The
backslash is permitted provided the result is a single character such as '\010' or \n'.

Constant out of the valid range

This will usually occur in inline assembly where a constant must be within a particular range and it is not. For example
BTFSC 3,9 would cause this error since the second operand must be from 0-8.

Data item too big

Define expansion is too large

A fully expanded DEFINE must be less than 255 characters. Check to be sure the DEFINE is not recursively defined.
Define syntax error

This is usually caused by a missing or misplaced (or) within a define.

Demo period has expired

317

CCSC Manual

Please contact CCS to purchase a licensed copy.

www.ccsinfo.com/pricing

Different levels of indirection

This is caused by a INLINE function with a reference parameter being called with a parameter that is not a variable.
Usually calling with a constant causes this.

Divide by zero

An attempt was made to divide by zero at compile time using constants.

Duplicate case value

Two cases in a switch statement have the same value.

Duplicate DEFAULT statements

The DEFAULT statement within a SWITCH may only appear once in each SWITCH. This error indicates a second
DEFAULT was encountered.

Duplicate function

A function has already been defined with this name. Remember that the compiler is not case sensitive unless a
#CASE is used.

Duplicate Interrupt Procedure

Only one function may be attached to each interrupt level. For example the #INT_RB may only appear once in each
program.

Element is not a member

A field of a record identified by the compiler is not actually in the record. Check the identifier spelling.

ELSE with no corresponding IF

Compiler found an ELSE statement without a corresponding IF. Make sure the ELSE statement always match with
the previous IF statement.

End of file while within define definition

The end of the source file was encountered while still expanding a define. Check for a missing).

End of source file reached without closing comment */ symbol

The end of the source file has been reached and a comment (started with /*) is still in effect. The */ is missing.
type are INT and CHAR.

Expect ;

Expect }

Expect CASE

Expect comma

Expect WHILE

Expecting *

Expecting :

Expecting <

Expecting =

Expecting >

Expecting a (

Expecting a , or)

Expecting a , or }

Expecting a .

Expecting a ; or ,

Expecting a ; or {

Expecting a close paren

Expecting a declaration

Expecting a structure/union

Expecting a variable

Expecting an =

Expecting a]

Expecting a {

Expecting an array

Expecting an identifier

Expecting function name

Expecting an opcode mnemonic

This must be a Microchip mnemonic such as MOVLW or BTFSC.
Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For example 4=5; will give this error.
Expecting a basic type

Examples of a basic type are INT and CHAR.

318

http://www.ccsinfo.com/content.php?page=Purchasing1

Error Messages

Expression must be a constant or simple variable

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is permitted but 5*x+1
where X is a INT is not permitted. If X were a DEFINE that had a constant value then it is permitted.

Expression must evaluate to a constant

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is permitted but 5*x+1
where X is a INT is not permitted. If X were a DEFINE that had a constant value then it is permitted.

Expression too complex

This expression has generated too much code for the compiler to handle for a single expression. This is very rare but
if it happens, break the expression up into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact CCS to increase the internal limits.
EXTERNal symbol not found

EXTERNal symbol type mis-match
Extra characters on preprocessor command line
Characters are appearing after a preprocessor directive that do not apply to that directive. Preprocessor commands

own the entire line unlike the normal C syntax. For example the following is an error:
#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened

Check the filename and the current path. The file could not be opened.

File cannot be opened for write

The operating system would not allow the compiler to create one of the output files. Make sure the file is not marked
READ ONLY and that the compiler process has write privileges to the directory and file.

Filename must start with " or <

The correct syntax of a #include is one of the following two formats:

#include "filename.ext"

#include <filename.ext>

This error indicates neither a " or < was found after #include.

Filename must terminate with " or; msg:"’

The filename specified in a #include must terminate with a " if it starts with a ". It must terminate with a > if it starts
with a <.

Floating-point numbers not supported for this operation

A floating-point number is not permitted in the operation near the error. For example, ++F where F is a float is not
allowed.

Function definition different from previous definition

This is a mis-match between a function prototype and a function definition. Be sure that if a #INLINE or #SEPARATE
are used that they appear for both the prototype and definition. These directives are treated much like a type
specifier.

Function used but not defined

The indicated function had a prototype but was never defined in the program.
Identifier is already used in this scope

An attempt was made to define a new identifier that has already been defined.
lllegal C character in input file

A bad character is in the source file. Try deleting the line and re-typing it.

Import error

Improper use of a function identifier

Function identifiers may only be used to call a function. An attempt was made to otherwise reference a function. A
function identifier should have a (after it.

Incorrectly constructed label

This may be an improperly terminated expression followed by a label. For example:

x=5+

MPLAB:

Initialization of unions is not permitted

Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached

The program is using too much of something. An internal compiler limit was reached. Contact CCS and the limit may
be able to be expanded.

Internal Error - Contact CCS

319

CCSC Manual

This error indicates the compiler detected an internal inconsistency. This is not an error with the source code;
although, something in the source code has triggered the internal error. This problem can usually be quickly
corrected by sending the source files to CCS so the problem can be re-created and corrected.

In the meantime if the error was on a patrticular line, look for another way to perform the same operation. The error
was probably caused by the syntax of the identified statement. If the error was the last line of the code, the problem
was in linking. Look at the call tree for something out of the ordinary.

Interrupt handler uses too much stack

Too many stack locations are being used by an interrupt handler.

Invalid conversion from LONG INT to INT

In this case, a LONG INT cannot be converted to an INT. You can type cast the LONG INT to perform a truncation.
For example:

I = INT(LI);

Invalid interrupt directive

Invalid parameters to built in function

Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression that evaluates to a constant to specify
the number of bytes.

Invalid Pre-Processor directive

The compiler does not know the preprocessor directive. This is the identifier in one of the following two places:
#RXXRXX
#PRAGMA XXXXX

Invalid ORG range

The end address must be greater than or equal to the start address. The range may not overlap another range. The
range may not include locations 0-3. If only one address is specified it must match the start address of a previous
#org.

Invalid overload function

Invalid type conversion

Label not permitted here

Library in USE not found

The identifier after the USE is not one of the pre-defined libraries for the compiler. Check the spelling.

Linker Error: "%s" already defined in "%s"

Linker Error: ("%s'

Linker Error: Canont allocate memory for the section "%s" in the module "%s", because it overlaps with other
sections.

Linker Error: Cannot find unique match for symbol "%s"

Linker Error: Cannot open file "%s"

Linker Error: COFF file "%s" is corrupt; recompile module.

Linker Error: Not enough memory in the target to reallocate the section "%s" in the module "%s".

Linker Error: Section "%s" is found in the modules "%s" and "%s" with different section types.

Linker Error: Unknown error, contact CCS support.

Linker Error: Unresolved external symbol "%s" inside the module "%s".

Linker option no compatible with prior options.

Linker Warning: Section "%s" in module "%s" is declared as shared but there is no shared memory in the target chip.
The shared flag is ignored.

Linker option not compatible with prior options

Conflicting linker options are specified. For example using both the EXCEPT= and ONLY= options in the same
directive is not legal.

LVALUE required

This error will occur when a constant is used where a variable should be. For example 4=5; will give this error.
Macro identifier requires parameters

A #DEFINE identifier is being used but no parameters were specified, as required. For example:

#define min(x,y) ((x<y)?x:y)

When called MIN must have a (--,--) after it such as:

r=min (value, 6);

Macro is defined recursively

A C macro has been defined in such a way as to cause a recursive call to itself.

Missing #ENDIF

A #IF was found without a corresponding #ENDIF.

Missing or invalid .CRG file

The user registration file(s) are not part of the download software. In order for the software to run the files must be in
the same directory as the .EXE files. These files are on the original diskette, CD ROM or e-mail in a non-compressed

320

Error Messages

format. You need only copy them to the .EXE directory. There is one .REG file for each compiler (PCB.REG,
PCM.REG and PCH.REG).

More info:

Must have a #USE DELAY before this #USE

Must have a #USE DELAY before a #USE RS232

The RS232 library uses the DELAY library. You must have a #USE DELAY before you can do a #USE RS232.
No errors

The program has successfully compiled and all requested output files have been created.

No MAIN() function found

All programs are required to have one function with the name main().

No overload function matches

No valid assignment made to function pointer

Not enough RAM for all variables

The program requires more RAM than is available. The symbol map shows variables allocated. The call tree shows
the RAM used by each function. Additional RAM usage can be obtained by breaking larger functions into smaller
ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local variables declared. Upon analysis, it
may be determined that there are two main parts to the calculations and many variables are not shared between the
parts. A function B may be defined with 7 local variables and a function C may be defined with 7 local variables.
Function A now calls B and C and combines the results and nhow may only need 6 variables. The savings are
accomplished because B and C are not executing at the same time and the same real memory locations will be used
for their 6 variables (just not at the same time). The compiler will allocate only 13 locations for the group of functions
A, B, C where 20 were required before to perform the same operation.

Number of bits is out of range

For a count of bits, such as in a structure definition, this must be 1-8. For a bit number specification, such as in the
#BIT, the number must be 0-7.

Only integers are supported for this operation

Option invalid

Out of ROM, A segment or the program is too large

A function and all of the INLINE functions it calls must fit into one segment (a hardware code page). For example, on
the PIC16 chip a code page is 512 instructions. If a program has only one function and that function is 600
instructions long, you will get this error even though the chip has plenty of ROM left. The function needs to be split
into at least two smaller functions. Even after this is done, this error may occur since the new function may be only
called once and the linker might automatically INLINE it. This is easily determined by reviewing the call tree. If this
error is caused by too many functions being automatically INLINED by the linker, simply add a #SEPARATE before a
function to force the function to be SEPARATE. Separate functions can be allocated on any page that has room.
The best way to understand the cause of this error is to review the call tree.

Parameters must be located in RAM

Parameters not permitted

An identifier that is not a function or preprocessor macro can not have a ' (' after it.

Pointers to bits are not permitted

Addresses cannot be created to bits. For example, &X is not permitted if X is a SHORT INT.

Previous identifier must be a pointer

A -> may only be used after a pointer to a structure. It cannot be used on a structure itself or other kind of variable.
Printf format type is invalid

An unknown character is after the % in a printf. Check the printf reference for valid formats.

Printf format (%) invalid

A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count

The number of % format indicators in the printf does not match the actual number of variables that follow.
Remember in order to print a single %, you must use %%.

Recursion not permitted

The linker will not allow recursive function calls. A function may not call itself and it may not call any other function
that will eventually re-call it.

321

CCSC Manual

Recursively defined structures not permitted

A structure may not contain an instance of itself.

Reference arrays are not permitted

A reference parameter may not refer to an array.

Return not allowed in void function

A return statement may not have a value if the function is void.

RTOS call only allowed inside task functions

Selected part does not have ICD debug capability

STDOUT not defined (may be missing #RS 232)

An attempt was made to use a I/O function such as printf when no default /0 stream has been established. Add a
#USE RS232 to define a I/O stream.

Stream must be a constant in the valid range

I/0 functions like fputc, fgetc require a stream identifier that was defined in a #USE RS232. This identifier must
appear exactly as it does when it was defined. Be sure it has not been redefined with a #define.

String too long

Structure field name required

A structure is being used in a place where a field of the structure must appear. Change to the form s.f where s is the
structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)

A structure may not be passed by value. Pass a pointer to the structure using &.

Subscript out of range

A subscript to a RAM array must be at least 1 and not more than 128 elements. Note that large arrays might not fit in
a bank. ROM arrays may not occupy more than 256 locations.

This linker function is not available in this compiler version.

Some linker functions are only available if the PCW or PCWH product is installed.

This type cannot be qualified with this qualifier

Check the qualifiers. Be sure to look on previous lines. An example of this error is:
VOID X;

Too many array subscripts

Arrays are limited to 5 dimensions.

Too many constant structures to fit into available space

Available space depends on the chip. Some chips only allow constant structures in certain places. Look at the last
calling tree to evaluate space usage. Constant structures will appear as functions with a @CONST at the beginning
of the name.

Too many elements in an ENUM

A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been defined

Too many fast interrupt handlers have been identified

Too many nested #INCLUDESs

No more than 10 include files may be open at a time.

Too many parameters

More parameters have been given to a function than the function was defined with.
Too many subscripts

More subscripts have been given to an array than the array was defined with.
Type is not defined

The specified type is used but not defined in the program. Check the spelling.
Type specification not valid for a function

This function has a type specifier that is not meaningful to a function.

Undefined identifier

Undefined label that was used in a GOTO

There was a GOTO LABEL but LABEL was never encountered within the required scope. A GOTO cannot jump
outside a function.

Unknown device type

A #DEVICE contained an unknown device. The center letters of a device are always C regardless of the actual part
in use. For example, use PIC16C74 not PIC16RC74. Be sure the correct compiler is being used for the indicated
device. See #DEVICE for more information.

Unknown keyword in #FUSES

322

Error Messages

Check the keyword spelling against the description under #FUSES.

Unknown linker keyword

The keyword used in a linker directive is not understood.

Unknown type

The specified type is used but not defined in the program. Check the spelling.

User aborted compilation

USE parameter invalid

One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range

One of the values for a parameter to the USE library is not valid for the current environment.

Variable never used

Variable of this data type is never greater than this constant

323

COMPILER WARNING MESSAGES

Compiler Warning Messages

#error/warning
Assignment inside relational expression
Although legal it is a common error to do something like if(a=b) when it was intended to do if(a==b).

Assignment to enum is not of the correct type.
This warning indicates there may be such a typo in this line:
Assignment to enum is not of the correct type

If a variable is declared as a ENUM it is best to assign to the variables only elements of the enum. For example:
enum colors {RED,GREEN,BLUE} color;

color = GREEN; // OK
color = 1; // Warning 209
color = (colors)l; //OK
Code has no effect
The compiler can not discern any effect this source code could have on the generated code. Some examples:
1;
a==b;
1,2,3;
Condition always FALSE
This error when it has been determined at compile time that a relational expression will never be true. For example:
int x;
if(x>>9)
Condition always TRUE
This error when it has been determined at compile time that a relational expression will never be false. For example:
#define PIN_Al 41

if (PIN_Al) // Intended was: if (input (PIN_Al))

Function not void and does not return a value
Functions that are declared as returning a value should have a return statement with a value to be returned. Be
aware that in C only functions declared VOID are not intended to return a value. If nothing is specified as a function
return value "int" is assumed.
Duplicate #define
The identifier in the #define has already been used in a previous #define. To redefine an identifier use #UNDEF first.
To prevent defines that may be included from multiple source do something like:

#ifndef ID

fdefine ID text

#endif

Feature not supported

Function never called

Function not void and does not return a value.

Info:

Interrupt level changed

Interrupts disabled during call to prevent re-entrancy.

Linker Warning: "%s" already defined in object "%s"; second definition ignored.

Linker Warning: Address and size of section "%s" in module "%s" exceeds maximum range for this processor. The
section will be ignored.

325

CCSC Manual

Linker Warning: The module "%s" doesn't have a valid chip id. The module will be considered for the target chip
"%s".

Linker Warning: The target chip "%s" of the imported module "%s" doesn't match the target chip "%s" of the source.
Linker Warning: Unsupported relocation type in module "%s".

Memory not available at requested location.
Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This warning is issued for expressions where
adding() would help to clarify the meaning. For example:
if(x << n + 1)
would be more universally understood when expressed:
if(x << (n + 1))
Option may be wrong
Structure passed by value
Structures are usually passed by reference to a function. This warning is generated if the structure is being passed
by value. This warning is not generated if the structure is less than 5 bytes. For example:

void myfunct (mystruct sl) // Pass by value - Warning
myfunct (s2);

void myfunct(mystruct * sl) // Pass by reference - OK
myfunct (&s2);

void myfunct(mystruct & sl) // Pass by reference - OK

myfunct (s2);
Undefined identifier
The specified identifier is being used but has never been defined. Check the spelling.
Unprotected call in a #INT_GLOBAL
The interrupt function defined as #INT_GLOBAL is intended to be assembly language or very simple C code. This
error indicates the linker detected code that violated the standard memory allocation scheme. This may be caused
when a C function is called from a #INT_GLOBAL interrupt handler.
Unreachable code
Code included in the program is never executed. For example:
if (n==5)
goto dob;
goto exit;
if (n==20) // No way to get to this line
return;
Unsigned variable is never less than zero
Unsigned variables are never less than 0. This warning indicates an attempt to check to see if an unsigned variable
is negative. For example the following will not work as intended:
int i;
for (i=10; i>=0; i--)

Variable assignment never used.
Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable could never be larger than the

constant. For example the following could never be true:
int x; // 8 bits, 0-255
if (x>300)

Variable never used
A variable has been declared and never referenced in the code.

Variable used before assignment is made.

326

COMMON QUESTIONS & ANSWERS

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is performed. Some information may be lost
if the destination can not properly represent the source. For example: int8var = intl6var; Causes the top byte of
intl6var to be lost.

Assigning a smaller signed expression to a larger signed variable will result in the sign being maintained. For
example, a signed 8 bit int that is -1 when assigned to a 16 bit signed variable is still -1.

Signed numbers that are negative when assigned to a unsigned number will cause the 2's complement value to be
assigned. For example, assigning -1 to a int8 will result in the int8 being 255. In this case the sign bit is not extended
(conversion to unsigned is done before conversion to more bits). This means the -1 assigned to a 16 bit unsigned is
still 255.

Likewise assigning a large unsigned number to a signed variable of the same size or smaller will result in the value
being distorted. For example, assigning 255 to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order operand is converted (using the above
rules) to the higher. The order is as follows:

. Float

Signed 32 bit
Unsigned 32 bit
Signed 16 bit
Unsigned 16 bit
Signed 8 bit
Unsigned 8 bit
1 bit

The result is then the same as the operands. Each operator in an expression is evaluated independently. For
example:

i32 =i16 - (i8 +i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the - is 16 bit, that result is converted to
32 bit and the assignment is done. Note that if i8 is 200 and i16 is 400 then the result in i32 is 256. (200 plus 200 is
144 with a 8 bit +)

Explicit conversion may be done at any point with (type) inserted before the expression to be converted. For example
in the above the perhaps desired effect may be achieved by doing:

i32 =16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the second i8 is forced to 16 bit.
A common C programming error is to do something like:

i16 =i8 * 100;

When the intent was:
i16 = (long) i8 * 100;

327

CCSC Manual

Remember that with unsigned ints (the default for this compiler) the values are never negative. For example 2-4 is
254 (in 8 bit). This means the following is an endless loop since i is never less than O:

inti;
for(i=100; i>=0; i--)

How can a constant data table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a constant read-only element. Since
the ROM and RAM data paths are separate in the PIC® , there are restrictions on how the data is accessed. For

example, to place a 10 element BYTE array in ROM use:
BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
x = TABLE [i];

OR

x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.
Similar constructs using CONST may be used with any data type including structures, longs and floats.

Note that in the implementation of the above table, a function call is made when a table is accessed with a subscript
that cannot be evaluated at compile time.

How can | use two or more RS-232 ports on one PIC®?

The #USE RS232 (and 12C for that matter) is in effect for GETC, PUTC, PRINTF and KBHIT functions encountered
until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo the data to both the first RS-232
port (A) and a second RS-232 port (B).

#USE RS232 (BAUD=9600, XMIT:PINiBO, RCV:PINiBl)
void put to a(char c) {
put (c);
}
char get from a() {
return (getc()); }
#USE RS232 (BAUD=9600, XMIT:PIN_BZ,RCV:PIN_B3)
void put to b(char b) {
putc(c);
}
main () {
char c;
put_to_a("Online\n\r");
put _to b("Online\n\r");
while (TRUE) {
c=get from a();

328

Common Questions & Answers

put_to b(c);
put_to_a(c);

}

The following will do the same thing but is more readable and is the recommended method:

#USE RS232 (BAUD=9600, XMIT=PIN BO, RCV=PIN Bl, STREAM=COM A)
#USE RS232 (BAUD=9600, XMIT=PIN B2, RCV=PIN B3, STREAM=COM B)

main () {
char c;
fprintf (COM_A, "Online\n\r");
fprintf (COM B, "Online\n\r");
while (TRUE) {
c fgetc (COM_A) ;
fputc(c, COM A);
fputc(c, COM B);
}

}

How can the RB interrupt be used to detect a button press?

The RB interrupt will happen when there is any change (input or output) on pins B4-B7. There is only one interrupt
and the PIC® does not tell you which pin changed. The programmer must determine the change based on the
previously known value of the port. Furthermore, a single button press may cause several interrupts due to bounce in
the switch. A debounce algorithm will need to be used. The following is a simple example:

#int rb
rb isr() {
byte changes;
changes = last b ”~ port b;
last b = port b;
if (bit_test(changes,4)&& !bit test(last b,4)){
//b4 went low
}
if (bit_test(changes,5)&& !bit test (last b,5)){
//b5 went low
}

delay ms (100); //debounce
}

The delay=ms (100) is a quick and dirty debounce. In general, you will not want to sit in an ISR for 100 MS to allow
the switch to debounce. A more elegant solution is to set a timer on the first interrupt and wait until the timer
overflows. Do not process further changes on the pin.

How do | directly read/write to internal registers?

A hardware register may be mapped to a C variable to allow direct read and write capability to the register. The
following is an example using the TIMERO register:

#BYTE timer 0 = 0x 01

timer0= 128; //set timer0 to 128

while (timer 0 ! = 200); // wait for timerO to reach 200

Bits in registers may also be mapped as follows:

329

CCSC Manual

#BIT T O IF = Ox 0B.2

while (!T 0 IF); //wait for timer0 interrupt

Registers may be indirectly addressed as shown in the following example:
printf ("enter address:");

a = gethex ();

printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the most common tasks with C function
calls. When possible, it is best to use the built-in functions rather than directly write to registers. Register locations
change between chips and some register operations require a specific algorithm to be performed when a register
value is changed. The compiler also takes into account known chip errata in the implementation of the built-in
functions. For example, it is better to do set_tris_ A (0); rather than *0x 85 =0;

How do | do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We used the \f to indicate the start of the
string.

This example shows how to put a floating point number in a string.

main () |
char string[20];
float £;
£=12.345;
sprintf (string, "\f%6.3£f",f);

How do | get getc() to timeout after a specified time?

GETC will always wait for a character to become available unless a timeout time is specified in the #use rs232().
The following is an example of how to setup the PIC to timeout when waiting for an RS232 character.

#include <18F4520.h>

#fuses HS,NOWDT

#use delay(clock=20MHz)

#use rs232 (UART1,baud=9600, timeout=500) //timeout = 500 milliseconds, 1/2 second
void main ()

{

char c;

while (TRUE)
{
c=getc () ; //if getc() timeouts 0 is returned to c
//otherwise receive character is returned to c

if(c) //if not zero echo character back
putc(c);

//user to do code

output toggle (PIN A5);

330

Common Questions & Answers

How do | put a NOP at location O for the ICD?

The CCS compilers are fully compatible with Microchips ICD debugger using MPLAB. In order to prepare a program
for ICD debugging (NOP at location 0 and so on) you need to add a #DEVICE ICD=TRUE after your normal
#DEVICE.

For example:
#INCLUDE <16F877.h>
#DEVICE ICD=TRUE

How do | wait only a specified time for a button press?

The following is an example of how to wait only a specific time for a button press.

#define PUSH BUTTON PIN A4

intl timeout error;

intl timed get button press(void) {
intl6é timeout;

timeout error=FALSE;
timeout=0;
while (input (PUSH BUTTON) && (++timeout<50000)) // 1/2 second
delay us (10);
if(!input(PUSHiBUTTON))
return (TRUE); //button pressed
else{
timeout error=TRUE;
return (FALSE) ; //button not pressed timeout occurred

How do | write variables to EEPROM that are not a byte?

The following is an example of how to read and write a floating point number from/to EEPROM. The same concept
may be used for structures, arrays or any other type.

° n is an offset into the EEPROM.
o For floats you must increment it by 4.
. For example, if the first float is at 0, the second one should be at 4, and the third at 8.

WRITE FLOAT EXT EEPROM(long int n, float data) {

int i;
for (i = 0; 1 < 4 ; i++)
write ext eeprom(i + n, *(((int 8 *)&data + i)) ;

}

float READ_FLOAT_EXT_EEPROM(long int n) {
int i;
float data;
for (1 = 0; 1 < 4; i++)
*(((int 8 *)sdata) + i) = read ext eeprom(i + n);
return (data) ;

331

CCSC Manual

How does one map a variable to an 1/0O port?

Two methods are as follows:

#byte PORTB = 6 //Just an example, check the
#define ALL OUT 0 //DATA sheet for the correct
#define ALL IN Oxff //address for your chip
main () {

int 1i;

set tris b (ALL OUT);
PORTB = 0;// Set all pins low

for (i=0;1i<=127;++1) // Quickly count from 0 to 127
PORTB=1; // on the I/0 port pin

set tris b(ALL IN);

i = PORTB; // 1 now contains the portb value.

Remember when using the #BYTE, the created variable is treated like memory. You must maintain the tri-state
control registers yourself via the SET_TRIS_X function. Following is an example of placing a structure on an I/O port:

struct port b layout
{int data : 4;
int rw : 1;

int cd : 1;
int enable : 1;

int reset : 1; };
struct port b layout port b;
#byte port b = 6
struct port b layout <const INIT 1 = {0, 1, , };

struct port b layout const INIT 3 {0, 0,0,

struct port b layout const FOR SEND = {0,0,0,
// All outputs

struct port b layout const FOR READ = {15,0,0, 0,0 };
// Data is an input

1,1, 1,1

struct port b layout const INIT 2 {3, 1,1, 1,0 };
0,0, 0,0
0,0

main () {

int x;

set _tris b ((int)FOR _SEND) ; // The constant
// structure is
// treated like
// a byte and
// is used to
// set the data
// direction

port b = INIT 1;

delay us(25);

port b = INIT 2; // These constant structures delay us(25);
// are used to set all fields
port b = INIT 3; // on the port with a single

// command

set tris b((int)FOR READ);
port b.rw=0;
// Here the individual
port b.cd=1; // fields are accessed
port b.enable=0; // independently.
x = port b.data;
port b.enable=0

332

Common Questions & Answers

How does the compiler determine TRUE and FALSE on
expressions?

When relational expressions are assigned to variables, the result is always 0 or 1.

For example:
bytevar = 5>0; //bytevar will be 1
bytevar = 0>5; //bytevar will be 0

The same is true when relational operators are used in expressions.
For example:
bytevar = (x>y) *4;
is the same as:
if(x>y)
bytevar=4;
else
bytevar=0;

SHORT INTSs (bit variables) are treated the same as relational expressions. They evaluate to 0 or 1.

When expressions are converted to relational expressions or SHORT INTSs, the result will be FALSE (or 0) when the
expression is 0, otherwise the result is TRUE (or 1).

For example:

bytevar = 54;

bitvar = bytevar; //bitvar will be 1 (bytevar ! = 0)
if (bytevar) //will be TRUE

bytevar = 0;

bitvar = bytevar; //bitvar will be 0

How does the PIC® connect to a PC?

A level converter should be used to convert the TTL (0-5V__ levels that the PIC® operates with to the RS-232 voltages
(+/- 3-12V) used by the PIC®. The following is a popular configuration using the MAX232 chip as a level converter.

333

CCSC Manual

+ +

i
Im 1 16 2 4 14
L 3 6
?L 16 |——
{ 4 Max 232 18 Pin 44 + 1:
oc s PIC®
14 11 2 (A3)
13 15 12 1{A2) 5
-
Any two I/O
Pins may be
used here

How does the PIC® connect to an |2C device?

Two I/O lines are required for I12C. Both lines must have pullup registers. Often the 12C device will have a H/W
selectable address. The address set must match the address in S/W. The example programs all assume the
selectable address lines are grounded.

+
——
1 4 14
1 1 8 -+
18 Pin 16
—1 2 2416 7 PIC®
", 15 |-
— 3 6 k5— 12 (BS) -
1H+
|4 5 == 13 (87)
5
T

How much time do math operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If possible consider fixed point instead of
floating point. For example instead of "float cost_in_dollars;" do "long cost_in_cents;". For trig formulas consider a
lookup table instead of real time calculations (see EX_SINE.C for an example). The following are some rough times
on a 14-bit PIC®. Note times will vary depending on memory banks used.

20 mhz PIC16

I int8 [us] | int16 [us] | int32 float

334

Common Questions & Answers

[us] [us]
+ 0.6 1.4 3 111.
- 0.6 14 3 113.
* 11.1 47.2 132 178.
/ 23.2 70.8 239.2 330.
exp() * * * 1697.3
In() * * * 2017.7
sin() * * * 2184.5
40 mhz PIC18

int8 [us] int16 [us] int32 [us] float [us]

+ 0.3 0.4 0.6 51.3
- 0.3 0.4 0.6 52.3
* 0.4 3.2 22.2 35.8
/ 11.3 32 106.6 144.9
exp() * * * 510.4
In() * * * 644.8
sin() * * * 698.7

Instead of 800, the compiler calls 0. Why?

The PIC® ROM address field in opcodes is 8-10 Bits depending on the chip and specific opcode. The rest of the
address bits come from other sources. For example, on the 174 chip to call address 800 from code in the first page

you will see:
BSF 0A, 3
CALL 0

The call 0 is actually 800H since Bit 11 of the address (Bit 3 of PCLATH, Reg 0A) has been set.

Instead of AOQ, the compiler is using register 20. Why?

The PIC® RAM address field in opcodes is 5-7 bits long, depending on the chip. The rest of the address field comes
from the status register. For example, on the 74 chip to load A0 into W you will see:

BSF 3,5
MOVEW 20

Note that the BSF may not be immediately before the access since the compiler optimizes out the redundant bank

switches.

335

CCSC Manual

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the RAM allocation can be a help in
designing the program structure. The best re-use of RAM is accomplished when local variables are used with lots of
functions. RAM is re-used between functions not active at the same time. See the NOT ENOUGH RAM error
message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex. The more complex the expression, the
more scratch RAM locations the compiler will need to allocate to that expression. The RAM allocated is reserved
during the execution of the entire function but may be re-used between expressions within the function. The total
RAM required for a function is the sum of the parameters, the local variables and the largest number of scratch
locations required for any expression within the function. The RAM required for a function is shown in the call tree
after the RAM=. The RAM stays used when the function calls another function and new RAM is allocated for the new
function. However when a function RETURNS the RAM may be re-used by another function called by the parent.
Sequential calls to functions each with their own local variables is very efficient use of RAM as opposed to a large
function with local variables declared for the entire process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and other boolean variables. The compiler
can pack eight such variables into one byte location. The compiler does this automatically whenever you use SHORT
INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently. An external 8 pin EEPROM or
SRAM can be connected to the PIC® with just 2 wires and provide a great deal of additional storage capability. The
compiler package includes example drivers for these devices. The primary drawback is a slower access time to read
and write the data. The SRAM will have fast read and write with memory being lost when power fails. The EEPROM
will have a very long write cycle, but can retain the data when power is lost.

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a simple one-wire
interface to transfer data between PICs®. Slower data can use pin BO and the EXT interrupt. The built-in UART may
be used for high speed transfers. An RS232 driver chip may be used for long distance operations. The RS485 as well
as the high speed UART require 2 pins and minor software changes. The following are some hardware
configurations.

336

Common Questions & Answers

SIMPLE MULTIPLE PIC® BUS

BﬂJ EUJ BDJ

PICE PICT PIC®

+3

LR]

LN

#USE RS5232 (baud=%600, float high, bits=9%, xmmit=PIN B0, row=FIH B0

LONG DISTANCE MUTLI-DROP BUS

1 +
l]
8 [6 8 1 *use Ch
=1 14 1 * .
%l: XX | g | CT T
PICE * I 4 7H 7 4 I * PICH highm
d
g2l 3 DS75176 DS75176 3 | 1 B2 ;ﬁﬁ;r
2 5 Several 2 5 slower
PICS can d
lT‘ tap in '—_L—' Speets
parallel -

HUSE RS232 (baud=3%600, bikts=9, sl t=PIN ¥, RO=FIN *, enable=FIN B2)

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a simple
one-wire interface to transfer data between PICs®. Slower data can use pin BO and the EXT interrupt.
The built-in UART may be used for high speed transfers. An RS232 driver chip may be used for long
distance operations. The RS485 as well as the high speed UART require 2 pins and minor software
changes. The following are some hardware configurations.

337

CCSC Manual

SIMPLE MULTIPLE PIE BUS

BOJ BOJ BUJ

PIC® PIC® PICE| eue

-5

#USE RES232 (baud=9500, float high, bits=9, mmt=FIN B0, rovw=FIR EO0)

LONG DISTANCE MUTLI-DROP BUS

+ +
|]
"1 aﬁws 31—* " use C4,
£ -] C7 for
PICs* |- 4 7 |outaoni) 7 4|+ PICE high
speed or
g2l_| 3 D575176 Ds75176 3 || B2 speador
2 5 Several Z2 5 slower
PICS can speeds
'T' tapin 'T'
- parallel

H#USE R3232 (bLaud=2600, bits=%, K xmit=PIN * K ROV=PIN *, endble=FIN B2}

What is the format of floating point numbers?

CCS uses the same format Microchip uses in the 14000 calibration constants. PCW users have a utility Numeric
Converter that will provide easy conversion to/from decimal, hex and float in a small window in the Windows IDE. See
EX_FLOAT.C for a good example of using floats or float types variables. The format is as follows:

BYTE1 BYTE 2 BYTE 3 BYTE 4

T % LsE

Loreiest
BYTE
in BaM

Exi';nant gﬁ" 23 Bit Mantisa

with bias

of TF
Example Number
0 00 00 00 00
1 7F 00 00 00
-1 7F 80 00 00
10 82 20 00 00
100 85 48 00 00
123.45 85 76 E6 66
123.45E20 C8 27 4E 53
123.45 E-20 43 36 2E 17

338

Common Questions & Answers

!

Lowest BYTE in RAM

Why does the .LST file look out of order?

The list file is produced to show the assembly code created for the C source code. Each C source line has the
corresponding assembly lines under it to show the compiler’s work. The following three special cases make the .LST
file look strange to the first time viewer. Understanding how the compiler is working in these special cases will make
the .LST file appear quite normal and very useful.

1. Stray code near the top of the program is sometimes under what looks like a non-executable source line.

Some of the code generated by the compiler does not correspond to any particular source line. The compiler will put
this code either near the top of the program or sometimes under a #USE that caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The linker has re-arranged the code to
properly fit the functions into the best code pages and the best half of a code page. The resulting code is not in
source order. Whenever the compiler has a discontinuity in the .LST file, it will put a * line in the file. This is most
often seen between functions and in places where INLINE functions are called. In the case of an INLINE function, the
addresses will continue in order up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and over.

For example:

46:CLRF 15

*

051: CLRF 15

*

113: CLRF 15
This effect is seen when the function is an INLINE function and is called from more than one place. In the above
case, the A=0 line is in an INLINE function called in four places. Each place it is called from gets a new copy of the

code. Each instance of the code is shown along with the original source line, and the result may look unusual until the
addresses and the * are noticed.

Why does the compiler show less RAM than there really is?

Some devices make part of the RAM much more ineffective to access than the standard RAM. In particular, the 509,
57, 66, 67,76 and 77 devices have this problem.

By default, the compiler will not automatically allocate variables to the problem RAM and, therefore, the RAM
available will show a number smaller than expected.

There are three ways to use this RAM:
1. Use #BYTE or #BIT to allocate a variable in this RAM. Do NOT create a pointer to these variables.

Example:
#BYTE counter=0x30

339

CCSC Manual

2. Use Read_Bank and Write_Bank to access the RAM like an array. This works well if you need to allocate an array
in this RAM.

Example:
For (1=0;1i<15;1i++)
Write_Bank(l,i,getc());
For (1i=0;1<=15;1i++)

PUTC (Read Bank(1,1));

3. You can switch to larger pointers for full RAM access (this takes more ROM). In PCB add *=8 to the #device and in
PCM/PCH add *=16 to the #device.

Example:
#DEVICE PIC16C77 *=16

or

#include <16C77.h>
fdevice *=16

Why does the compiler use the obsolete TRIS?

The use of TRIS causes concern for some users. The Microchip data sheets recommend not using TRIS instructions
for upward compatibility. If you had existing ASM code and it used TRIS then it would be more difficult to port to a
new Microchip part without TRIS. C does not have this problem, however; the compiler has a device database that
indicates specific characteristics for every part. This includes information on whether the part has a TRIS and a list of
known problems with the part. The latter question is answered by looking at the device errata.

CCS makes every attempt to add new devices and device revisions as the data and errata sheets become available.

PCW users can edit the device database. If the use of TRIS is a concern, simply change the database entry for your
part and the compiler will not use it.

Why is the RS-232 not working right?

1. The PIC® is Sending Garbage Characters.

A. Check the clock on the target for accuracy. Crystals are usually not a problem but RC oscillators can cause
trouble with RS-232. Make sure the #USE DELAY matches the actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

C. Check the level conversion. When using a driver/receiver chip, such as the MAX 232, do not use INVERT
when making direct connections with resistors and/or diodes. You probably need the INVERT option in the
#USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a visible character. PUTC('A")
will output a visible character A.

2. The PIC® is Receiving Garbage Characters.
A. Check all of the above.

3. Nothing is Being Sent.

340

Common Questions & Answers

A. Make sure that the tri-state registers are correct. The mode (standard, fast, fixed) used will be whatever the
mode is when the #USE RS232 is encountered. Staying with the default STANDARD mode is safest.

B. Use the following main() for testing:

main () {
while (TRUE)
putc ('U");
}

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If you can look at it with a
scope, check the bit time (it should be 1/BAUD). Check again after the level converter.

4. Nothing is being received.

First be sure the PIC® can send data. Use the following main() for testing:

main () {
printf ("start");
while (TRUE)

putc(getc()+1);
}

When connected to a PC typing A should show B echoed back.
If nothing is seen coming back (except the initial "Start"), check the RCV pin on the PIC® with a logic

probe. You should see a HIGH state and when a key is pressed at the PC, a pulse to low. Trace back to find
out where it is lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level converter. If the RCV pin is HIGH

when no data is being sent, you should NOT use INVERT. If the pin is low when no data is being sent, you
need to use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above when no data is being sent.

C. When using PORT A with a device that supports the SETUP_ADC_PORTS function make sure the port is
set to digital inputs. This is not the default. The same is true for devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be really slow when fast baud rates

are used and cannot be really fast with slow baud rates. Experiment with the clock/baud rate values to find
your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of a rate that can be achieved
for no error to occur. Some parts have internal bugs with BRGH set to 1 and the compiler will not use this
unless you specify BRGH1OK in the #USE RS232 directive.

341

EXAMPLE PROGRAMS

EXAMPLE PROGRAMS

A large number of example programs are included with the software. The following is a list of many of the programs
and some of the key programs are re-printed on the following pages. Most programs will work with any chip by just
changing the #INCLUDE line that includes the device information. All of the following programs have wiring
instructions at the beginning of the code in a comment header. The SIOW.EXE program included in the program
directory may be used to demonstrate the example programs. This program will use a PC COM port to communicate
with the target.

Generic header files are included for the standard PIC® parts. These files are in the DEVICES directory. The pins of
the chip are defined in these files in the form PIN_B2. It is recommended that for a given project, the file is copied to a
project header file and the PIN_xx defines be changed to match the actual hardware. For example; LCDRW
(matching the mnemonic on the schematic). Use the generic include files by placing the following in your main .C file:
#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_14KAD.C
An analog to digital program with calibration for the PIC14000

EX_1920.C
Uses a Dallas DS1920 button to read temperature

EX_8PIN.C
Demonstrates the use of 8 pin PICs with their special I/O requirements

EX_92LCD.C
Uses a PIC16C92x chip to directly drive LCD glass

EX_AD12.C
Shows how to use an external 12 bit A/D converter

EX_ADMM.C
A/D Conversion example showing min and max analog readings

EX_ADMM10.C
Similar to ex_admm.c, but this uses 10bit A/D readings.

EX_ADMM_STATS.C
Similar to ex_admm.c, but this uses also calculates the mean and standard deviation.

EX_BOOTLOAD.C
A stand-alone application that needs to be loaded by a bootloader (see ex_bootloader.c for a bootloader).

EX_BOOTLOADER.C
A bootloader, loads an application onto the PIC (see ex_bootload.c for an application).

EX_CAN.C
Receive and transmit CAN packets.

EX_CHECKSUM.C

Determines the checksum of the program memory, verifies it agains the checksum that was written to the USER ID
location of the PIC.

343

CCSC Manual

EX_CCP1S.C
Generates a precision pulse using the PIC CCP module

EX_CCPMP.C
Uses the PIC CCP module to measure a pulse width

EX_COMP.C
Uses the analog comparator and voltage reference available on some PIC s

EX_CRC.C
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C
Change the nature of the compiler using special preprocessor directives

EX_FIXED.C
Shows fixed point numbers

EX_DPOT.C
Controls an external digital POT

EX_DTMF.C
Generates DTMF tones

EX_ENCOD.C
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C
Uses simple logic chips to add 1/O ports to the PIC

EX_EXSIO.C
Shows how to use a multi-port external UART chip

EX_EXTEE.C
Reads and writes to an external EEPROM

EX_EXTDYNMEM.C
Uses addressmod to create a user defined storage space, where a new qualifier is created that reads/writes to an
extrenal RAM device.

EX_FAT.C
An example of reading and writing to a FAT file system on an MMC/SD card.

EX_FLOAT.C
Shows how to use basic floating point

EX_FREQC.C
A 50 mhz frequency counter

EX_GLCD.C
Displays contents on a graphic LCD, includes shapes and text.

EX_GLINT.C
Shows how to define a custom global interrupt hander for fast interrupts

EX_HPINT.C
An example of how to use the high priority interrupts of a PIC18.

EX_HUMIDITY.C
How to read the humidity from a Humirel HT3223/HTF3223 Humidity module

344

Example Programs

EX_ICD.C
Shows a simple program for use with Microchips ICD debugger

EX_INTEE.C
Reads and writes to the PIC internal EEPROM

EX_INTFL.C
An example of how to write to the program memory of the PIC.

EX_LCDKB.C
Displays data to an LCD module and reads data for keypad

EX_LCDTH.C
Shows current, min and max temperature on an LCD

EX_LED.C
Drives a two digit 7 segment LED

EX_LINBUS_MASTER.C
An example of how to use the LINBUS mode of a PIC's EAUSART. Talks to the EX_LINBUS_SLAVE.C example.

EX_LINBUS_SLAVE.C
An example of how to use the LINBUS mode of a PIC's EAUSART. Talks to the EX_LINBUS_MASTER.C example.

EX_LOAD.C
Serial boot loader program for chips like the 16F877

EX_LOGGER.C
A simple temperature data logger, uses the flash program memory for saving data

EX_MACRO.C
Shows how powerful advanced macros can be in C

EX_MALLOC.C
An example of dynamic memory allocation using malloc().

EX_MCR.C
An example of reading magnetic card readers.

EX_MMCSD.C
An example of using an MMC/SD media card as an external EEPROM. To use this card with a FAT file system, see
ex_fat.c

EX_MODBUS_MASTER.C
An example MODBUS application, this is a master and will talk to the ex_modbus_slave.c example.

EX_MODBUS_SLAVE.C
An example MODBUS application, this is a slave and will talk to the ex_modbus_master.c example.

EX_MOUSE.C
Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C
Shows how to use all the RAM on parts with problem memory allocation

EX_PATG.C
Generates 8 square waves of different frequencies

EX_PBUSM.C
Generic PIC to PIC message transfer program over one wire

EX_PBUSR.C

345

CCSC Manual

Implements a PIC to PIC shared RAM over one wire

EX_PBUTT.C
Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C
Generates pulses with period and duty switch selectable

EX_PLL.C
Interfaces to an external frequency synthesizer to tune a radio

EX_POWER_PWM.C
How to use the enhanced PWM module of the PIC18 for motor controls.

EX_PSP.C
Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE.C
Measures a pulse width using timerQ

EX_PWM.C
Uses the PIC CCP module to generate a pulse stream

EX_QSORT.C
An example of using the stdlib function gsort() to sort data. Pointers to functions is used by gsort() so the user can
specify their sort algorithm.

EX_REACT.C
Times the reaction time of a relay closing using the CCP module

EX_RFID.C
An example of how to read the ID from a 125kHz RFID transponder tag.

EX_RMSDB.C
Calculates the RMS voltage and dB level of an AC signal

EX_RS485.C
An application that shows a multi-node communication protocol commonly found on RS-485 busses.

EX_RTC.C
Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C
Sets and reads an external Real Time Clock using an LCD and keypad

EX_RTCTIMER.C
How to use the PIC's hardware timer as a real time clock.

EX_RTOS_DEMO_X.C
9 examples are provided that show how to use CCS's built-in RTOS (Real Time Operating System).

EX_SINE.C
Generates a sine wave using a D/A converter

EX_SISR.C
Shows how to do RS232 serial interrupts

EX_STISR.C
Shows how to do RS232 transmit buffering with interrupts

EX_SLAVE.C
Simulates an 12C serial EEPROM showing the PIC slave mode

346

Example Programs

EX_SPEED.C
Calculates the speed of an external object like a model car

EX_SPI.C
Communicates with a serial EEPROM using the H/W SPI module

EX_SPI_SLAVE.C
How to use the PIC's MSSP peripheral as a SPI slave. This example will talk to the ex_spi.c example.

EX_SQW.C
Simple Square wave generator

EX_SRAM.C
Reads and writes to an external serial RAM

EX_STEP.C
Drives a stepper motor via RS232 commands and an analog input

EX_STR.C
Shows how to use basic C string handling functions

EX_STWT.C
A stop Watch program that shows how to user a timer interrupt

EX_SYNC_MASTER.C

EX_SYNC_SLAVE.C

An example of using the USART of the PIC in synchronous mode. The master and slave examples talk to each
other.

EX_TANK.C
Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C
Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C
Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C
Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH.C
Reads the serial number from a Dallas touch device

EX_USB_HID.C
Implements a USB HID device on the PIC16C765 or an external USB chip

EX_USB_SCOPE.C
Implements a USB bulk mode transfer for a simple oscilloscope on an ext USB chip

EX_USB_KBMOUSE.C
EX_USB_KBMOUSE2.C
Examples of how to implement 2 USB HID devices on the same device, by combining a mouse and keyboard.

EX_USB_SERIAL.C
EX_USB_SERIAL2.C
Examples of using the CDC USB class to create a virtual COM port for backwards compatability with legacy software.

EX_VOICE.C
Self learning text to voice program

347

CCSC Manual

EX_WAKUP.C
Shows how to put a chip into sleep mode and wake it up

EX_WDT.C
Shows how to use the PIC watch dog timer

EX_WDT18.C
Shows how to use the PIC18 watch dog timer

EX_X10.C
Communicates with a TW523 unit to read and send power line X10 codes

EX_EXTA.C
The XTEA encryption cipher is used to create an encrypted link between two PICs.

LIST OF INCLUDE FILES (in the DRIVERS directory)

14KCAL.C
Calibration functions for the PIC14000 A/D converter

2401.C
Serial EEPROM functions

2402.C
Serial EEPROM functions

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

24128.C
Serial EEPROM functions

2416.C
Serial EEPROM functions

24256.C
Serial EEPROM functions

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C
Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

25C080.C
Serial EEPROM functions

68HC68R1
C Serial RAM functions

348

68HC68R2.C
Serial RAM functions

74165.C
Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

9366.C
Serial EEPROM functions

AD7705.C
A/D Converter functions

AD7715.C
A/D Converter functions

AD8400.C
Digital POT functions

ADS8320.C
A/D Converter functions

ASSERT.H
Standard C error reporting

AT25256.C
Serial EEPROM functions

AT29C1024.C
Flash drivers for an external memory chip

CRC.C
CRC calculation functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C
Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

DS1302.C
Real time clock functions

DS1621.C
Temperature functions

Example Programs

349

CCSC Manual

DS1621M.C
Temperature functions for multiple DS1621 devices on the same bus

DS1631.C
Temperature functions

DS1624.C
Temperature functions

DS1868.C
Digital POT functions

ERRNO.H
Standard C error handling for math errors

FLOAT.H
Standard C float constants

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C
Functions to read strings and numbers via RS232

ISD4003.C
Functions for the ISD4003 voice record/playback chip

KBD.C
Functions to read a keypad

LCD.C
LCD module functions

LIMITS.H
Standard C definitions for numeric limits

LMX2326.C
PLL functions

LOADER.C
A simple RS232 program loader

LOCALE.H
Standard C functions for local language support

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

NJU6355.C
Real time clock functions

PCF8570.C

350

Serial RAM functions

PIC_USB.H
Hardware layer for built-in PIC USB

SC28L19X.C
Driver for the Phillips external UART (4 or 8 port)

SETIJMP.H
Standard C functions for doing jumps outside functions

STDDEF.H
Standard C definitions

STDIO.H
Not much here - Provided for standard C compatibility

STDLIB.H
String to number functions

STDLIBM.H
Standard C memory management functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

USB.H
Standard USB request and token handler code

USBN960X.C

Functions to interface to Nationals USBN960x USB chips

USB.C

USB token and request handler code, Also includes usb_desc.h and usb.h

X10.C
Functions to read/write X10 codes

L1707 7 0077777007777 7 7777077777077 7777 777777777777777177777

/17 EX SQW.C

/// This program displays a message over the RS-232 and

/17 waits for any keypress to continue.

/77 will then begin a lkhz square wave over I/0 pin BO.

The program

/// Change both delay us to delay ms to make the
/// frequency 1 hz. This will be more visible on

/17 a LED. Configure the CCS prototype card as follows:
/// insert jumpers from 11 to 17, 12 to 18, and 42 to 47.

/77
/77
/17
/17
/77
/77
/17
/77

LIPTT770777 7770070777777 7 077777707 777777777777777771777777777777

$ifdef PCB
#include <16C56.H>
#else

#include <16C84.H>
#endif

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN A3, rcv=PIN A2)

main () {

Example Programs

351

CCSC Manual

352

printf ("Press any key to begin\n\r");
getc();

printf ("1 khz signal activated\n\r");
while (TRUE) {

output high (PIN BO);

delay us (500);

output low (PIN_BO);

delay us (500);

L1177 707 7777707777 77

/77 EX_STWT.C /77
/17 This program uses the RTCC (timer0) and interrupts /17
/17 to keep a real time seconds counter. A simple stop /17
/// watch function is then implemented. Configure the /77
/17 CCS prototype card as follows, insert jumpers from: ///
/17 11 to 17 and 12 to 18. /17

L1777 0077777077777 777777 777777777 777777777777777777777777777777

#include <16C84.H>

#use delay (clock=20000000)

#use rs232(baud=9600, xmit=PIN A3, rcv=PIN A2

#define INTS PER SECOND 76 //(20000000/ (4*256*256))

byte seconds; //Number of interrupts left
//before a second has elapsed

#int rtcc //This function is called
clock isr() { //every time the RTCC (timer0)
//overflows (255->0)
//For this program this is apx
//76 times per second.

if (--int count==0) {
++seconds;
int count=INTS PER SECOND;

}
}

main () |
byte start;
int count=INTS PER SECOND;
set_rtcc(0);
setup_counters (RTCC_INTERNAL, RTCC DIV _256);
enable interrupts (INT RTCC);
enable interrupts (GLOBAL)
do {
printf ("Press any key to begin. \n\r");
getc();
start=seconds;
printf ("Press any key to stop. \n\r");
getc () ;
printf ("%u seconds. \n\r", seconds-start);
} while (TRUE) ;

L1177 7770770707777 70777777 07777777777777777771777777777777

/17 EX INTEE.C /17
/17 This program will read and write to the ’83 or ’84 /17
/17 internal EEPROM. Configure the CCS prototype card as ///
/// follows: insert jumpers from 11 to 17 and 12 to 18. /77

L1177 77707 7777777777 777
#include <16C84.H>

#use delay(clock-100000000)
#use rs232 (baud=9600, xmit=PIN A3, rv+PIN A2)

#includ

main ()
byte

do {

} wh

e <HEX.C>

{

i,j,address,

printf ("\r\n\n
for (i=0; 1i<3;
for (j=

}
printf(
}
printf ("\r\nl
address= gethe
printf ("\r\nN
value=gethex ()

write eeprom (
ile (TRUE)

value;

EEPROM: \r\n") //Displays contents
++1i) { //entire EEPROM
0; j<=15; ++j) { //in hex

printf ("%$2x", read eeprom(i+l6+j));

u\n\ru) ;

ocation to change: ");

x();
ew value: ");

’

address, value);

N A

/77
/77
/17
/17
/77
/77
/17
/17
/77
/77
/17
/17
/77

Library for a

Microchip 93C56 configured for a x8

org init ext eeprom(); Call before the other

write ext eep

d=read ext ee

The main prog
eeprom di, ee
the defaults

functions are used

rom(a,d) ; Write the byte d to
the address a

prom (a); Read the byte d from
the address a.

ram may define eeprom select,

prom do and eeprom clk to override

below.

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

L1777 07777 777777777 777777777777777777777777777777777777771777777

#ifndef EEPROM_ SELECT
#define EEPROM SELECT PIN B7
#define EEPROM CLK PIN B6
#define EEPROM DI PIN_B5
#define EEPROM_DO PIN B4
#endif
#define EEPROM_ADDRESS byte
#define EEPROM_SIZE 256
void init ext eeprom () {

byte cmd[2];

byte 1i;

output_low (EEPROM DTI) ;
output_ low (EEPROM_CLK) ;
Outputilow(EEPROMﬁSELECT);

cmd [
cmd [

for

for

0]=0x80;
1]1=0x9;
(i=1; i<=4; ++

i)

shift left(cmd, 2,0);
output high (EEPROM SELECT) ;

(i=1; i<=12; +
output bit (EEP
output high (E
output_ low (EEP

+i) |

ROM DI, shift left(cmd, 2,0));
EPROM CLK) ;

ROM_CLK) ;

Example Programs

353

CCSC Manual

output low (EEPROM DI);
output low (EEPROM SELECT) ;
}

void write ext eeprom (EEPROM ADDRESS address, byte data) {
byte cmd[3];
byte 1i;

cmd[0]=data;
cmd[1l]=address;
cmd[2]=0xa;

for (i=1;1i<=4;++1)
shift left(cmd, 3,0);

output high (EEPROM SELECT) ;

for (i=1;1<=20;++1i) {
output_bit (EEPROM DI, shift left (cmd,3,0));
output high (EEPROM CLK) ;
output low (EEPROM CLK) ;

}

output low (EEPROM DI) ;

output low (EEPROM SELECT) ;

delay ms(11);

}

byte read ext eeprom(EEPROM ADDRESS address) {
byte cmd[3];
byte i, data;

cmd[0]=0;
cmd[1l]=address;
cmd[2]=0xc;

for (i=1;1i<=4;++1)
shift left(cmd,3,0);
output high (EEPROM SELECT) ;
for (i=1;i<=20;++1) {
output_bit (EEPROM DI, shift left (cmd,3,0));
Outputihigh (EEPROM CLK) ;
output low (EEPROM CLK) ;
if (i>12)
shift left (&data, 1, input (EEPROM _DO)) ;
}
output_low (EEPROM SELECT);
return (data) ;

L1707 7 0077777007777 7 0777777077 7777 70777 77777777777777777777777

/// This file demonstrates how to use the real time /17
/// operating system to schedule tasks and how to use ///
/// the rtos run function. /77
/77 /17

/17 this demo makes use of the PIC18F452 prototyping board ///
L1777 707 7777707777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)

// this tells the compiler that the rtos functionality will be needed, that
// timer0 will be used as the timing device, and that the minor cycle for
// all tasks will be 500 miliseconds

#use rtos(timer=0,minor cycle=100ms)

// each function that is to be an operating system task must have the #task
// preprocessor directive located above it.

// in this case, the task will run every second, its maximum time to run is
// less than the minor cycle but this must be less than or equal to the

// minor cycle, and there is no need for a queue at this point, so no

// memory will be reserved.

#task (rate=1000ms, max=100ms)

// the function can be called anything that a standard function can be called

354

Example Programs

void The first rtos task ()
{
printf ("1\n\zr");
}
#task (rate=500ms, max=100ms)
void The second rtos task ()
{
printf ("\t2!\n\r");
}
#task (rate=100ms, max=100ms)
void The third rtos task ()
{
printf ("\t\t3\n\r");
}
// main is still the entry point for the program
void main ()
{
// rtos_run begins the loop which will call the task functions above at the
// schedualed time
rtos run ();

L1777 7 777777777 77

/17 This file demonstrates how to use the real time ///
/17 operating system rtos_terminate function ///
/7 /77

/17 this demo makes use of the PIC18F452 prototyping board ///
[1177

#include <18F452.h>
#use delay(clock=20000000)
#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)
// a counter will be kept
int8 counter;
#task (rate=1000ms, max=100ms)
void The first rtos task ()
{
printf ("1\n\r");
// if the counter has reached the desired value, the rtos will terminate
if (++counter==5)
rtos_terminate ();
}
#task (rate=500ms, max=100ms)
void The second rtos task ()
{
printf ("\t2!\n\r");
}
#task (rate=100ms, max=100ms)
void The third rtos task ()
{
printf ("\t\t3\n\r");
}
void main ()
{
// main is the best place to initialize resources the the rtos is dependent
// upon
counter = 0;
rtos run ();
// once the rtos_ terminate function has been called, rtos run will return
// program control back to main
printf ("RTOS has been terminated\n\r");

L1717 0077777707777 777777777 7777777777777777717777777777777777777

/17 This file demonstrates how to use the real time /17
/// operating system rtos enable and rtos disable functions ///
/17 /77

/17 this demo makes use of the PIC18F452 prototyping board ///

355

CCSC Manual

L1717 007 77777077777 777

#include <18F452.h>
#use delay(clock=20000000)
#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)
int8 counter;
// now that task names will be passed as parameters, it is best
// to declare function prototypes so that their are no undefined
// identifier errors from the compiler
#task (rate=1000ms, max=100ms)
void The first rtos task ();
#task (rate=500ms, max=100ms)
void The second rtos task ();
#task (rate=100ms, max=100ms)
void The third rtos task ();
void The first rtos task ()
printf ("1\n\r");
if (counter==3)

{

{

// to disable a task, simply pass the task name
// into the rtos disable function
rtos_disable (The third rtos_task);
}
}
void The second rtos task () {
printf ("\t2!\n\r");
if (++counter==10) {
counter=0;
// enabling tasks is similar to disabling them
rtos_enable(The third rtos task);
}
}
voild The third rtos task () {
printf ("\t\t3\n\r");
}

void main () {
counter = 0;
rtos run ();

L1177 00 7077707777707 7770777777077 7777777777777777777777777777

/// This file demonstrates how to use the real time ///
/17 operating systems messaging functions ///
/77 /17

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 707 7777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms)

int8 count;

// each task will now be given a two byte queue

#task (rate=1000ms, max=100ms, queue=2)

void The first rtos task ();

#task (rate=500ms, max=100ms, queue=2)

void The second rtos task ();

void The first rtos task () {
// the function rtos msg poll will return the number of messages in the
// current tasks queue
// always make sure to check that their is a message or else the read
// function will hang

if(rtos_msg poll ()>0){
// the function rtos msg read, reads the first value in the queue
printf ("messages recieved by taskl : $i\n\r",rtos msg read ());

// the funciton rtos msg send, sends the value given as the
// second parameter to the function given as the first
rtos_msg_send(The_ second_rtos_task, count) ;

356

count++;
}
}
void The second rtos task () {
rtos _msg send(The first rtos_task,count);
if (rtos_msg poll ()>0)({

Example Programs

printf ("messages recieved by task2 : %$i\n\r",rtos msg read ());

count++;
}
}
void main () {
count=0;
rtos_run();

L1777 007 7777077777 777

/17 This file demonstrates how to use the real time /17
/17 operating systems yield function ///
/17 /77

/17 this demo makes use of the PIC18F452 prototyping board ///
[1177

#include <18F452.h>
#use delay(clock=20000000)
#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)
#task (rate=1000ms, max=100ms, queue=2)
voild The first rtos task ();
#task (rate=500ms, max=100ms, queue=2)
void The second rtos task ();
vold The first rtos task () {
int count=0;

// rtos_yield allows the user to break out of a task at a given point
// and return to the same ponit when the task comes back into context

while (TRUE) {
count++;
rtos_msg_send(The second rtos_task, count);
rtos_yield ();
}
}
void The second rtos task () {
if (rtos_msg poll())
{
printf ("count is : %$i\n\r",rtos msg read ());
}
}
void main () {
rtos_run() ;

}

L1777 7 0077077007777 7 7777777077 7777707 777777777777 7777777777777

/// This file demonstrates how to use the real time /17
/// operating systems yield function signal and wait ///
/// function to handle resources ///
/17 /77

/17 this demo makes use of the PIC18F452 prototyping board ///
L1177 7700 77777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms)

// a semaphore is simply a shared system resource
// in the case of this example, the semaphore will be the red LED
int8 sem;

#define RED PIN B5

#task (rate=1000ms, max=100ms, queue=2)

void The first rtos task ();

#task (rate=1000ms, max=100ms, queue=2)

357

CCSC Manual

void The second rtos task ();
void The first rtos task () {
int i;
// this will decrement the semaphore variable to zero which signals
// that no more user may use the resource
rtos _wait (sem);
for (i=0;i<5;i++) {
output low(RED); delay ms(20); output high (RED);
rtos_yield ();
}
// this will inrement the semaphore variable to zero which then signals
// that the resource is available for use
rtos_signal (sem);
}
void The second rtos task () {
int i;
rtos_wait (sem);
for (i=0;i<5;1i++) {
output high (RED); delay ms(20); output low (RED);
rtos yield ();
}
rtos_signal (sem);
}
void main () {
// sem is initialized to the number of users allowed by the resource
// in the case of the LED and most other resources that limit is one
sem=1;
rtos run();

L1710 077 0707777700777 770077777007 77 77007777707 7777777777777177777

/// This file demonstrates how to use the real time /17
/17 operating systems await function ///
/// ///

/17 this demo makes use of the PIC18F452 prototyping board ///
L1177 77777 7777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms)

#define RED PIN_B5

#define GREEN PIN_A5

int8 count;

#task (rate=1000ms, max=100ms, queue=2)

void The first rtos task ();

#task (rate=1000ms, max=100ms, queue=2)

void The second rtos_task ();

void The first rtos_task () {
// rtos_await simply waits for the given expression to be true
// if it is not true, it acts like an rtos_yield and passes the system
// to the next task
rtos_await (count==10) ;
output low (GREEN); delay ms(20); output high (GREEN) ;

count=0;
}
void The second rtos_task () {
output low(RED); delay ms(20); output high (RED) ;
count++;
}
void main () {
count=0;

rtos run();

L1177 07 777770777777 77777777777707777777777777777771777777777777

/// This file demonstrates how to use the real time /17
/17 operating systems statistics features /17
/717 /17

358

Example Programs

/17 this demo makes use of the PIC18F452 prototyping board ///
[1177

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms,statistics)

// This structure must be defined inorder to retrieve the statistical
// information

struct rtos_stats {

int32 task total ticks; // number of ticks the task has used
intl6é task min_ ticks; // the minimum number of ticks used
intlé task max ticks; // the maximum number of ticks ueed
intlé hns per tick; // us = (ticks*hns_per tic)/10

b
#task (rate=1000ms, max=100ms)
void The first rtos task ();
#task (rate=1000ms, max=100ms)
void The second rtos task ();
void The first rtos task () {
struct rtos_stats stats;
rtos_stats (The second rtos_task, &stats);

printf ("\n\r");
printf ("task total ticks : $Lius\n\r" ,

(int32) (stats.task total ticks)*stats.hns per tick);
printf ("task min ticks : $Lius\n\r"

(int32) (stats.task min ticks) *stats.hns per tick);
printf ("task max ticks : %$Lius\n\r" ,

(int32) (stats.task max ticks) *stats.hns per tick);
printf ("\n\r");
}

void The second rtos task () {
int i, count = 0;
while (TRUE) {
if (rtos_overrun(the second rtos task)) {
printf ("The Second Task has Overrun\n\r\n\r");
count=0;
}
else
count++;

for (1i=0;i<count;i++)
delay ms (50);

rtos_yield();
}
}
void main () {
rtos_run ();

L1717 7077 0077707707777 770077777077 77777077777777777777777777777777

/17 This file demonstrates how to create a basic command /17
/// line using the serial port withought having to stop ///
/// RTOS operation, this can also be considered a ///
/17 semi kernal for the RTOS. /17
/17 /17

/17 this demo makes use of the PIC18F452 prototyping board ///
[117777770777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232 (baud=9600,xmit=PIN C6,rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms)

#define RED PIN_BS

#define GREEN PIN A5

#include <string.h>

// this character array will be used to take input from the prompt
char input [30 1;

// this will hold the current position in the array

359

CCSC Manual

360

int index;

// this will signal to the kernal that input is ready to be processed

intl input_ready;
// different commands

char enl [] = "enablel";
char en2 [] = "enable2";
char disl [] = "disablel";
char dis2 [] = "disable2";

#task (rate=1000ms, max=100ms)
void The first rtos task ();
#task (rate=1000ms, max=100ms)
void The second rtos task ();
#task (rate=500ms, max=100ms)
void The kernal ();
// serial interupt
#int rda
void serial interrupt ()
{
if (index<29) {
input [index] = getc ();
putc (input [index]);
if (input[index]==0x0d) {
putc('\n');
input [index] = '\0';
input ready=TRUE;
index=0;
}
else if (input[index]==0x08
if (index > 1) {
putc (' ');
putc (0x08) ;
index-=2;
}
}

index++;
}
else {
putc ('\n');
putc ('\r');
input [index] = '\0';
index = 0;

input ready = TRUE;
}
}
void The first rtos_task () {
output low (RED); delay ms(50);
}

void The second rtos_task () {

//
//
//

//
//
!/

) 1

get the value in the serial recieve reg
display it on the screen
if the input was enter

add the null character
set the input read variable to true
and reset the index

output high (RED) ;

output low (GREEN); delay ms(20); output high (GREEN) ;

}

void The kernal () {
while (TRUE) {
printf ("INPUT:> ");

while (!input ready)
rtos yield ();

printf ("$S\n\r%S\n\r", input , enl);
if (!strcmp(input , enl))
rtos_enable (The first rtos_task);
else if (!strcmp(input , en2))
rtos_enable (The second rtos task);
else if (!strcmp(input , disl))
rtos_disable (The first rtos task);
else if (!strcmp (input , dis2))
rtos_disable (The second rtos task);
else
printf ("Error: unknown command\n\r");
input ready=FALSE;
index=0;
}
}
void main () {

// initialize input variables
index=0;

input ready=FALSE;

// initialize interrupts
enable interrupts(int_rda);
enable interrupts(global);
rtos_run();

Example Programs

361

SOFTWARE LICENSE AGREEMENT

SOFTWARE LICENSE AGREEMENT

Carefully read this Agreement prior to opening this package. By opening this
package, you agree to abide by the following provisions.

If you choose not to accept these provisions, promptly return the unopened
package for a refund.

All materials supplied herein are owned by Custom Computer Services, Inc. (‘CCS”)
and is protected by copyright law and international copyright treaty. Software shall
include, but not limited to, associated media, printed materials, and electronic
documentation.

These license terms are an agreement between You (“Licensee”) and CCS for use
of the Software (“Software”). By installation, copy, download, or otherwise use of the
Software, you agree to be bound by all the provisions of this License Agreement.

1. LICENSE - CCS grants Licensee a license to use in one of the two following
options:
1) Software may be used solely by single-user on multiple computer systems;
2) Software may be installed on single-computer system for use by multiple
users. Use of Software by additional users or on a network requires payment of
additional fees.

Licensee may transfer the Software and license to a third party; and such third
party will be held to the terms of this Agreement. All copies of Software must be
transferred to the third party or destroyed. Written notification must be sent to
CCS for the transfer to be valid.

2. APPLICATIONS SOFTWARE - Use of this Software and derivative programs
created by Licensee shall be identified as Applications Software, are not subject
to this Agreement. Royalties are not be associated with derivative programs.

3. WARRANTY - CCS warrants the media to be free from defects in material and
workmanship, and that the Software will substantially conform to the related
documentation for a period of thirty (30) days after the date of purchase. CCS
does not warrant that the Software will be free from error or will meet your
specific requirements. If a breach in warranty has occurred, CCS will refund the
purchase price or substitution of Software without the defect.

4. LIMITATION OF LIABILITY AND DISCLAIMER OF WARRANTIES - CCS and
its suppliers disclaim any expressed warranties (other than the warranty

363

CCSC Manual

contained in Section 3 herein), all implied warranties, including, but not limited to,
the implied warranties of merchantability, of satisfactory quality, and of fithess for
a particular purpose, regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or any incidental,
special, indirect or consequential damages whatsoever, including, without
limitation, damages for loss of profits, loss of data, business interruption, or any
other commercial damages or losses, arising out of or related to your use or
inability to use the Software.

Licensee is responsible for determining whether Software is suitable for
Applications.

©1994-2015 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDWIDE
PO BOX 2452
BROOKFIELD, WI 53008 U.S.A.

364

#ENDIF .
HFERROR ..o
FEXPORT .o
#FILL_ROM

#ID_number
#ID_number,_number,_number
FID_NUMDEr_16 ...ovviiiiiiiieieee e

BIENDEFovovoeeeeeeeeeee e
#IGNORE_WARNINGS
By =T] = AT
FINCLUDE ..o
#INLINE
#INT_AD
#INT_ADOF
#INT_BUSCOL
#INT_BUSCOL2....................
HINT_BUTTON ..o
HINT_CANERR ...,
#INT_CANIRX
HINT_CANRXO ...,
HINT_CANRXL ..o,
#INT_CANTXO....
HINT _CANTXL oo
HINT _CANTXZ oo
#INT_CANWAKE
#INT_CCP1
#INT_CCP2
#INT_CCP3
#INT_CCP4
#INT_CCP5
HINT _COMP ...
#INT_COMPO
#INT_COMP1
#INT_COMP2
HINT CR oo
#INT_DEFAULT
HINT_EEPROM ...

FINT _ETH cooeeeeeeeeeeeee oo es s es s eeesen s
BINT _EXT oo et ese s
#INT_EXT1
#INT_EXT2
#INT_EXT3
#INT_GLOBAL
HINT_12C.oeriers
HINT ICLeeereeeeans
#INT_IC2QElL.............
#INT_IC3DR...ccvereen.
#INT_INT_OSC_FAIL
BINT _LCD oo
#INT_LOWVOLT
FINT _LVD oo
HINT_OSCF oo erer s
HINT_PMP oo,

HINT_PSP oo,

#INT_PWMTB
HINT RA oo,
HINT RB ..o
HINT_RC ..o,
#INT_RDA.....ooon.n.
#INT_RDAO...............
#INT_RDA1
#INT_RDA2
#INT_RTCC
BINT _SPP oo eees e eren s
BINT _SSP oo
#INT_SSP2...ooon

#INT_TBEOooon......

#INT_TBEL oo

#INT_TBE2 oo,

#INT_TIMERO
#INT_TIMER1
#INT_TIMER2

#PIN_SELECT
HPRAGMA ..o
HPRIORITY oo
#PROFILE

#SEPARATE
#SERIALIZE..............
#STREAM 1/O

365

CCSC Manual

FTASK et s 103 at_set_set_point()131, 132, 133, 134, 135, 136, 137, 138, 139, 251

#TYPE............. 104 at_setup_cc()131, 132, 133, 134, 135, 136, 137, 138, 139, 251

#UNDEF.......... .105

#USE DELAY ..107

#USE DYNAMIC_MEMORY108

#USE FAST_10.....ccoiiiiiiieee108

#USE FIXED_IOcccouneee.109

H#USE 12C ..oooiiveeceee e 109

#USE PROFILE....110

FUSE PWM ..ot

HUSE RS232....ciiiiiiieeiiiieece e

#USE RTOS.... #char

FUSE SPl.cciiiiiiii e HAOUDIE ...

#USE STANDARD_IO ...coiiiiiiieiiiieiiee e 116 #float

#USE TIMER.........ccocvvernnen. .. 117 #Int.......

#USE_TOUCHPAD #intl.....

#WARNING #int16

#WORD...........

#ZERO_RAMcooiiiiiieee 120 #int8 L

LST Al i 335

D19 AU s
DATE . oot

U PCH

CTIME e s

__ADDRESS__.

_ DATE_ e SEALIC . cee ettt

_ DEVICE__ e T 0T o 0T PR

__FILE__ void

__FILENAME__ ... volatile

_LINE__ ..o 2] O RSP

_PCB__ ... bit_clear

_PCM__ ... bit_set

_AETDULE Xvtiiiiiiee i bit_test

[O 1O L I P breakcccccveveviiiinnnn.

A brownout_enable

ADS 126 DSEArCH ..o

Lo (oo (o] - OSSR
AdAreSSmMOd........ooovviiieieeeee e 29

assert

at_clear_interrupts()131, 132, 133, 134, 135, 136, 137, 138, 13€,2B1
at_disable_interrupts()131, 132, 133, 134, 135, 136, 137, 138, 1291, 251...........c..c.......
at_enable_interrupts()131, 132, 133, 134, 135, 136, 137, 138, 1&%a2Bilt
at_get_capture()131, 132, 133, 134, 135, 136, 137, 138, 139, 28lear_interrupt...........

calloc

at_get_missing_pulse_delay()131, 132, 133, 134, 135, 136, 13TCABBIDBIDE 251.......ooviiiriiiiiieie e
at_get_period()131, 132, 133, 134, 135, 136, 137, 138, 139, 25tog_restart().......ccccccveeerrrcvrrrereeennnn
at_get_phase_counter()131, 132, 133, 134, 135, 136, 137, 138,cbBISPARUS()vvvvveeeeeeiiririieneeennns
at_get_resolution()131, 132, 133, 134, 135, 136, 137, 138, 139,@&hmand_Line_Compilercccovvvveeeeiiiciiiieeneennnn 3
at_get_set_point()131, 132, 133, 134, 135, 136, 137, 138, 139, BINMENTccvvviiiiiiiiiiiiieee e

at_get_set_point_error()131, 132, 133, 134, 135, 136, 137, 138Chfigesation_Memory

at_get_status()131, 132, 133, 134, 135, 136, 137, 138, 139, 25konstant_data_table.............cccccceoviiiiieeiieeniiinnnee..
at_interrupt_active()131, 132, 133, 134, 135, 136, 137, 138, 13T @RINUE........ccvvrriieei e

at_set_compare_time()131, 132, 133, 134, 135, 136, 137, 138, 489v&5ions...............
at_set_missing_pulse_delay()131, 132, 133, 134, 135, 136, 137%ds38,.139,.251..........

at_set_resolution()131, 132, 133, 134, 135, 136, 137, 138, 139,@I8Ncccviiiiiiiiiiiiee e

366

CIC_CAIC()-eveeeeeeeen i 147, 148, 256
crc_calc16() 147, 148
crc_calc8()........ 147, 148, 256
cre_init...ooeeenn.148
cwg_restart(_)148
CWG_STATUS() vvvrreeree et 148
D

DAC .
dac_write .
Data Signal Modulator............cccceveeeiiiiiiiieiee e 45

Data_Definition
Data_ EEPROM...

Default_Parameters
DEFINE ..o
DEFINEDINC ..

enable_interrupts
ENDASM

erase_program_eeprom........
ermo.N...coeeeee i,

EX_STI.C ittt
Example_Programs "
EXD 1ttt
EXPORT ..ot
EXPr e

ext_int_edge
External_Memorycccoeiiiiiiiiiee e

File_Formats.........cccccvviiiiiiiieeeeeeeeeeeeeeeeeeeeeaes
FILENAME

Index

frexp

gt _CAPIUIE() .o oeerieei et 164

get_hspwm_capture()165, 238, 239, 240, 259, 260, 261, 263

o =] A 4 (o7 oS
get_ticks
(o <] (1101 O URSTT
get_timer0
get_timerl
get_timer2
get_timer3
get_timer4
get_timer5
get_timer6
get_timer7
get_timer8
get_timerA.................
get_timerB.................
get_timerx
[0 <] A 1 S LTRSS
QL IIS_D e
get_tris_c
QL IIS_0 oo
L IS _€ 1ottt
get tris_f...cooeervnnenn.
get tris_g....coceeevnnnn.
get tris_h...cccoeevnnen.
get tris_j.ovveeernnenn.
get_tris_Kcooeeevnnen.
get_tris_X ...ccoeveernneen.
01 (IR
getc_timeout..............
GEICH o
QELCNAN ..
getenv
[0 <] £ PSP
GLOBAL.....cttiieetiee ettt
010 (o JURURRRRRTRRRI
goto_address
H
HEXCOMMENT ..ot 83
How do | wait only a specified time for a
DULLON PreSS?. . 327
How_are_type_conversions_handled? 323
How_can_a_constant_data_table_be_pl
aced in_ ROM?......cccciiii, 324
How_can_I|_use_two_or_more_RS-
232_ports_on_one_PIC?.....ccccceiiiiiiiiiiieeeeennne 324
How_do_|_directly_read/write_to_intern
Al_regiSters?.....ovi e 325
How_do_| _do_a_printf_to_a_string?cccce...... 326
How_do_|_get getc_to_timeout_after_a
_specified_time?.......couiiiiiiieiieeee e 326
How_does_one_map_a_variable_to_an
O PO, 327
How_does_the_PIC_connect_to_a_PC?............... 329
How_does_the_PIC_connect_to_an_I2
C_dEVICE? .t 330

367

CCSC Manual

How_much_time_do_math_operations_t
AKE? e 330
I

i2c_init()
i2c_isr_state....
i2c_poll............
i2c_read.......... .
I2C_Slaveaddr.........oooiuiiiiiiee e
P22 o 1=T=To [() SRR
i2c_start
i2c_stop
I2C WHEE ..ot

IGNORE_WARNINGS
IMPORT ...t
INCLUDE

INStAllAtION ..o
Instead_of_AO0_the_compiler_is_using_r

egister_20. Why 2. 331
INT_DEFAULT

internal_registers
interrupt_active......................182
INTEITUPES .t 48
Invoking_the_Command_Line_Compiler 3
isalnum_char .
ISAIPNA. ...
ISAMONG ..ttt
iscntrl...............

isdigit...............
isgraph
islower.............
isprint
ISPUNCL. ettt
ISSPACE ... eteeeeiiiie ettt
isupper
isxdigit

368

TEOBL .. 184
J

JUMIP_TO_IST weveeiiieeeeiiit e 184
K

KBRIT .o 185

Icd_contrast
lcd_load........covveeee.

long_maxcccccevveenne
long_mincccocvvenns
[o]aTe [0l o JFPER
Low_Voltage Detect

malloc.........ccccuvveeennn.
math_operations
mb_len_max..............

memchr...........cocee.

MemCMP ..oovvvenreenn

MEeMCPY vvevnrierrennn

MemMmMOVEc.coe.....

MEMSET .ttt
Microchips_ICD_debugger_using_MPL

Multiple Compilation Units
Multiple_Project_Files......................
Multiple_RS-232_POrtS......ccccccuveeiriiiieiieee e
N
nargs

OffSELOTDIL ...
Operator_Precedence ...

output_A
output_b

(o101 o1V | A o] | PSP
output_C..........
output_d..........
output_drive
output_e..........
output_f...........
output_float.....
output_g..........
output_h..........
OULPUL_NIgN oo
output_i
output_j
(o101 o U | A PSPPI
OULPUL IOW...ciiiiiirce e
output_toggle ..
OULPUL X .eenvieeiiieniieeniiceniee e
Overloaded_Functions
OVEIVIEBW ..ottt e

Index

FEAT/IWIILE ...
read_adc...........c......
read_bank................
read_calibration...............cccceeeinnnen.
read_configuration_memory
read_eeprom........ccccecvvvveeeeeesicnnnnnn,
read_program_eeprom
read_program_memory..........cc.......

realloC ..o
Reference_Parameterscccveeeeeeiiiiiiiiiieneeenees
RESERVE
reset_Cpucceevvveens

FESLAN CAUSE ...vveieieieeiiiiee ettt ieee e
restart_ WAtcoeeiiiiiiiiieec e

rotate_left..................
rotate_right................
RS232

rtc_alarm_read

rtC_alarm_WIIte........ooiiiiiiiiee e
PEITON ettt ettt e rtc_read
PIC_to_lI2C rtc_write
PIC_to_PC RTOS ..o
PIA_BUSY() veeeeiiiieeiiiee e FEOS_AWAIL....eeeiiiiieiieiiiee et
pid_get_result() ... rtos_disable...............
pid_read()............ rtos_enable................
pid_write() rtos_msg_poll............
PIN_SELECT rtos_msg_read
port_x_pullups..... rtos_msg_send
POW .o FEOS_OVEITUN ..ottt ettt e e
Power_PWM ... FOS_TUN...ooiiiiiiiiiiiiiiiiciiieee e
PRAGMA rtos_signal
FEOS_STALS ..eeeerieiieieriiee sttt
rtOS_terminateccccvvvvvvveieieieieieieeeeeeeeeeeeeeeeeeeeeaeaes
rtos_wait
MOS_Yield......c..eeeeeiiiii e
.. S
psp_input_full...... SCANF() ceviiiriieiiiie e
psp_output_full.... schar_max
psp_overflow... schar_min
ptrdiff_t............ Semi_Colon
PULC .o SEPARATE..............
putc_send SERIALIZE................
putchar............ set_adc_channel.......
PULS ..o set_analog_pins()......
PWIM_OTF ..o set_cog_blanking().......ccccoevvrernnnen.
PWIM_OMN ittt set_cog_dead_band()ccoouue.. 146, 236, 237, 255
pwm_set_duty " set_cog_phase()cccccoveverrveeennnnn. 146, 236, 237, 255
pwm_set_duty Percent...........cccceeeriiiieiiiieeeniiiiieeeenn 210 set_hspwm_duty()165, 238, 239, 240, 259, 260, 261, 263
PWM_Set_freqUENCYcooviieiiiiiiee e 211 set_hspwm_event()165, 238, 239, 240, 259, 260, 261, 263
Q set_hspwm_override()165, 238, 239, 240, 259, 260, 261, 263
0€I_0geL_COUNL.....uviiiiiiii et 211 set_hspwm_phase()165, 238, 239, 240, 259, 260, 261, 263
OEI_SEt_COUNL....uuviirieeeiiiiiiiiie e e e e e e e eaeaeeeeas 212 set_power_pwm_override
gei_status set_power_pwmO_duty
[0S0] PP PPPPPPPRPPPRPPPINE set_power_pwm2_duty
R set_power_pwma_dUtyccccovvveeeiniieeeniieee e
(7= 1[0 set_power_pwm6_dutycccvveveeeeiiiiiiiiieee e
rcv_buffer_bytes set_power_pwmx_duty
rcv_buffer_full....................... SEE PUITUP() +eeeeeeee e

369

CCSC Manual

Set_PWML_dULY ...
set_pwm2_duty.......cccceernnns
set_pwm3_duty.......cccceeernnnns
set_pwmd_duty.........c.eeeennns
set_pwmb5_duty......cccceeeinnns

set_rcccoveenee

set_ticks..........

set_timer0
set_timerl
set_timer2
set_timer3
set_timer4
set_timer5
SEL_HMEIA ..o
set_timerB.......
set_tris_a
set_tris_b........
set_tris_c.........
set_tris_d
set_tris_e
set_tris_f........
set_tris_g
SEL_HS N e
SELIMIS Jurriieireeee i ettt
set_tris_k
set_tris_x
Set_uart_Speedccoovviiiiiieie e

Setup ..oocveeennn.
setup_adc
setup_adc_mode...................

Setup_adC_pPOrtS.......coccvveiriieeeiiiire e
setup_adc_reference()

setup_at()131, 132, 133, 134, 135, 136, 137, 138, 139, 251

252
252

setup_ccpl
setup_ccp2

SEIUP_ QI wevveeieeeiiiiiiieie et
setup_rteC ...cceevveenenenne

setup_rtc_alarm
SetUP_SMtX.....oecvveennee.
Setup_SPi..eeeeeeeeeeeiinns
setup_timer_O
setup_timer_1
setup_timer_2
setup_timer_3
setup_timer_4
setup_timer_5
setup_timer_A
setup_timer_B

shrt_ max..................

SIN

sleep
SIEEP_UIPWU ...
spi_data_is_in...........
spi_data_is_in2
SPI_iNIt() covveeeiieeeinee
spi_read.......ccc.coueen.
spi_read?2
SPI_WITLE ettt
SPI_WITLEZ ...ttt
spi_xfer
SPIINEE e

setup_ccp3 ...252

setup_ccp4 STANDARD_IO

setup_ccp5 standard_string_functions

setup_ccp6 Statements

setup_cog() stddef.h ..o

setup_comparator stdio.h

setup_counters stdlib.h.....

Setup_Crc stmt.........

SEIUP_AAC .eieiieiiiiiiieice e] (o7 | PP TP PUPPPPPPPRN
setup_external_memory.........ccccceeiiiiiiieeee e 258 SEICRI e
setup_hspwm()165, 238, 239, 240, 259, 260, 261, 263 strcmp

setup_hspwm_blanking()165, 238, 239, 240, 259, 260, 261, 263trCOIl...........coviiiiiiiiiiiiiiee e
setup_hspwm_chop_clock()165, 238, 239, 240, 259, 260, 261, BEBOPY «.....vveeeirirriiiiiiieeiiiee et eieee e e e
setup_hspwm_secondary()165, 238, 239, 240, 259, 260, 261, 2&Bcpy

setup_hspwm_trigger()165, 238, 239, 240, 259, 260, 261, 263 SIIEITONeuetieeeiiiiiiiiieeeeeeaaiiiereee e e e s s sieeeeeeaeeeaaeees
setup_hspwm_unit_chop_clock()165, 238, 239, 240, 259, 260, BEINPO3........cooiiriiiiiiiiiie e
SEIUP_ICA. i strlen

setup_low_volt_detect striwr

SetUP_NCO() ..vvvveeiireeeeiiiieenne strncat

setup_opamplcccoceuvrenne strncmp ...

setup_oscillatorc.ce... strnepy ...

SEtUP_PIA() «vvveeeeerie e SEPDIK e
SELUP_POWET _PWIM e eiiieeeeiieeeeeeeeee e ee e L] 14 (o] o | SR
setup_power_pwm_pins . strspn

L= (0] o J] o SR L] 15 | SRR

370

touchpad_getc
touchpad_hitccccooviiiiii
touchpad_state....
toupper
Trigraph_Sequences
TRIS o

type_conversions
EYPEMOA ..o

U

UCHAI_IMAX ..eeiieiiiiiceie e 310
uchar_min .
UINE_IMAX 1ot
UIONG_MBX ettt 310

USE _RS232....coiiiiiiiie 112
USE _RTOS
USE CAPTURE........cciiiiiiieeieeeeeeeeee e 106

Index

USE DYNAMIC_MEMORYoooviiiiiieniieniienieene
USE SPl..iiiiiiiiiecceec e

USE_DELAY

USE_FAST_IO..........

USE_FIXED_IO
USE_I2C ..o
USE_STANDARD_IOcceevvvenen.
USE_TOUCHPAD
USAIT_ MAX o

va_start
Variable_Parameterscccccceeeeiiiiiiieeie e
w
WARNINGo

Watch_Dog_TimMercccccoviiiiiiiiiee e
wchar_t

WDT_or_Watch_Dog_Timer
What_can_be_done_about_an_OUT_O

F_RAM_EITOI? ..o 331
What_is_the_format_of_floating_point_n

UMDBDEIS? oot 334
WHITE . 16
Why_does_the_.LST _file_look_out_of

(o]0 (=] o SRRSO 335
Why_does_the_compiler_use_the_obso

lete_TRIS? .t 336
Why_is_the_RS-

232_not_working_right?ccocovviiineiieeene 336
WORD.....ooiiiiiiieeiee e 119

write_bank 304
write_configuration_memory 304
WItE_EEProm ...oovvviieeiiiiiee e 305
write_external_memorycccccveeeeiieee e 305
WIte_program_EePromcceeeecueeeerinreeessnneesnnens 306
Write_program_mMemOTrYcccccevcuereerimreeensneeennnees 307
Z

ZCA_STALUS() +oevveeeeeeeeeeiiieie e 280, 308
ZERO_RAM ...oiiiiiiiiet e 120

371

@Iasﬂ U

KomnaHus ((3J'IeKTpO|_|J'|aCT» npeanaraeT 3akKn4vyeHmne onrocpoYHbIX OTHOLLIEHUN npu
NOoCTaBKaxX MMMNOPTHbIX 3NTEKTPOHHbIX KOMMOHEHTOB Ha B3aMMOBbLIFO4HbIX yCJ'IOBI/lFlX!

Hawwn npeumyuiectsa:

e OnepaTuBHbIE NOCTABKM LUMPOKOrO CMeKTpa 3NeKTPOHHbIX KOMMNOHEHTOB OTEYECTBEHHOIO U
MMMOPTHOrO NPON3BOACTBA HANPAMYO OT MPOM3BOAMTENEN U C KPYNMHENLLNX MUPOBbLIX
CKNaaos.;

MocTaBka 6onee 17-TM MUNIIMOHOB HAMMEHOBAHWUIN 3NEKTPOHHbLIX KOMMNOHEHTOB;

MocTaBka CNoXHbIX, AeULNTHBIX, MMOO CHATLIX C MPOM3BOACTBA NO3ULIUIA;

OnepaTtunBHbIE CPOKM NOCTABKM Nof 3aka3 (0T 5 pabounx gHewn);

OKcnpecc goctaska B Nnobyto Touky Poccuu;

TexHnyeckas nogaepkka npoekTa, NomMoLLlb B nogdope aHanoros, NocTaBka NPOTOTUMOB;

Cuctema MeHeXMeHTa KavyecTBa cepTuduumnposaHa no MexayHapogHomy ctaHgapTty 1ISO

9001;

o JlnueHausa ®CH Ha ocyulecTBneHne paboT ¢ NCNONb30BaHWEM CBEOEHUIN, COCTABAOLLINX
rocygapCTBEHHYIO TalHy;

o [locTaBka cneumnanmampoBaHHbIX KOMNoHeHToB (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics v gp.);

MoMMMO 3TOro, O4HMM M3 HanpaBnNeHU koMnaHum «AnekTpollnacT» ABNseTca HanpaBneHne

«UcTouHmkn nutaHua». Mel npeanaraem Bam nomoub KoHCTpyKTOpCKOro otaena:

e [logGop onTuManeHOro peleHus, TexHn4eckoe 060CHOBaHME Npu BbIOOpPE KOMMOHEHTA;
Monbop aHanoros.;
KoHcynbTaumm no NpUMEHEHMIO KOMMOHEHTA;
MocTaBka 06pa3yoB M NPOTOTUMNOB;
TexHn4veckasn noaaepka npoekTa;
3awmTa OT CHATMSA KOMMOHEHTA C NPON3BOACTBA.

Kak c Hamu cBfizaTbCcA

TenedoH: 8 (812) 309 58 32 (MHOrokaHanbHbIN)
Pakc: 8 (812) 320-02-42

OnekTpoHHas nouTta: org@eplastl.ru

Aapec: 198099, r. Cankt-INeTepbypr, yn. KannHuHa,
Oom 2, kopnyc 4, nutepa A.

mailto:org@eplast1.ru

