

## ISL80138

40V, High Accuracy, Low Quiescent Current, 150mA Linear Regulator

FN7969  
Rev 2.00  
Feb 20, 2019

The [ISL80138](#) is a high voltage, adjustable  $V_{OUT}$  low quiescent current linear regulator ideally suited for “always-on” and “keep alive” applications. The ISL80138 operates from an input voltage of +6V to +40V under normal operating conditions and consumes only 18 $\mu$ A of quiescent current at no load.

The ISL80138 features an EN pin that can be used to put the device into a low-quiescent current shutdown mode where it draws only 2 $\mu$ A of supply current. The device features over-temperature shutdown and current limit protection.

The ISL80138 is rated to operate across the -40 °C to +125 °C temperature range and is available in a 14 lead HTSSOP with an exposed pad package.

## Related Literature

For a full list of related documents, visit our website:

- [ISL80138](#) device page

## Features

- Wide  $V_{IN}$  range of 6V to 40V
- Adjustable output voltage from 2.5V to 12V
- Ensured 150mA output current
- Ultra low 18 $\mu$ A typical quiescent current
- Low 2 $\mu$ A of typical shutdown current
- $\pm 1\%$  accurate voltage reference (over temperature, load)
- Low dropout voltage of 295mV at 150mA
- Low 26 $\mu$ V<sub>RMS</sub> noise
- 40V tolerant logic level (TTL/CMOS) enable input
- Stable operation with 10 $\mu$ F output capacitor
- 5kV ESD HBM rated
- Thermal shutdown and current limit protection
- Thermally enhanced 14 Ld exposed pad HTSSOP package

## Applications

- Industrial
- Telecommunications

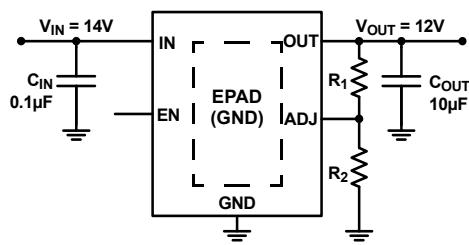



FIGURE 1. TYPICAL APPLICATION

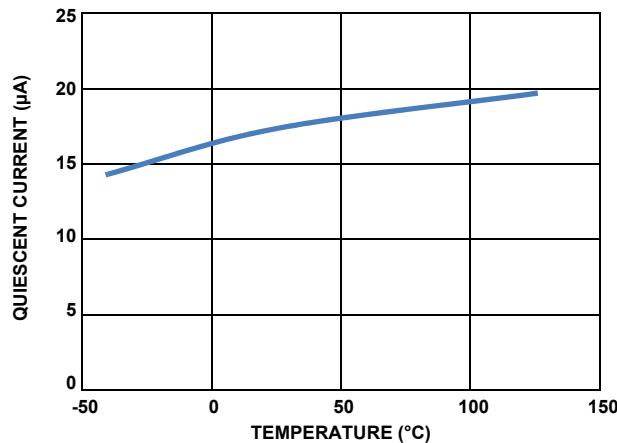
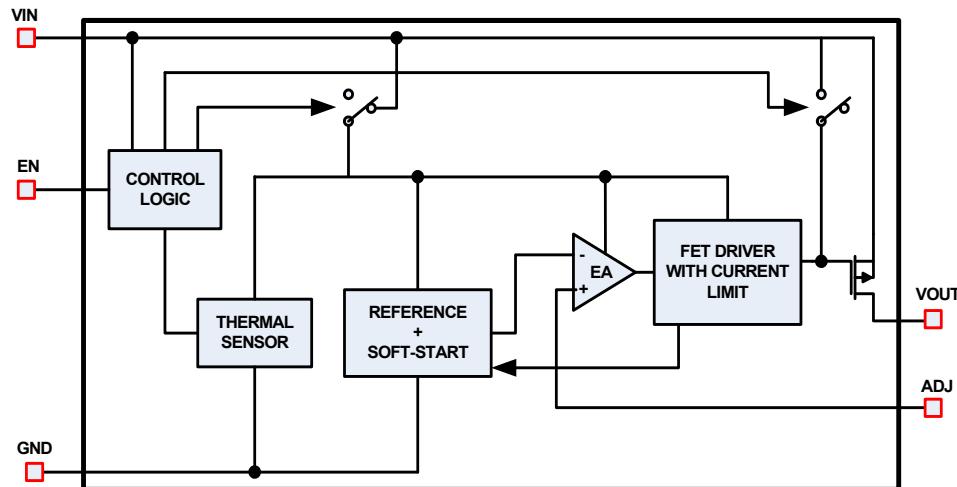



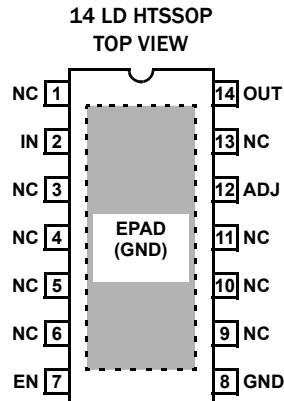

FIGURE 2. QUIESCENT CURRENT vs TEMPERATURE (AT UNITY GAIN).  $V_{IN} = 14V$

## Block Diagram



## Ordering Information

| PART NUMBER<br>(Notes 2, 3) | PART<br>MARKING     | TEMP. RANGE<br>(°C) | ENABLE<br>PIN | OUTPUT<br>VOLTAGE (V) | TAPE AND REEL<br>(Units) (Note 1) | PACKAGE<br>(RoHS Compliant) | PKG.<br>DWG. # |
|-----------------------------|---------------------|---------------------|---------------|-----------------------|-----------------------------------|-----------------------------|----------------|
| ISL80138IVEAJZ              | 80138 IAJZ          | -40 to +125         | Yes           | ADJ                   | -                                 | 14 Ld HTSSOP                | M14.173B       |
| ISL80138IVEAJZ-T            | 80138 IAJZ          | -40 to +125         | Yes           | ADJ                   | 2.5k                              | 14 Ld HTSSOP                | M14.173B       |
| ISL80138IVEAJZ-T7A          | 80138 IAJZ          | -40 to +125         | Yes           | ADJ                   | 250                               | 14 Ld HTSSOP                | M14.173B       |
| ISL80138EVAL1Z              | Evaluation Platform |                     |               |                       |                                   |                             |                |


### NOTES:

1. See [TB347](#) for details about reel specifications.
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), see the [ISL80138](#) device page. For more information about MSL, see [TB363](#).

TABLE 1. KEY DIFFERENCES IN FAMILY OF 40V LDO PARTS

| PART NUMBER | MINIMUM $I_{OUT}$ | IC PACKAGE   |
|-------------|-------------------|--------------|
| ISL80410    | 150mA             | 8 Ld EPSOIC  |
| ISL80136    | 50mA              | 8 Ld EPSOIC  |
| ISL80138    | 150mA             | 14 LD HTSSOP |

## Pin Configuration



## Pin Descriptions

| PIN NUMBER                   | PIN NAME | DESCRIPTION                                                                                                   |
|------------------------------|----------|---------------------------------------------------------------------------------------------------------------|
| 1, 3, 4, 5, 6, 9, 10, 11, 13 | NC       | Pins have internal termination and can be left unconnected. Connection to ground is optional.                 |
| 2                            | IN       | Input voltage pin. A minimum 0.1 $\mu$ F ceramic capacitor is required for proper operation. Range 6V to 40V. |
| 7                            | EN       | Enable pin. High on this pin enables the device. Range 0V to $V_{IN}$ .                                       |
| 8                            | GND      | Ground pin.                                                                                                   |
| 12                           | ADJ      | This pin is connected to the external feedback resistor divider which sets the LDO output voltage.            |
| 14                           | OUT      | Regulated output voltage. A 10 $\mu$ F ceramic capacitor is required for stability. Range 0V to 12V.          |
| -                            | EPAD     | It is recommended to solder the EPAD to the ground plane.                                                     |

## Absolute Maximum Ratings

|                                                   |                   |
|---------------------------------------------------|-------------------|
| IN Pin to GND Voltage                             | GND - 0.3V to 45V |
| OUT Pin to GND Voltage                            | GND - 0.3V to 16V |
| ADJ Pin to GND Voltage                            | GND - 0.3V to 3V  |
| EN Pin to GND Voltage                             | GND - 0.3V to VIN |
| Output Short-Circuit Duration                     | Indefinite        |
| ESD Rating                                        |                   |
| Human Body Model (Tested per JESD22-A114E)        | 5kV               |
| Machine Model (Tested per JESD-A115-A)            | 200V              |
| Charge Device Model (Tested per JESD22-C101C)     | 2.2kV             |
| Latch-Up (Tested per JEDEC78B; Class II, Level A) | 100mA             |

## Thermal Information

|                                   |                      |                           |
|-----------------------------------|----------------------|---------------------------|
| Thermal Resistance (Typical)      | $\theta_{JA}$ (°C/W) | $\theta_{JC}$ (°C/W)      |
| 14 Ld HTSSOP Package (Notes 4, 5) | 37                   | 5                         |
| Maximum Junction Temperature      |                      | +150°C                    |
| Maximum Storage Temperature Range |                      | -65°C to +175°C           |
| Pb-Free Reflow Profile            |                      | see <a href="#">TB493</a> |

## Recommended Operating Conditions

|                           |                 |
|---------------------------|-----------------|
| Ambient Temperature Range | -40°C to +125°C |
| IN pin to GND Voltage     | +6V to +40V     |
| OUT pin to GND Voltage    | +2.5V to +12V   |
| EN pin to GND Voltage     | 0V to +40V      |

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

### NOTES:

4.  $\theta_{JA}$  is measured in free air with the component mounted on a high-effective thermal conductivity test board with "direct attach" features. See [TB379](#).
5. For  $\theta_{JC}$ , the "case temp" location is the center of the exposed metal pad on the package underside.

**Electrical Specifications** Recommended Operating Conditions, unless otherwise noted.  $V_{IN} = 14V$ ,  $I_{OUT} = 1mA$ ,  $T_A = T_J = -40^\circ C$  to  $+125^\circ C$ , unless otherwise noted. Typical specifications are at  $T_A = +25^\circ C$ . **Boldface** limits apply across the operating temperature range,  $-40^\circ C$  to  $+125^\circ C$ .

| PARAMETER                    | SYMBOL                                                                            | TEST CONDITIONS                                                                                   | MIN<br>(Note 8) | TYP   | MAX<br>(Note 8) | UNIT          |
|------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|-------|-----------------|---------------|
| Input Voltage Range          | $V_{IN}$                                                                          |                                                                                                   | <b>6</b>        |       | <b>40</b>       | V             |
| Guaranteed Output Current    | $I_{OUT}$                                                                         | $V_{IN} = V_{OUT} + V_{DO}$                                                                       | <b>150</b>      |       |                 | mA            |
| ADJ Reference Voltage        | $V_{OUT}$                                                                         | $EN = \text{High}$ , $V_{IN} = 14V$ , $I_{OUT} = 0.1mA$ to $150mA$                                | <b>1.211</b>    | 1.223 | <b>1.235</b>    | V             |
| Line Regulation              | $(V_{OUT} \text{ low line} - V_{OUT} \text{ high line})/V_{OUT} \text{ low line}$ | $6V < V_{IN} < 40V$ , $I_{OUT} = 1mA$                                                             |                 | 0.04  | <b>0.15</b>     | %             |
| Load Regulation              | $(V_{OUT} \text{ no load} - V_{OUT} \text{ high load})/V_{OUT} \text{ no load}$   | $V_{IN} = 14V$ , $I_{OUT} = 100\mu A$ to $150mA$                                                  |                 | 0.3   | <b>0.6</b>      | %             |
| Dropout Voltage (Note 6)     | $\Delta V_{DO}$                                                                   | $I_{OUT} = 1mA$ , $V_{OUT} = 2.5V$                                                                |                 | 7     | <b>33</b>       | mV            |
|                              |                                                                                   | $I_{OUT} = 150mA$ , $V_{OUT} = 2.5V$                                                              |                 | 380   | <b>571</b>      | mV            |
|                              |                                                                                   | $I_{OUT} = 1mA$ , $V_{OUT} = 5V$                                                                  |                 | 7     | <b>33</b>       | mV            |
|                              |                                                                                   | $I_{OUT} = 150mA$ , $V_{OUT} = 5V$                                                                |                 | 295   | <b>507</b>      | mV            |
| Shutdown Current             | $I_{SHDN}$                                                                        | $EN = \text{LOW}$                                                                                 |                 | 2     | <b>3.64</b>     | $\mu A$       |
| Quiescent Current            | $I_Q$                                                                             | $EN = \text{HIGH}$ , $I_{OUT} = 0mA$                                                              |                 | 18    | <b>24</b>       | $\mu A$       |
|                              |                                                                                   | $EN = \text{HIGH}$ , $I_{OUT} = 1mA$                                                              |                 | 22    | <b>42</b>       | $\mu A$       |
|                              |                                                                                   | $EN = \text{HIGH}$ , $I_{OUT} = 10mA$                                                             |                 | 34    | <b>60</b>       | $\mu A$       |
|                              |                                                                                   | $EN = \text{HIGH}$ , $I_{OUT} = 150mA$                                                            |                 | 90    | <b>125</b>      | $\mu A$       |
| Power Supply Rejection Ratio | PSRR                                                                              | $f = 100Hz$ ; $V_{IN\_RIPPLE} = 500mV_{P-P}$ ; Load = $150mA$                                     |                 | 66    |                 | dB            |
| Output Voltage Noise         |                                                                                   | $V_{IN} = 14V$ , $V_{OUT} = 3.3V$ , $C_{OUT} = 10\mu F$ , $I_{OUT} = 10mA$ , BW = 100Hz to 100kHz |                 | 26    |                 | $\mu V_{RMS}$ |

**Electrical Specifications** Recommended Operating Conditions, unless otherwise noted.  $V_{IN} = 14V$ ,  $I_{OUT} = 1mA$ ,  $T_A = T_J = -40^{\circ}C$  to  $+125^{\circ}C$ , unless otherwise noted. Typical specifications are at  $T_A = +25^{\circ}C$ . **Boldface limits apply across the operating temperature range,  $-40^{\circ}C$  to  $+125^{\circ}C$ .** (Continued)

| PARAMETER                                           | SYMBOL      | TEST CONDITIONS              | MIN<br>( <a href="#">Note 8</a> ) | TYP   | MAX<br>( <a href="#">Note 8</a> ) | UNIT        |
|-----------------------------------------------------|-------------|------------------------------|-----------------------------------|-------|-----------------------------------|-------------|
| <b>EN FUNCTION</b>                                  |             |                              |                                   |       |                                   |             |
| EN Threshold Voltage                                | $V_{EN\_H}$ | $V_{OUT} = \text{Off to On}$ |                                   |       | <b>1.485</b>                      | V           |
|                                                     | $V_{EN\_L}$ | $V_{OUT} = \text{On to Off}$ | <b>0.975</b>                      |       |                                   | V           |
| EN Pin Current                                      | $I_{EN}$    | $V_{OUT} = 0V$               |                                   | 0.026 |                                   | $\mu A$     |
| EN to Regulation Time<br>( <a href="#">Note 7</a> ) | $t_{EN}$    |                              |                                   | 1.65  | <b>1.93</b>                       | ms          |
| <b>PROTECTION FEATURES</b>                          |             |                              |                                   |       |                                   |             |
| Output Current Limit                                | $I_{LIMIT}$ | $V_{OUT} = 0V$               | <b>175</b>                        | 410   |                                   | mA          |
| Thermal Shutdown                                    | $T_{SHDN}$  | Junction Temperature Rising  |                                   | +165  |                                   | $^{\circ}C$ |
| Thermal Shutdown Hysteresis                         | $T_{HYST}$  |                              |                                   | +20   |                                   | $^{\circ}C$ |

## NOTES:

6. Dropout voltage is defined as  $(V_{IN} - V_{OUT})$  when  $V_{OUT}$  is 2% below the value of  $V_{OUT}$ .
7. Enable to Regulation Time is the time the output takes to reach 95% of its final value with  $V_{IN} = 14V$  and EN is taken from  $V_{IL}$  to  $V_{IH}$  in 5ns. For the adjustable versions, the output voltage is set at 5V.
8. Parameters with MIN and/or MAX limits are 100% tested at  $+25^{\circ}C$ , unless otherwise specified. Temperature limits established by characterization and are not production tested.

## Typical Performance Curves

$V_{IN} = 14V$ ,  $I_{OUT} = 1mA$ ,  $V_{OUT} = 5V$ ,  $T_J = +25^{\circ}C$ , unless otherwise specified.

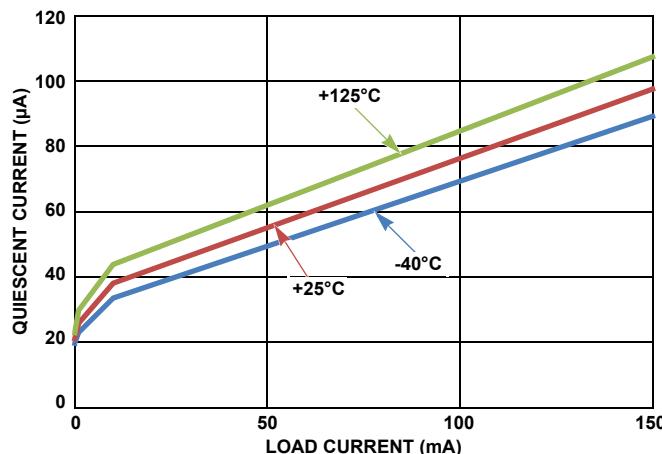



FIGURE 3. QUIESCENT CURRENT vs LOAD CURRENT

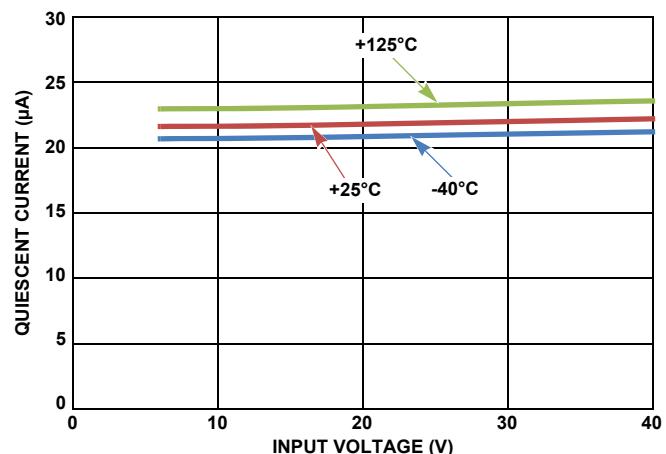



FIGURE 4. QUIESCENT CURRENT vs INPUT VOLTAGE (NO LOAD)

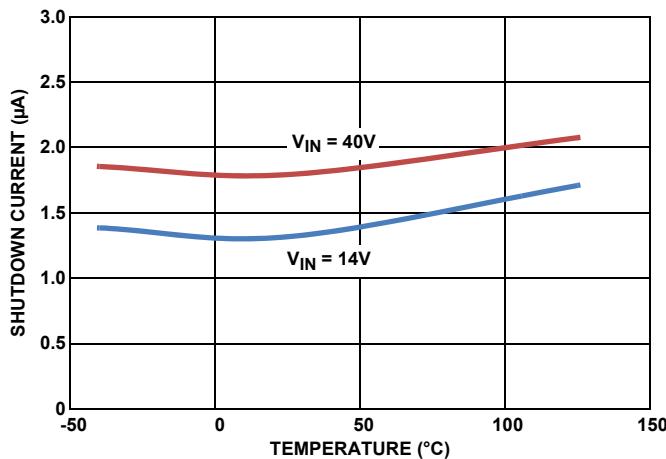



FIGURE 5. SHUTDOWN CURRENT vs TEMPERATURE (EN = 0)

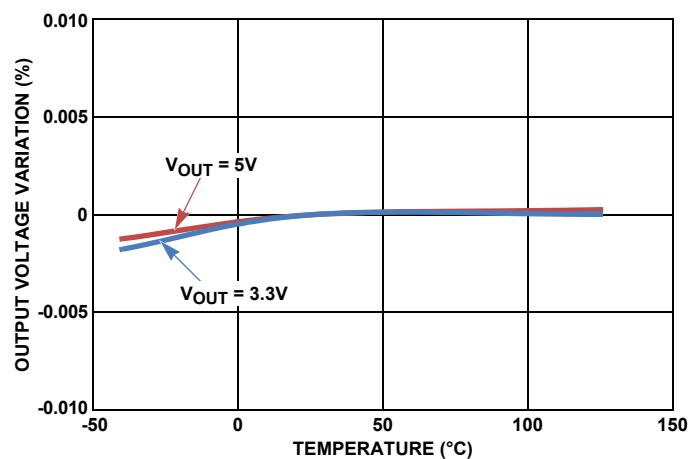



FIGURE 6. OUTPUT VOLTAGE vs TEMPERATURE (LOAD = 50mA)

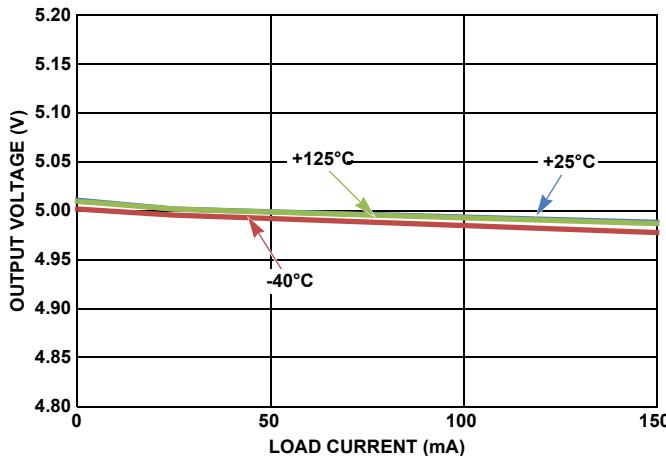



FIGURE 7. OUTPUT VOLTAGE vs LOAD CURRENT

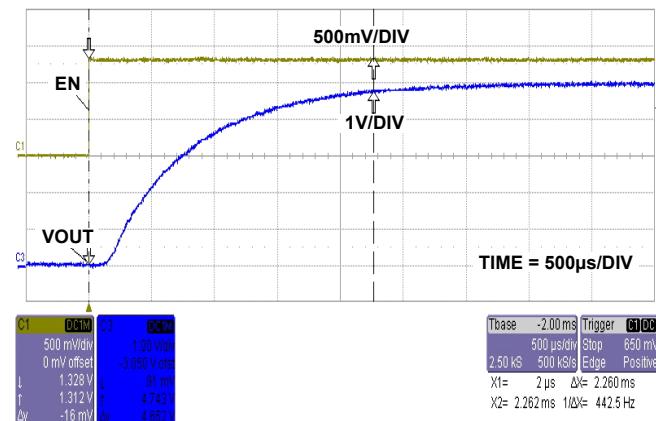



FIGURE 8. START-UP WAVEFORM

## Typical Performance Curves

$V_{IN} = 14V$ ,  $I_{OUT} = 1mA$ ,  $V_{OUT} = 5V$ ,  $T_J = +25^{\circ}C$ , unless otherwise specified. (Continued)

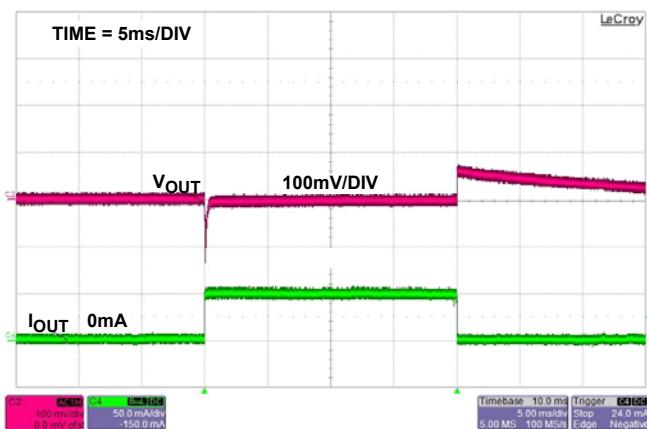



FIGURE 9. LOAD TRANSIENT RESPONSE

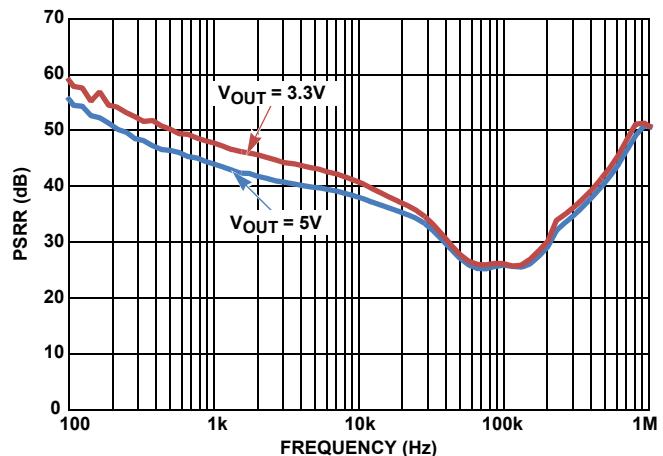



FIGURE 10. PSRR vs FREQUENCY FOR VARIOUS OUTPUT VoltAGES, (LOAD = 150mA)

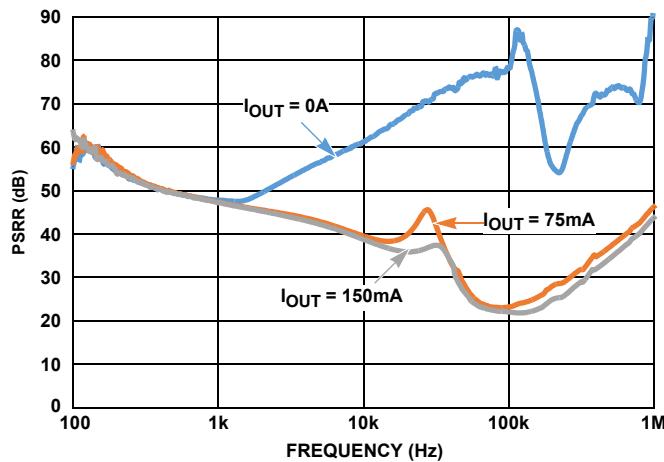



FIGURE 11. PSRR vs FREQUENCY FOR VARIOUS LOAD CURRENTS,  $V_{OUT} = 3.3V$

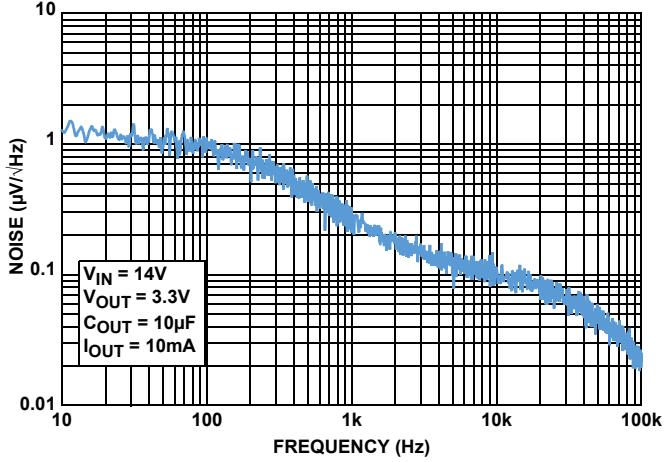



FIGURE 12. OUTPUT NOISE SPECTRAL DENSITY,  $I_{OUT} = 10mA$

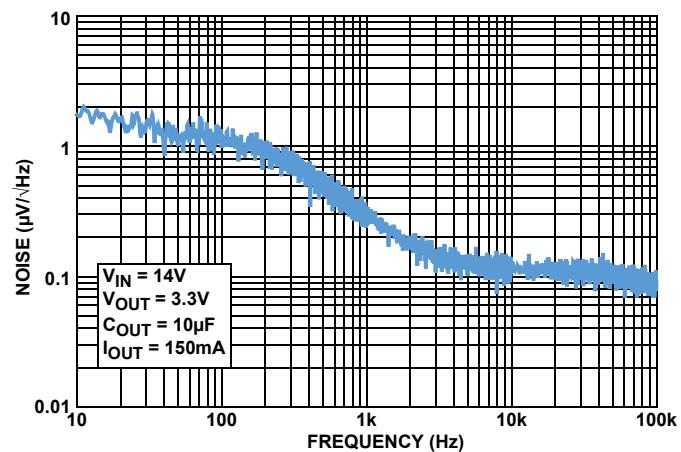



FIGURE 13. OUTPUT NOISE SPECTRAL DENSITY,  $I_{OUT} = 150mA$

## Functional Description

### Functional Overview

The ISL80138 is a high performance, high voltage, low-dropout regulator (LDO) with 150mA sourcing capability. The part is rated to operate across the  $-40^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$  temperature range. Featuring ultra-low quiescent current, it is an ideal choice for “always-on” applications. It works well under a “load dump condition” where the input voltage could rise up to 40V. This LDO device also features current limit and thermal shutdown protection.

### Enable Control

The ISL80138 has an enable pin that turns the device on when pulled high. When EN is low, the IC goes into shutdown mode and draws less than 2 $\mu\text{A}$  of current. Tie the EN pin to IN for “always-on” operation.

### Current Limit Protection

The ISL80138 has internal current limiting functionality to protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current largely independent of the output voltage. If the short or overload is removed from  $V_{\text{OUT}}$ , the output returns to normal voltage regulation mode.

### Thermal Fault Protection

If the die temperature exceeds a typical value of  $+165^{\circ}\text{C}$ , the output of the LDO shuts down until the die temperature cools down to a typical  $+145^{\circ}\text{C}$ . The level of power dissipated, combined with the ambient temperature and the thermal impedance of the package, determines if the junction temperature exceeds the thermal shutdown temperature. See [“Power Dissipation”](#) for more details.

## Application Information

### Input and Output Capacitors

A minimum 0.1 $\mu\text{F}$  ceramic capacitor is recommended at the input for proper operation. For the output, a ceramic capacitor with a capacitance of 10 $\mu\text{F}$  is recommended for the ISL80138 to maintain stability. Route the ground connection of the output capacitor directly to the GND pin of the device and place it close to the IC.

### Output Voltage Setting

The ISL80138 output voltage is programmed using an external resistor divider as shown in [Figure 14](#).

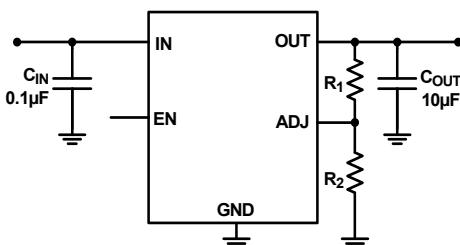



FIGURE 14. OUTPUT VOLTAGE SETTING

The output voltage is calculated using [Equation 1](#):

$$V_{\text{OUT}} = 1.223V \times \left( \frac{R_1}{R_2} + 1 \right) \quad (\text{EQ. 1})$$

### Power Dissipation

The junction temperature must not exceed the range specified in [“Recommended Operating Conditions” on page 4](#). The power dissipation can be calculated using [Equation 2](#):

$$P_D = (V_{\text{IN}} - V_{\text{OUT}}) \times I_{\text{OUT}} + V_{\text{IN}} \times I_{\text{GND}} \quad (\text{EQ. 2})$$

The maximum allowable junction temperature,  $T_{\text{J(MAX)}}$  and the maximum expected ambient temperature,  $T_{\text{A(MAX)}}$  determine the maximum allowable junction temperature rise ( $\Delta T_{\text{J}}$ ), as shown in [Equation 3](#):

$$\Delta T_{\text{J}} = T_{\text{J(MAX)}} - T_{\text{A(MAX)}} \quad (\text{EQ. 3})$$

To calculate the maximum ambient operating temperature, use the junction-to-ambient thermal resistance ( $\theta_{\text{JA}}$ ) as shown in [Equation 4](#):

$$T_{\text{J(MAX)}} = P_{\text{D(MAX)}} \times \theta_{\text{JA}} + T_{\text{A}} \quad (\text{EQ. 4})$$

### Board Layout Recommendations

A good PCB layout is important to achieve expected performance. When placing the components and routing the trace, minimize the ground impedance and keep the parasitic inductance low. The input and output capacitors should have a good ground connection and be placed as close to the IC as possible. The feedback trace in the adjustable version should be away from other noisy traces. The 14 Ld HTSSOP package uses the copper area on the PCB as a heat sink. The EPAD of this package must be soldered to the copper plane (GND plane) for effective heat dissipation. [Figure 15](#) shows a curve for  $\theta_{\text{JA}}$  of the package for different copper area sizes.

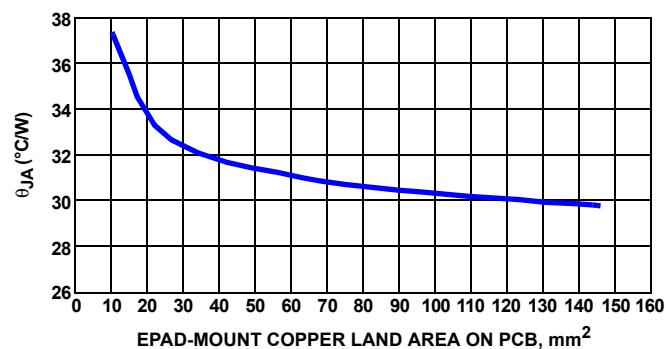
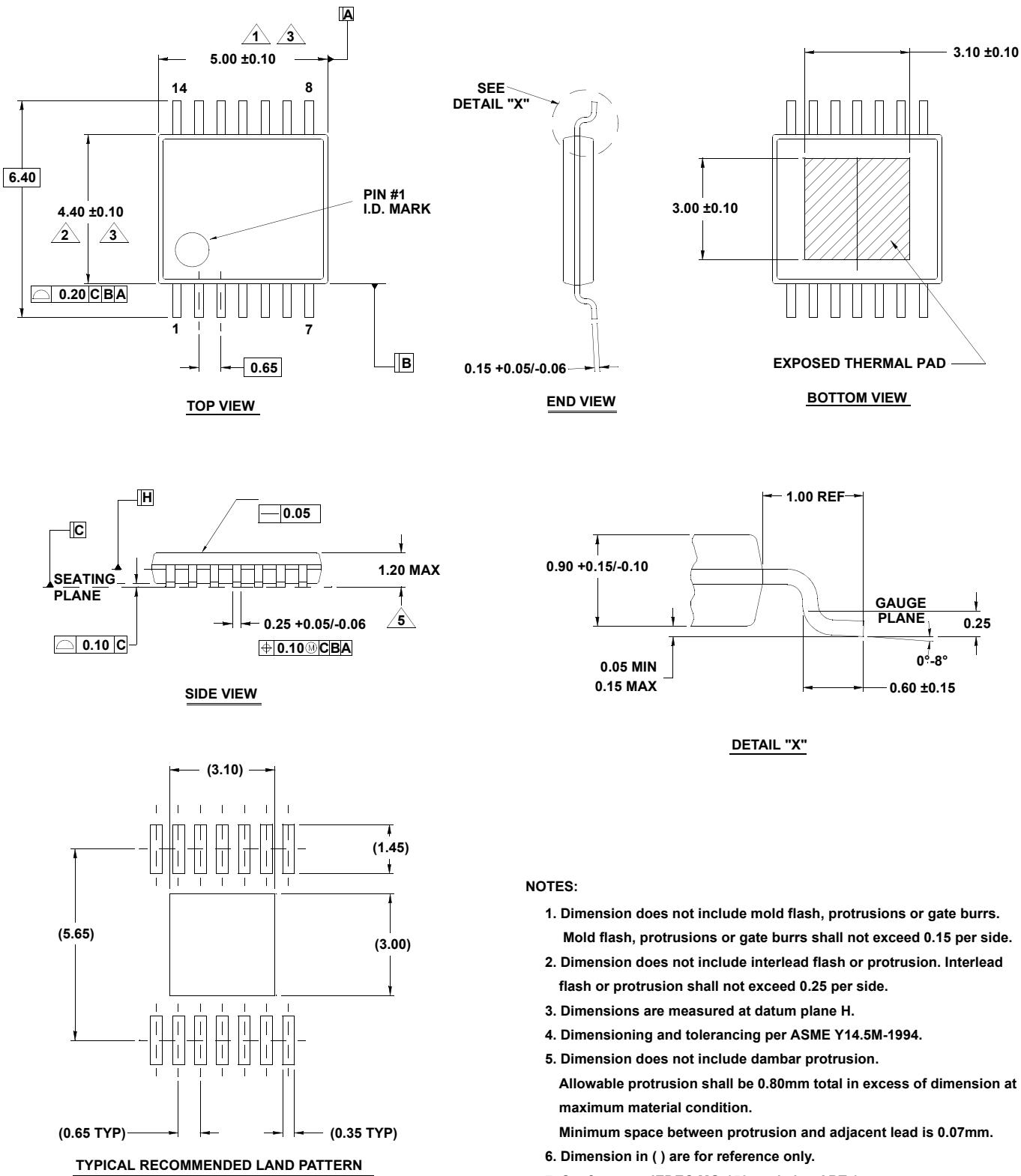



FIGURE 15.  $\theta_{\text{JA}}$  vs EPAD-MOUNT COPPER LAND AREA ON PCB

## Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to web to make sure you have the latest Rev.

| DATE         | REVISION | CHANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feb 20, 2019 | FN7969.2 | <p>Updated title<br/>         Updated the 6th bullet and added the 8th bullet in the features list.<br/>         Updated Related Literature section.<br/>         Updated ordering information table with tape and reel information and updated notes.<br/>         Updated Table 1 and moved to page 2.<br/>         Added Output Voltage Noise specification.<br/>         Removed About Intersil section.<br/>         Updated disclaimer</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Jan 15, 2016 | FN7969.1 | <p>Updated entire datasheet applying Intersil's new standards.<br/>         On page 1, updated Key Differences Table, Replaced "ADJ OR FIXED VOUT" Column with "IC PACKAGE" column.<br/>         On page 2, updated Block Diagram, removed two resistors and switched polarity of EA.<br/>         On page 3, removed "Range 0V to 3V." from the ADJ Pin Description<br/>         On page 4, updated Note 4 from<br/>         "<math>\theta_{JA}</math> is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details."<br/>         to<br/>         "<math>\theta_{JA}</math> is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379."<br/>         On page 4, removed "<math>C_{IN} = 0.1\mu F</math>, <math>C_{OUT} = 10\mu F</math>" from the Electrical Specification heading.<br/>         On page 4, updated the Line Regulation<br/>         -Symbol, from "<math>\Delta V_{OUT}/\Delta V_{IN}</math>" to "<math>(V_{OUT} \text{ low line} - V_{OUT} \text{ high line})/V_{OUT} \text{ low line}</math>".<br/>         -Test Conditions, from "<math>3V \leq V_{IN} \leq 40V</math>, <math>I_{OUT} = 1mA</math>" to "<math>6V &lt; V_{IN} &lt; 40V</math>, <math>I_{OUT} = 1mA</math>"<br/>         On page 4, updated the Load Regulation<br/>         -Symbol, from "<math>\Delta V_{OUT}/\Delta I_{OUT}</math>" to "<math>(V_{OUT} \text{ no load} - V_{OUT} \text{ high load})/V_{OUT} \text{ no load}</math>".<br/>         -Test Conditions from "<math>V_{IN} = V_{OUT} + V_{DO}</math>" to "<math>V_{IN} = 14V</math>"<br/>         On page 3, updated the Dropout Voltage (Two rows only):<br/>         -Test Conditions from "<math>V_{OUT} = 3.3V</math>" to "<math>V_{OUT} = 2.5V</math>"<br/>         -Changed maximum value for condition, <math>I_{OUT} = 150mA</math>, <math>V_{OUT} = 2.5V</math>, from "525" to "571"<br/>         -Changed maximum value for condition, <math>I_{OUT} = 150mA</math>, <math>V_{OUT} = 5V</math>, from "460" to "507"<br/>         Updated Note 6 from "Dropout voltage is defined as <math>(V_{IN} - V_{OUT})</math> when <math>V_{OUT}</math> is 2% below the value of <math>V_{OUT}</math> when <math>V_{IN} = V_{OUT} + 3V</math>." to "Dropout voltage is defined as <math>(V_{IN} - V_{OUT})</math> when <math>V_{OUT}</math> is 2% below the value of <math>V_{OUT}</math>."<br/>         On page 7, switched Figures 9 and 10 location, then updated title for Figure 10 from "POWER SUPPLY REJECTION RATIO (LOAD = 150mA)" to "PSRR vs FREQUENCY FOR VARIOUS OUTPUT VOLTAGES (LOAD = 150mA)"<br/>         Added Figures 11, 12 and 13 on page 7.<br/>         Updated Products verbiage to About Intersil verbiage.</p> |
| Jan 11, 2012 | FN7969.0 | Initial Release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |


# Package Outline Drawing

## M14.173B

14 LEAD HEAT-SINK THIN SHRINK SMALL OUTLINE PACKAGE (HTSSOP)

Rev 1, 1/10

For the most recent package outline drawing, see [M14.173B](#).



## Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
[www.renesas.com](http://www.renesas.com)

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:  
[www.renesas.com/contact/](http://www.renesas.com/contact/)



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

#### Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помошь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помошь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: [org@eplast1.ru](mailto:org@eplast1.ru)

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.