PC1231xNSZ0F Series # DIP 4pin Reinforced Insulation Type, High CMR, Low Input Current Photocoupler ## ■ Description **PC1231xNSZ0F Series** contains an IRED optically coupled to a phototransistor. It is packaged in a 4-pin DIP, available in wide-lead spacing option and SMT gullwing lead-form option. Input-output isolation voltage(rms) is 5.0kV. CTR is 50% to 400% at input current of 0.5mA. #### ■ Features - 1. 4pin DIP package - 2. Double transfer mold package (Ideal for Flow Soldering) - 3. Low input current type (I_F=0.5mA) - High resistance to noise due to high common rejection voltage (CMR : MIN. 10kV/μs) - 5. Reinforced insulation type (Isolation distance : MIN. 0.4mm) - Long creepage distance type (wide lead-form type only: MIN. 8mm) - 7. High isolation voltage between input and output (V_{iso(rms)}: 5.0kV) - 8. RoHS directive compliant ## ■ Agency approvals/Compliance - 1. Recognized by UL1577 (Double protection isolation), file No. E64380 (as model No. **PC1231**) - Approved by BSI, BS-EN60065, file No. 7087, BS-EN60950, file No. 7409, (as model No. PC1231) - 3. Approved by SEMCO, EN60065, EN60950, file No. 9933036 (as model No. **PC1231**) - 4. Approved by DEMCO, EN60065, EN60950, file No. 99-03814 (as model No. **PC1231**) - Approved by NEMKO, EN60065, EN60950, file No. P99102251 (as model No. PC1231) - Approved by FIMKO, EN60065, EN60950, file No. 13986 (as model No. PC1231) - Recognized by CSA file No. CA095323 (as model No. PC1231) - 8. Approved by VDE, DIN EN60747-5-2^(*) (as an option), file No. 40008087(as model No. **PC1231**) - 9. Package resin: UL flammability grade (94V-0) ## **■** Applications - Primary to secondary isolation in switch mode power supply - 2. Noise suppression in switching circuit - 3. Signal transmission between circuits of different potentials and impedances - 4. Over voltage detection ^(*)DIN EN60747-5-2: successor standard of DIN VDE0884 ## ■ Internal Connection Diagram - 1 Anode - ② Cathode - ③ Emitter - 4 Collector #### ■ Outline Dimensions (Unit: mm) #### 1. Through-Hole [ex. PC1231xNSZ0F] 2. Through-Hole (VDE option) [ex. PC1231xYSZ0F] 3. Wide Through-Hole Lead-Form [ex. PC1231xNFZ0F] 4. Wide Through-Hole Lead-Form (VDE option) [ex. **PC1231xYFZ0F**] Factory identification mark Product mass: approx. 0.23g (Unit: mm) #### 5. SMT Gullwing Lead-Form [ex. PC1231xNIP0F] Product mass: approx. 0.22g #### 6. SMT Gullwing Lead-Form (VDE option) [ex. PC1231xYIP0F] Product mass: approx. 0.22g ## 7. Wide SMT Gullwing Lead-Form [ex. PC1231xNUP0F] # 8. Wide SMT Gullwing Lead-Form (VDE option) [ex. PC1231xYUP0F] Plating material: SnCu (Cu: TYP. 2%) # Date code (2 digit) | | 1st o | digit | | 2nd digit | | | |------|-----------|-----------|------|---------------------|------|--| | | Year of p | roduction | | Month of production | | | | A.D. | Mark | A.D | Mark | Month | Mark | | | 1990 | A | 2002 | P | January | 1 | | | 1991 | В | 2003 | R | February | 2 | | | 1992 | С | 2004 | S | March | 3 | | | 1993 | D | 2005 | T | April | 4 | | | 1994 | Е | 2006 | U | May | 5 | | | 1995 | F | 2007 | V | June | 6 | | | 1996 | Н | 2008 | W | July | 7 | | | 1997 | J | 2009 | X | August | 8 | | | 1998 | K | 2010 | A | September | 9 | | | 1999 | L | 2011 | В | October | 0 | | | 2000 | M | 2012 | С | November | N | | | 2001 | N | : | : | December | D | | repeats in a 20 year cycle # Factory identification mark | Factory identification Mark | Country of origin | |-----------------------------|-------------------| | no mark | T | | | Japan | | | Indonesia | | _ | China | ^{*} This factory marking is for identification purpose only. Please contact the local SHARP sales representative to see the actual status of the production. #### Rank mark Refer to the Model Line-up table ■ Absolute Maximum Ratings | | Rating | $\frac{(T_a=25^{\circ}C)}{Unit}$ | | | | |--|-----------------------------|----------------------------------|-------------|----|--| | | Forward current | Symbol I _F | 10 | mA | | | Input | *1 Peak forward current | I_{FM} | 200 | mA | | | Inp | Reverse voltage | V_R | 6 | V | | | | Power dissipation | P | 15 | mW | | | | Collector-emitter voltage | V_{CEO} | 70 | V | | | Output | Emitter-collector voltage | V _{ECO} | 6 | V | | | | Collector current | I_{C} | 50 | mA | | | | Collector power dissipation | P _C | 150 | mW | | | 7 | Total power dissipation | P_{tot} | 170 | mW | | | *2 I | solation voltage | V _{iso (rms)} | 5.0 | kV | | | (| Operating temperature | Topr | -30 to +100 | °C | | | Storage temperature | | | -55 to +125 | °C | | | *3 5 | Soldering temperature | T_{sol} | 260 | °C | | | *1 Pulse width≤100µs, Duty ratio: 0.001 *2 40 to 60%RH, AC for 1 minute, f=60Hz *3 For 10s | | | | | | # **■** Electro-optical Characteristics $(T_a=25^{\circ}C)$ | | Parameter | | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |----------------------|--------------------------------------|----------------------|-----------------------|--|--------------------|--------------------|------|-------| | | Forward volta | ıge | $V_{\rm F}$ | $I_{F}=10mA$ | _ | 1.2 | 1.4 | V | | Input | Reverse curre | nt | I_R | $V_R=4V$ | - | _ | 10 | μΑ | | | Terminal capacitance | | C_{t} | V=0, f=1kHz | _ | 30 | 250 | pF | | Output | Collector dark current | | I_{CEO} | $V_{CE} = 50V, I_{F} = 0$ | - | _ | 100 | nA | | | Collector-emitter breakdown voltage | | BV _{CEO} | I _C =0.1mA, I _F =0 | 70 | _ | _ | V | | | Emitter-collector breakdown voltage | | BV _{ECO} | $I_{E}=10\mu A, I_{F}=0$ | 6 | _ | - | V | | | Collector current | | I_{C} | $I_F=0.5$ mA, $V_{CE}=5$ V | 0.25 | _ | 2.0 | mA | | | Collector-emitter saturation voltage | | V _{CE (sat)} | $I_F=10\text{mA}, I_C=1\text{mA}$ | - | _ | 0.2 | V | | | Isolation resistance | | R_{ISO} | DC500V, 40 to 60%RH | 5×10 ¹⁰ | 1×10 ¹¹ | _ | Ω | | Transfer | Floating capa | Floating capacitance | | V=0, f=1MHz | - | 0.6 | 1.0 | pF | | charac-
teristics | Desmanes time | Rise time | t _r | V 2V I 2m A B 1000 | - | 4 | 18 | μs | | teristics | Response time | Fall time | t_{f} | $V_{CE}=2V$, $I_{C}=2mA$, $R_{L}=100\Omega$ | - | 3 | 18 | μs | | | Common mode rejection voltage | | CMR | $\begin{aligned} &V_{CM}\text{=}1.5kV(peak),I_{F}\text{=}0\\ &R_{L}\text{=}470\Omega,V_{CC}\text{=}9V,V_{np}\text{=}100mV \end{aligned}$ | 10 | _ | _ | kV/μs | # **■** Model Line-up | Lead Form | Trough-Hole Wide Trough-Hole | | | | T [A] | | |-----------------|------------------------------|--------------|--------------|------------------------------|---|-------------| | Package | Sleeve | | | Rank mark | $I_{\rm C}$ [mA]
$(I_{\rm E}=0.5$ mA, $V_{\rm CE}=5$ V, $T_{\rm a}=25$ °C) | | | rackage | | 100pcs | | (IF-0.3mm1, *CE-3*, 1a-23 C) | | | | DIN EN60747-5-2 | | Approved | | Approved | | | | Model No | PC12310NSZ0F | PC12310YSZ0F | PC12310NFZ0F | PC12310YFZ0F | with or without | 0.25 to 2.0 | | Model No. | PC12311NSZ0F | PC12311YSZ0F | PC12311NFZ0F | PC12311YFZ0F | A | 0.5 to 1.25 | | Lead Form | SMT Gullwing Wide SMT Gullwing | | | | T. C A 3 | | |-----------------|--------------------------------|--------------|--------------|--------------|---|-------------| | Package | Taping | | | Rank mark | $I_{\rm C}$ [mA]
$(I_{\rm E}=0.5$ mA, $V_{\rm CE}=5$ V, $T_{\rm a}=25$ °C) | | | rackage | 2 000pcs/reel | | | | (1F-0.5mm, *CE-5*, 1a-25 C) | | | DIN EN60747-5-2 | | Approved | | Approved | | | | Model No | PC12310NIP0F | PC12310YIP0F | PC12310NUP0F | PC12310YUP0F | with or without | 0.25 to 2.0 | | Model No. | PC12311NIP0F | PC12311YIP0F | PC12311NUP0F | PC12311YUP0F | A | 0.5 to 1.25 | Please contact a local SHARP sales representative to inquire about production status. Fig.1 Test Circuit for Common Mode Rejection Voltage 1) V_{cp} : Voltage which is generated by displacement current in floating capacitance between primary and secondary side. Fig.2 Forward Current vs. Ambient Temperature Fig.3 Diode Power Dissipation vs. Ambient Temperature Fig.4 Collector Power Dissipation vs. Ambient Temperature Fig.5 Total Power Dissipation vs. Ambient Temperature Fig.6 Peak Forward Current vs. Duty Ratio Fig.8 Current Transfer Ratio vs. Forward Current Fig.10 Relative Current Transfer Ratio vs. Ambient Temperature Fig.7 Forward Current vs. Forward Voltage Fig.9 Collector Current vs. Collector-emitter Voltage Fig.11 Collector - emitter Saturation Voltage vs. Ambient Temperature Fig.12 Collector Dark Current vs. Ambient Temperature Fig.14 Test Circuit for Response Time Please refer to the conditions in Fig.13. Fig.16 Collector-emitter Saturation Voltage vs. Forward Current Fig.13 Response Time vs. Load Resistance Fig.15 Frequency Response Remarks: Please be aware that all data in the graph are just for reference and not for guarantee. ## ■ Design Considerations ## Design guide While operating at I_F<0.5mA, CTR variation may increase. Please make design considering this fact. In case that some sudden big noise caused by voltage variation is provided between primary and secondary terminals of photocoupler some current caused by it is floating capacitance may be generated and result in false operation since current may go through IRED or current may change. If the photocoupler may be used under the circumstances where noise will be generated we recommend to use the bypass capacitors at the both ends of IRED. This product is not designed against irradiation and incorporates non-coherent IRED. ## Degradation In general, the emission of the IRED used in photocouplers will degrade over time. In the case of long term operation, please take the general IRED degradation (50% degradation over 5 years) into the design consideration. ## Recommended Foot Print (reference) SMT Gullwing lead-form #### Wide SMT Gullwing lead-form (Unit: mm) [☆] For additional design assistance, please review our corresponding Optoelectronic Application Notes. ## ■ Manufacturing Guidelines ## Soldering Method #### Reflow Soldering: Reflow soldering should follow the temperature profile shown below. Soldering should not exceed the curve of temperature profile and time. Please don't solder more than twice. ## Flow Soldering: Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines. Flow soldering should be completed below 270°C and within 10s. Preheating is within the bounds of 100 to 150°C and 30 to 80s. Please don't solder more than twice. #### Hand soldering Hand soldering should be completed within 3s when the point of solder iron is below 400°C. Please don't solder more than twice. #### Other notices Please test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions. ## Cleaning instructions #### Solvent cleaning: Solvent temperature should be 45°C or below Immersion time should be 3 minutes or less #### Ultrasonic cleaning: The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time, size of PCB and mounting method of the device. Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production. #### Recommended solvent materials: Ethyl alcohol, Methyl alcohol and Isopropyl alcohol In case the other type of solvent materials are intended to be used, please make sure they work fine in actual using conditions since some materials may erode the packaging resin. #### Presence of ODC This product shall not contain the following materials. And they are not used in the production process for this product. Regulation substances: CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform) Specific brominated flame retardants such as the PBBOs and PBBs are not used in this product at all. This product shall not contain the following materials banned in the RoHS Directive (2002/95/EC). •Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBB), Polybrominated diphenyl ethers (PBDE). ## ■ Package specification ## Sleeve package #### 1. Through-Hole Package materials Sleeve: HIPS (with anti-static material) Stopper: Styrene-Elastomer #### Package method MAX. 100pcs of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers. The product shall be arranged in the sleeve with its anode mark on the tabless stopper side. MAX. 20 sleeves in one case. #### Sleeve outline dimensions ## 2. Wide Through-Hole Package materials Sleeve: HIPS (with anti-static material) Stopper: Styrene-Elastomer #### Package method MAX. 100pcs of products shall be packaged in a sleeve. Both ends shall be closed by tabbed and tabless stoppers. The product shall be arranged in the sleeve with its anode mark on the tabless stopper side. MAX. 20 sleeves in one case. #### Sleeve outline dimensions ## ● Tape and Reel package # 1. SMT Gullwing Package materials Carrier tape : PS Cover tape: PET (three layer system) Reel: PS ## Carrier tape structure and Dimensions Dimensions List | Difficusion | Onit : Inin | | | | | | | |-----------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|--| | A | В | С | D | Е | F | G | | | 16.0±0.3 | 7.5 ^{±0.1} | 1.75 ^{±0.1} | 8.0 ^{±0.1} | 2.0 ^{±0.1} | 4.0 ^{±0.1} | φ1.5 ^{+0.1} | | | Н | I | J | K | | | | | | $10.4^{\pm0.1}$ | $0.4^{\pm0.05}$ | 4.2 ^{±0.1} | 5.1 ^{±0.1} | | | | | # Reel structure and Dimensions | Dimensio | ns List | (Unit: mm) | | | |--------------------|----------------------|------------|--------|--| | a | b | С | d | | | 330 | 17.5 ^{±1.5} | 100±1.0 | 13±0.5 | | | e | f | g | | | | 23 ^{±1.0} | 2.0±0.5 | 2.0±0.5 | | | # Direction of product insertion [Packing: 2 000pcs/reel] ## 2. Wide SMT Gullwing Package materials Carrier tape: PS Cover tape: PET (three layer system) Reel: PS # Carrier tape structure and Dimensions | Dimensions List (Unit: mm | | | | | | | |---------------------------|----------------------|----------------------|---------------------|---------------------|---------------------|-----------------------| | A | В | С | D | Е | F | G | | 24.0 ^{±0.3} | 11.5 ^{±0.1} | 1.75 ^{±0.1} | 8.0 ^{±0.1} | 2.0 ^{±0.1} | 4.0 ^{±0.1} | φ1.5 + 8.1 | | Н | I | J | K | | | | | 12 4±0.1 | 0.4±0.05 | 4 1±0.1 | 5 1±0.1 | | | | #### Reel structure and Dimensions | Dimensio | ns List | (U | nit : mm) | |--------------------|----------|----------------|--------------------| | a | b | c | d | | 330 | 22.5±1.5 | 100±1.0 | 13 ^{±0.5} | | e | f | g | | | 23 ^{±1.0} | 2.0±0.5 | $2.0^{\pm0.5}$ | | # Direction of product insertion [Packing: 2 000pcs/reel] ## **■** Important Notices - · The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. - · Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. - · Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: - (i) The devices in this publication are designed for use in general electronic equipment designs such as: - --- Personal computers - --- Office automation equipment - --- Telecommunication equipment [terminal] - --- Test and measurement equipment - --- Industrial control - --- Audio visual equipment - --- Consumer electronics - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - --- Traffic signals - --- Gas leakage sensor breakers - --- Alarm equipment - --- Various safety devices, etc. - (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - --- Space applications - --- Telecommunication equipment [trunk lines] - --- Nuclear power control equipment - --- Medical and other life support equipment (e.g., scuba). - · If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices. - This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. - · Contact and consult with a SHARP representative if there are any questions about the contents of this publication. [E223] Sheet No.: D2-A02903FEN Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.