
Rev. 1.0 12/12 Copyright © 2012 by Silicon Laboratories AN721

AN721

CP210X/CP211X DEVICE CUSTOMIZATION GUIDE

Relevant Devices
This application note applies to the following devices:
CP2101, CP2102, CP2103, CP2104, CP2105, CP2108, CP2110, CP2112, CP2114

1. Introduction

This document explains the steps required to customize a fixed function USB device. It is intended for developers
creating products based on the CP210x/CP211x USB Bridge Controllers. It contains information about obtaining a
Vendor ID (VID) and Product ID (PID) for a CP210x/CP211x product and describes the steps necessary for
customizing the device descriptors. Refer to www.silabs.com/interface for the latest revisions of this document and
other application notes related to the CP210x/CP211x device families.

1.1. USB Logos and Certification Testing
USB is a widely used peripheral. The USB Implementers Forum, Inc. has introduced trademark-protected logos for
use with qualified USB products. To use the logo, USB products are required to meet the standards of the USB
Implementers Forum. For a product to have compliance and/or certification implies that the USB product has been
tested by the USB-IF to meet the specification. Each type of USB product requires specific testing to be listed on
the Integrators List. This is important not only to OEMs but to consumers because products tested and certified by
the USB-IF are assured to work together. Compliance testing exists to help manufacturers measure how well their
products match the respective USB specification. If a product has passed USB-IF compliance testing, the company
can use the USB logo on the products.

1.2. USB Vendor IDs and Product IDs
Each device on a USB bus must have a unique Vendor ID (VID), Product ID (PID), and serial number combination.
This ID system uniquely identifies the different devices on the bus to avoid conflicts. The PC uses the VID/PID to
find the drivers (if any) to be used for the USB device. The VID/PID must be unique in that each USB device with
the same VID/PID will use the same driver, and it is strongly recommended to make the PID unique to a particular
design. The USB devices of a given VID/PID combination can be serialized, which allows the operating system to
track not only a particular model, but also a specific board of that model.

Vendor IDs are owned by the vendor company and assigned by the USB Implementers Forum (USB-IF) only.
Details about obtaining a unique VID can be found at www.usb.org/developers/vendor.

To obtain the right to license the USB-IF logo, register the product's VID and PID with USB-IF and submit the
product to the USB-IF Compliance Program. USB-IF Compliance Program details are available at
www.usb.org/developers/compliance. Once the product is certified, it can be added to the USB-IF Integrators List,
and the “Certified USB” logo can be used on the product. The default Silicon Labs VID is 0x10C4 and the default
Silicon Labs PID is dependent on the device. To obtain a unique PID for your CP210x/CP211x-based product, visit 
http://www.silabs.com/RequestPID. Note that customization of the USB strings is optional, but is strongly
recommended. A unique VID/PID combination will prevent the driver from conflicting with any other USB driver.

http://www.usb.org/developers/vendor
http://www.usb.org/developers/vendor
www.silabs.com/interface
http://www.usb.org/developers/compliance
http://www.silabs.com/RequestPID

AN721

2 Rev. 1.0

2. Basic Device Customization

The steps to customize the CP210x family of devices is slightly different than customizing the CP211x devices. The
CP210x devices require a driver, but the CP211x devices do not because they are of the HID class, which is
natively supported by most operating systems. The next two sections describe the recommended steps for
customizing the device based on the family, either the CP210x or the CP211x.

2.1. Summary of Steps for Customizing the CP210x Non-HID USB Devices
The CP210x family of devices provides communication from USB to UART. This requires a driver to interface to the
device. There are two types of drivers provided. One is the Virtual COM port (VCP) driver which allows the device
to appear to the PC’s application software as a COM port. This driver is always used first to connect to the Device
Customization Software program to change the PID since by default this driver has the same VID and PID as what
is programmed in the default devices. After the Device Customization Software program is used to change the PID,
the driver must match the new values that have been loaded in the device from the Device Customization
Software. If the user wants to communicate to the device via a high level application program, a USBXpress driver
can be used which provides this functionality. This driver must be downloaded and installed after using the Device
Customization Software. Then the USBXpress driver or VCP driver (which ever one will be used) should be
updated to make sure the driver matches the VID and PID in the device. A PC cannot have both the VCP and
USBXpress drivers loaded with the same VID and PID, as this would cause USB device identification conflicts. In
the end, only one driver can be used, either the VCP or the USBXpress.

There are VCP and USBXpress drivers for various operating systems, which are all listed on the website at
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx for the VCP driver and at
www.silabs.com/usbxpress for the USBXpress driver. The process described below must be followed each time a
new operating system must be supported. If the driver has been certified for Windows 7 32-bit and then it is
necessary to support Windows 7 64-bit, then the driver must be recertified. The Microsoft certification process must
be initiated again, and the reseller fee must be paid to Microsoft for the 64-bit version of the driver. Microsoft
requires this certification process which involves Windows hardware quality labs testing (WHQL). It certifies that
the hardware or software has been tested by Microsoft to ensure compatibility. Device drivers that pass the WHQL
tests are given a digitally signed certification file, which prevents Windows from displaying a warning message that
the driver has not been certified by Microsoft.

Figure 1 shows the default VID and PID values for the device and drivers. To establish communication with the
driver, the VID and PID of the device must match the driver. Notice that the default CP210x device VID and PID
match the default VCP driver VID and PID numbers.

http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
www.silabs.com/usbxpress

AN721

Rev. 1.0 3

Figure 1. Default VID and PID Values for Driver vs Firmware

The steps to customize the CP210x USB devices are as follows:

1. Request a unique PID from Silicon Labs for your new product design: http://www.silabs.com/RequestPID,
or obtain a VID/PID from usb.org.

2. Download the VCP driver appropriate for your operating system here:
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx. The stock VCP driver from the
website should match the default VID and PID in the CP210x. The VCP driver must be installed with
matching VID and PID to communicate to the device.

3. Run the Device Customization Software program described in the next sections to change the descriptors
in the device.

4. (USBXpress Users Only): If the desired driver is USBXpress, it can be download here:
www.silabs.com/usbxpress. This driver allows direct access using Silicon Labs API commands to control
the device. When this driver is initially downloaded it will not have the matching VID/PID of the CP210x
devices. See Figure 1 for the default driver and device VID/PID.

5. Use the USB Driver Customization Wizard and instructions in AN220SW and AN220 “USB Driver
Customization” https://www.silabs.com/Support%20Documents/TechnicalDocs/an220.pdf to update the
driver for the new PID and any other descriptors that have been changed from Step 3. Be certain to use the
version of AN220 software which corresponds to the correct driver when generating the modified drivers.
Take care to verify that these customized drivers are completely correct, as none of the files in the driver
package can change in any way once the driver has been certified. If you do not have the correct version of
the AN220 software, please contact our support team www.silabs.com/contactsupport. Update either the
VCP driver (COM port) or USBXpress driver (API commands) to match the device. The USB Driver
Customization Wizard customizes the driver by changing the hardware installation files (.inf) in the driver
package. The strings contained in the .inf files affect what is displayed in the “Found New Hardware
Wizard” dialogs, Device Manager and the Registry. Any changes to the Windows® installation .inf files will
require new Windows Hardware Quality Labs (WHQL) tests.

6. (Microsoft Windows Only): The customized driver is eligible for WHQL re-seller submissions to certify the
driver. These submissions do not have the high cost and testing requirements of an original driver

Stock VCP Driver

CP2101-CP2104: VID: 0x10C4 PID: 0xEA60
CP2105: VID: 0x10C4 PID: 0xEA70
CP2108: VID: 0x10C4 PID: 0xEA71

Default Firmware in Device

CP2101-CP2104: VID: 0x10C4 PID: 0xEA60
CP2105: VID: 0x10C4 PID: 0xEA70
CP2108: VID: 0x10C4 PID: 0xEA71

Stock USBXPress Driver

CP2101-CP2104: VID: 0x10C4 PID: 0xEA61

http://www.silabs.com/RequestPID
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
www.silabs.com/usbxpress
https://www.silabs.com/Support%20Documents/TechnicalDocs/an220.pdf
www.silabs.com/contactsupport

AN721

4 Rev. 1.0

submission. To certify a customized VCP or USBXpress driver, register at the WinQual site
https://sysdev.microsoft.com to obtain a WinQual account with your company. Internet Explorer is the only
web browser that can be used with the WHQL website. A Verisign ID is needed to register an account
(instructions for obtaining one are available at Microsoft's website:
http://msdn.microsoft.com/en-us/library/windows/hardware/hh801887?ppud=4. The correct Verisign ID is
the CodeSigner Standard
http://www.verisign.com/code-signing/microsoft-authenticode/index.html?sl=header.

7. (Microsoft Windows Only): After obtaining a WinQual account, notify the Silicon Labs support team
www.silabs.com/contactsupport to be added as a registered Reseller. Provide the driver type (VCP or
USBXpress) and version (e.g., v6.5) when requesting Reseller status.

8. (Microsoft Windows Only): Silicon Labs will add your company as a registered reseller. Your company
must complete the provided directions to finish the recertification process.

Note: For further detailed instructions on Microsoft’s submission process for recertification for a customized driver please view
the document attached to the KnowledgeBase article called “How to Recertify a Customized Driver Package.pdf” located
here: http://cp-siliconlabs.kb.net/article.aspx?article=89180&p=4120.

2.2. Summary of Steps for Customizing the CP211x HID USB Devices
The CP211x family does not require a driver because it is automatically recognized as part of the HID class, which
simplifies the process. Most operating systems include native drivers. The CP211x will not fit a standard HID
device type such as a keyboard or mouse. Any CP211x PC application will need to use the specific CP211x HID
specification to communicate with it. This low-level HID specification is documented and provided by Silicon Labs
in the form of a DLL.

The following are the steps to follow to customize the CP211x HID USB devices to ensure a unique VID/PID
combination:

1. Request a unique PID from Silicon Labs for a new design: http://www.silabs.com/RequestPID.

2. Use the Device Customization Software program described in Section 3 below to change the descriptors in
the firmware of the device.

https://sysdev.microsoft.com
http://msdn.microsoft.com/en-us/library/windows/hardware/hh801887?ppud=4
http://www.verisign.com/code-signing/microsoft-authenticode/index.html?sl=header
www.silabs.com/contactsupport
http://cp-siliconlabs.kb.net/article.aspx?article=89180&p=4120
http://www.silabs.com/RequestPID

AN721

Rev. 1.0 5

3. Device Customization Software

The descriptors and other configurable options of the devices in the CP210x/CP211x families are modifiable using
the Windows program CP21xx Device Customization Software.exe (Figure 2). The software program automatically
recognizes the device that is plugged into the PC. When the Device Customization Software.exe is launched, the
program searches the Windows registry for any CP21xx devices attached to the PC. The full path information for
all of the devices found is inserted into the “Select Device” drop-down list, and the first device is selected
automatically. This CP21xxDevice Customization Software.exe program is included in the software zip file in this
application note. The descriptions of how to use the program is described in more detail in the following sections for
the different families of devices. Be aware that one time programmable (OTP) devices can only be changed once.
The program can access the fields but will not be able to program them more than once.

The CP21xx Device Customization Software uses the Windows Host API functions implemented by all the DLL
files for the different families of devices mentioned. The Host API functions give read/write access to the
descriptors contained in programmable areas of a connected device. Another option is implementing a custom
application using the host API with the DLL suited to the individual needs of a particular production environment.

The descriptors can also be set in the factory at production time for large orders. Contact your Silicon Laboratories
sales representative for details.

Figure 2. Device Customization Software General Overview

Edit Values Here

Drop Down List of
Connected Devices

Click Here to save
values into flash

SET IDs Options

Baud Rate Alias Options

Port I/O Options

Log to a File

Status LoggingStatus LoggingStatus Logging

AN721

6 Rev. 1.0

The above program is an example of the CP2110 device, but the program is similar for all devices. There are three
main sections that can be edited. The first one is the Set IDs section as shown. Below that is the Baud Rate Alias
section and then below that is the Port Configuration settings. Changes can be made in each of these sections and
saved by clicking on the “Program Device” button. This will save the values into flash. If any of these three main
sections are blank it is because there is no configuration for the Baud Rate Alias or Port Configuration. All devices
will have the SETID Configuration. The Status Logging window updates and prints out all the transactions to verify
the device has programmed correctly.

4. Changing Device Settings CP2110, CP2114

The CP2110 and CP2114 are both one time programmable devices. The various customizable fields of the
CP2110/CP2114 devices are only programmable one time using the program. Be careful to change all settings
under every tab before clicking the “Program Device” button.

Figure 3. CP2110, CP2114 Device Customization Software Set IDs Window

When the Device Customization Software is launched, the program searches for any CP2110/CP2114 devices
attached to the PC. The full path information for all of the devices found is inserted into the "Device Selection" drop-
down list, and the first device is selected automatically. There is a SET IDs window and a Port Configuration
Window for both these devices.

AN721

Rev. 1.0 7

4.1. Set IDs Tab CP2110, CP2114 Devices
Figure 3 shows the following modifiable parameters for the CP2110/CP2114:

1. VID—The Vendor ID is a four hexadecimal digit number such as 10C4.

2. PID—The Product ID is a four hexadecimal digit number such as EAB0.

3. Power—This is a two hexadecimal digit number such as 10 with a maximum setting of 250. Note this
number corresponds to units of current in 2 mA increments. Therefore a value of 10 corresponds to 32 mA.

4. Power Mode—There are three different power mode options. Click the field to see the options. 00
corresponds to Bus Powered, 01 is Self Powered with Voltage Regulator Disabled, 02 is Self Powered with
Voltage Regulator Enabled.

5. Release Version—The release version is a numerical identifier of the device release version. Each field is
a decimal number value 0–99. The first two digits are the major version number and the last two are the
minor digits. 0100 corresponds to Major Version 01, Minor Version 00.

Figure 4. CP2110/CP2114 Flush Buffers Options

6. Flush Buffers—The flush buffers options shown above in Figure 4 allows open and close options on the
RX and TX. Check the options required for the application.

7. Manufacturer—This is the name of the company manufacturing the product.

8. Product Description—The Product Description can be any sequence of up to 126 characters. Usually this
is text which provides a description of the device, such as CP2103 USB to UART Bridge Controller.

9. Serial Number—The Serial Number can be any sequence of up to 63 characters.

AN721

8 Rev. 1.0

4.2. Port Configuration Settings CP2110
The Port Configuration settings are available by clicking on the “Port Configuration” Tab. Click on the number in the
value box to access a drop down menu of options for each pin configuration. Refer to the data sheet for further
explanation of the different options available. After a value has been changed it will be highlighted in yellow. Click
the Program Device button when complete.

Figure 5. CP2110 (LEFT) and CP2114 (RIGHT) Port Configuration Settings

The GPIO pin settings in the CP2110/CP2114 can be modified to set the pins for input, Output Push-Pull, or Output
Open Drain. Figure 5 shows the port configurations for the CP2110 (left) and the CP2114 (right). The alternate pin
options are different and the default values are different. The GPIO pin configuration options and alternative
functions are selectable from the drop down menu when clicking on the value. The Suspend Value setting allows
the option for the latch to be enabled on any of the selected pins shown in Figure 6. A similar menu is available for
the Suspend Mode allowing a selection between open-drain and push-pull for the different pins in suspend mode.

AN721

Rev. 1.0 9

Figure 6. CP2110/CP2114 Suspend Value Settings

See “AN434: Interface Specification” for a full description of each of the customizable parameters.

If using the Device Customization Software to program multiple devices, the customized values can be saved to a
text file using the File  Save and File  Save As commands. When connecting a new device, use the File 
Open command to retrieve the saved settings, which are then directly programmable to the new device.

Notes:
1. Avoid connecting more than one device containing the same VID, PID, and serial number combination.
2. GPIO.0/CLK must be configured as a “CLK Output -Push Pull” before configuring the “CLK Output Divider” setting.


The Manufacturer String, Product String, and Serial Number are automatically converted to Unicode strings before
programming.

AN721

10 Rev. 1.0

4.3. DAC Configuration Application (CP2114 ONLY)
The DAC Configuration utility is accessed by clicking on the “Advanced” tab and selecting “DAC Configuration
CP2114” shown in Figure 7. This is an application that allows audio configuration strings to be sent to the one-time
programmable memory or RAM. The audio string is used by the CP2114 to configure the DAC/CODEC.

Figure 7. Advanced Settings DAC Utility

Figure 8 shows a screen shot of the DAC Utility. Section 4.4 details all the configuration settings for the utility.

AN721

Rev. 1.0 11

Figure 8. DAC Configuration

4.4. Application Command Descriptions

4.4.1. Get CP2114 Capabilities

This button will report the current configuration of the one-time programmable memory. With the default pin
configuration and no jumpers installed on GPIO.5, GPIO.6, GPIO.7, or GPIO.8, the utility will display the following:

* CP2114 Caps

AvailableBootIndices: 0x20

AvailableOtpConfigs: 0x1D

CurrentBootConfig: 0xFF

AvailableOtpConfigSpace: 0x1532

The AvailableBootIndices: 0x20 parameter indicates that all 32 boot index slots are available for programming.

The AvailableOtpConfigs: 0x1D parameter indicates that there are 29 CP2114 configurations available in the
one-time programmable memory.

AN721

12 Rev. 1.0

The CP2114 EVB ships with three default configurations in OTP at the following indices:

Index 0: Audio out and audio in streams both set to Asynchronous with CS42L55 DAC settings.

Index 1: Audio out and audio in streams both set to Asynchronous with WM8523 DAC settings.

Index 2: Audio out and audio in streams both set to Asynchronous with PCM1774 DAC settings.

The CurrentBootConfig parameter with a value of 0xFF indicates the CP2114 will not configure any DAC devices
on a reset or boot.This occurs when

DAC select input feature is turned on and no jumpers are installed on GPIO.5, GPIO.6, GPIO.7, and
GPIO.8.

DAC select input feature is turned on and the GPIO value is set to “Use OTP Boot Config” while no valid
boot config entry is found in the one-time programmable memory.

DAC select input feature is turned off and there is no valid Boot Config entry in the one-time programmable
memory.

The CP2114 has 32 programmable boot configuration entries by default. (The CP2114 boot configuration can be
changed up to a total of 32 times.)

The final parameter, AvailableOtPConfigSpace: 0x1532 indicates there are 0x1532 (5426) bytes of
programmable memory available to support new configurations.

4.4.2. Reset Device

This button forces a CP2114 reset.

4.4.3. Load Config Text from File

Loads configuration text from a file into the Config Text window.

4.4.4. Save Config Text to File

Saves the text in the Config Text window to a file.

4.4.5. Write Config Text to RAM

Writes the configuration displayed in the Config Text window into the CP2114 RAM. The DAC configurations are
also written to the DAC. This operation will cause the CP2114 to disconnect and reconnect on the USB bus. This
configuration is not retained on device reset.

4.4.6. Write Config Text to OTP

Writes the configuration in the Config Text window to the one-time programmable memory. The configuration does
not become the active configuration in RAM unless it’s specified in CP2114 Boot Config or via DAC select GPIO
pins followed by power cycling or resetting the device.

4.4.7. Read CP2114 Config from OTP

After specifying the configuration number in the text box to the right of the button and clicking the button, the utility
will display the one-time programmable memory configuration in the output window.

4.4.8. Set CP2114 Boot Config

After specifying the configuration number in the text box to the right of the button and clicking the button, the boot
configuration index is programmed into the one-time programmable memory space.

Note: The CP2114 boot configuration index can be changed up to 32 times.

4.4.9. Get DAC Registers

Displays one or more DAC registers in the output window. To display a contiguous range of DAC registers enter the
starting register address in the Start Address field and the number of registers to read in the Num Registers field.
Click Get DAC Registers and the register values will be displayed in the status window as hex comma-separated
values.

4.4.10. Save Final Device Customization to File

Save the final 5.5 kB of customized data into a file for one-time programming in production.

AN721

Rev. 1.0 13

4.5. Using the CP2114 DAC Application
Use the following steps to program the CP2114 using the DAC configuration utility:

1. Click Get CP2114 Capabilities and note the boot index, available OTP boot index slots, and available OTP
config space.

2. Click Load Config Text from File if there is one available; otherwise write the config text into the Config
Text window directly.

3. Click Write Config Text to RAM. This will cause CP2114 to re-enumerate over USB. Once CP2114 device
is seen by the Host again, verify the device's audio functionalities including volume control and mute
control. Adjust the value in Config Text if necessary and repeat Write Config Text to RAM until desired
result is achieved.

4. Verify the DAC registers have the desired setting by entering the Start Address and Num Registers and
clicking Get DAC Registers.

5. Click Save Config Text to File to save a copy of the text in the Config Text window.

6. Click Write Config Text to OTP after all functionalities have been completely verified in RAM. The new
config will consume one Boot Config index slot and some one-time programmable config space. The index
of this new config should be the next available index. For example, if Get CP2114 Capabilities returned
AvailableOtpConfigs of 0x1D, this Configuration index will be 3.

7. Enter the index of the new config and click Read CP2114 Config from OTP. Verify the data returned is as
expected.

8. Click Get CP2114 Capabilities and verify the available OTP config space is (2+Config Data bytes) less
than the previous value. The firmware inserts 2-byte length before the Config Data when writing to OTP.
Available OTP Configs should be 1 less than the previous value.

9. Enter the Configuration index of the new Config and click Set CP2114 Boot Config to make CP2114 to
boot from the new Config.

10. Reset the CP2114.

11. Verify CP2114 boots up properly with DAC functioning properly. Verify volume and mute integration with
the Host. Click Save Final Device Configuration to File for OTP programming in production.

AN721

14 Rev. 1.0

5. Changing Device Settings CP210X

There are six different CP210x devices. The CP2104 and CP2105 are one time programmable (OTP), therefore it
is important to be careful when programming these since they cannot be programmed multiple times. The CP2101-
CP2104 are all USB to single UART devices. The CP2105 is a USB to dual UART and the CP2108 is a USB to
quad UART.

5.1. SET IDs CP210x Devices
All CP210x devices have strings that can be modified in the SETIDs window.

Figure 9. CP210x SET IDs

Figure 9, “CP210x SET IDs,”shows the modifiable parameters for all the CP210x devices. The CP2105 device
shown on the left has 2 interface strings because it is a dual UART device. The CP2108 on the right has 4 interface
strings because it is a quad UART device. There are 4 different interfaces. The single interface devices CP2101-
CP2104 do not require an interface string since with only one interface there is only one option. The interface
strings are unique to the CP2105 and CP2108 since they have multiple interfaces. All the devices contain the
following parameters:

1. VID—The Vendor ID is a four hexadecimal digit number such as 10C4.

2. PID—The Product ID is a four hexadecimal digit number such as EA60.

3. Power—This is a two hexadecimal digit number such as 10 with a maximum setting of 250. Note this
number corresponds to units of current in 2 mA increments. Therefore a value of 10 corresponds to 32 mA.

4. Power Mode—There are three different power mode options. Click the field to see the options. 00
corresponds to Bus Powered, 01 is Self Powered with Voltage Regulator Disabled, 02 is Self Powered with
Voltage Regulator Enabled.

5. Release Version—The release version is a numerical identifier of the device release version. Each field is
a decimal number value 0–99. The first two digits are the major version number and the last two are the
minor digits. 0100 corresponds to Major Version 01, Minor Version 00.

6. Product Description—The Product Description can be any sequence of up to 126 characters. Usually this

AN721

Rev. 1.0 15

is text which provides a description of the device, such as CP2103 USB to UART Bridge Controller.

7. Interface String—The string that identifies the different interface. This parameter is only present in the
CP2105 and the CP2108, which have multiple interfaces.

8. Serial Number —The Serial Number can be any sequence of up to 63 characters.

9. Device Mode—The mode of the interface on the device, either GPIO or Modem Mode. This parameter is
only present on CP2105.

5.2. Baud Rate Alias Configuration (CP2102, CP2103)
The CP2102 and CP2103 have Baud Rate Alias Configuration Settings. Changing the values in this table will
cause the CP210x to translate 1 of 32 fixed UART baud rates to a desired baud rate shown in Figure 10. All ranges
for a requested baud rate are shown.

Figure 10. Baud Rate Configuration

Baud rate aliasing refers to configuring a specific baud rate range to target a baud rate that is different from the
default baud rate. Further support information can be found in the device data sheet for the CP2102/CP2103,
which have this feature. The application-requested baud rate ranges are static and can never be changed. The

AN721

16 Rev. 1.0

actual UART baud rate corresponding to a particular baud rate range is fully customizable. This customization is
done using a Windows Dynamic Link Library (DLL) named CP210xManufacturing.DLL. Using the functions
available in this API (GetBaudRateConfig() and SetBaudRateConfig()) the EEPROM settings can be changed
using the USB connection.

Each line displays a range of baud rates that an application might request. There is a desired baud rate to use in
that range and the actual baud rate that is used. To change the current configuration click on the desired baud rate
number and enter in a new value. The Actual Baud Rate field will update to show the closest baud rate the
hardware can achieve. Normally these two numbers will not be exactly the same, but as long as the actual baud
rate is within 3% of the desired baud rate, the communication channel will work correctly.

5.3. Port Configuration (CP2103, CP2104, CP2105, CP2108)
The CP2103, CP2104, CP2105 and CP2108 all have modifiable port settings. These port settings have three types
of interface pins. The UART/Modem interface pins consist for the signals RI, DCD, DTR,DSR,TXD,RXD,RTS and
CTS. These signals are used for UART communication and the associated handshaking. The second type of
interface pin is for general purpose input/output (GPIO). This type consists of all signals named GPIO.x where x is
a number. these signals are available for any user-defined function. the final type of interface pin is for power
control and consists of SUSPEND and SUSPEND signals. These signals are used to gate power consumption of
external circuitry for bus-powered USB products.

The following interface pin configuration options are available.

5.3.1. Mode

The mode setting controls whether the interface pin operates in push-pull or open-drain mode. This setting is not
available on the RXD pin. See Sections 5.3.8 and 5.3.9 for details concerning pin modes.

5.3.2. Reset Latch Value

This setting controls the initial value of the interface pin latch, after a device reset. Not available on RXD, TXD,
SUSPEND, SUSPEND, and GPIO pins set for device-controlled function. See Section 5.3.11 for details concerning
pin reset behavior.

5.3.3. Weak Pull-Ups

This setting enables a weak pull-up for all interface pins. This setting applies to the device as a whole and cannot
be configured for each pin independently. Upon reset, weak pull-ups are enabled.

5.3.4. GPIO Pin Function

By default, the GPIO pins are controlled manually by host-based software using the CP210xRuntime.DLL and an
open handle to the COM port to read and write the latch.

Alternatively, the CP210x device can automatically control certain GPIO pin latches for a predetermined function.
When operating in this mode, the GPIO pin will no longer be available using the CP210xRuntime.DLL. Host writes
will have no effect, and host reads will be logic high. This device-controlled function is available as shown in
Table 1.

AN721

Rev. 1.0 17

5.3.5. Dynamic Suspend

By default the latch values for all interface pins remains static during USB suspend.

Alternatively, the dynamic suspend feature sets the interface pin latch to a predefined state when the CP210x
device moves from the configured USB state to the suspend USB state (see chapter nine of USB 2.0 specification
for more information on USB device states). When the device exits the suspend USB state the interface pin latch is
restored to the previous value before entering the suspend state. Dynamic Suspend is configured separately for
the GPIO pins and UART/Modem Control pins.

5.3.6. Latch Value (SUSPEND)

When dynamic suspend is enabled, this value is written to the interface pin latch when the CP210x device moves
from the configured USB state to the suspend USB state (see chapter nine of USB 2.0 specification for more
information on USB device states). Not available on RXD, SUSPEND, SUSPEND, and GPIO pins set for device-
controlled function.

5.3.7. High-Impedance Input

By configuring for open-drain operation and writing logic high (1) to the latch, an interface pin assumes a high
impedance state. This input pin will have electrical characteristics as listed in table 3 of the device data sheet.

5.3.8. Push-Pull Output

By configuring for push-pull operation, an interface pin operates as a push-pull output. The output voltage is
determined by pin’s latch value. This output pin will have electrical characteristics as listed in table 3 of the device
data sheet. This type of output is most often used to connect directly to another device.

5.3.9. Open-Drain Output

By configuring for open-drain operation, an interface pin operates as an open-drain output. The output voltage is
determined by the pin's latch value. If the pin latch value is 1, the pin is pulled up to VDD (CP2102) or VIO
(CP2103, CP2104, CP2105) through an on-chip pull-up resistor. The pin can also be safely pulled up to 5 V if an
external pull-up resistor is added. This output pin will have electrical characteristics as listed in Table 3 of the
device data sheet.

5.3.10. Low Power State

By writing logic low to the latch, an interface pin is grounded and consumes minimal power with weak pull-ups
disabled. This setting is best for unused interface pins that are not connected to external circuitry.

5.3.11. Reset Behavior

All interface pins temporarily float high during a device reset. If this behavior is undesirable, a strong pull-down
(10 k) can be used to ensure the pin remains low during reset.

Figure 11 is a screenshot of the CP2103 and CP2104 Port Configuration Settings.Figure 12 is a screenshot of the
CP2105 Port Configuration Settings and Figure 13 is a screenshot of the CP2108 Port Configuration Settings.
Click on the value to modify any of the settings. In most cases a pull down menu is available. For the Suspend
Value and the Reset Value Settings a pop up window allows the latch setting selections as shown in Figure 14.

Table 1. GPIO Pin Function

Pin Name Function Behavior

GPIO.0 Transmit LED Toggles when there is UART data to transmit; otherwise logic high

GPIO.1 Receive LED Toggles when there is data on the UART receive buffer; otherwise logic high.

GPIO.2 RS-485 Logic low while transmitting UART data; otherwise logic high.

Note: On the CP2105, RS-485 mode is available on the Enhanced Communication Interface (ECI) on GPIO.1. Because of
this, the alternate function GPIO.1_ECI can either be Receive LED or RS-485 mode. The Standard Communication
Interface (SCI) does not have an RS-485 mode.

AN721

18 Rev. 1.0

Figure 11. CP2103/CP2104 Port Configuration

AN721

Rev. 1.0 19

Figure 12. CP2105 Port Configuration

AN721

20 Rev. 1.0

Figure 13. CP2108 Port Configuration

AN721

Rev. 1.0 21

Figure 14. Latch Settings

AN721

22 Rev. 1.0

6. CP210x Host API Functions

There are two DLL files CP210xManufacturing.DLL and CP210xRuntime.DLL which have several API functions
that are described and listed.

6.1. CP210xManufacturing.DLL
The CP210x Host API is provided as a means to facilitate production of customized CP210x devices. The API
allows access to the CP210x device for retrieving and setting the VID, PID, product string, serial number, self-
power attribute, maximum power consumption, and device version.

The CP210x Host API is provided in the form of a Windows Dynamic Link Library (DLL),
CP210xManufacturing.DLL. The host interface DLL communicates with the bridge controller device via the
provided device driver and the operating system's USB stack. The following is a list of the available host API
functions:

CP210x_GetNumDevices() Returns the number of CP210x devices connected.
CP210x_GetProductString() Returns a descriptor from the registry for a CP210x USB device.
CP210x_GetPartNumber() Returns the 1-byte Part Number of a CP210x device.
CP210x_Open() Opens a CP210x device as a USB device and returns a handle.
CP210x_Close() Closes a CP210x device handle.

CP210x_SetVid() Sets the 2-byte vendor ID of a CP210x device.
CP210x_SetPid() Sets the 2-byte product ID of a CP210x device.
CP210x_SetProductString() Sets the product description string of a CP210x device.
CP210x_SetInterfaceString() Sets the interface string of a CP2105 device.
CP210x_SetSerialNumber() Sets the serial number string of a CP210x device.
CP210x_SetSelfPower() Sets the self-power attribute of a CP210x device.
CP210x_SetMaxPower() Sets the maximum power consumption of a CP210x device.
CP210x_SetFlushBufferConfig() Sets the flush buffer configuration of CP2104/5 devices.
CP210x_SetDeviceMode() Sets the operating modes of both interfaces of a CP2105 device.
CP210x_SetDeviceVersion() Sets version number of the CP210x device.
CP210x_SetBaudRateConfig() Sets the baud rate configuration data of a CP210x device.
CP210x_SetLockValue() Sets the 1-byte Lock Value of a CP210x device.
CP210x_SetPortConfig() Sets the port configuration of a CP2101/2/3/4 device.
CP210x_SetDualPortConfig() Sets the port configuration of a CP2105 device.
CP210x_SetQuadPortConfig() Sets the port configuration of a CP2108 device.

CP210x_GetDeviceProductString() Gets the product description string of a CP210x device.
CP210x_GetDeviceInterfaceString() Gets the interface string of a CP2105 device.
CP210x_GetDeviceSerialNumber() Gets the serial number string of a CP210x device.
CP210x_GetDeviceVid() Gets the vendor ID of a CP210x device.
CP210x_GetDevicePid() Gets the product ID of a CP210x device.
CP210x_GetSelfPower() Gets the self-power attribute of a CP210x device.
CP210x_GetMaxPower() Gets the maximum power consumption value of a CP210x device.
CP210x_GetFlushBufferConfig() Gets the flush buffer configuration of CP2104/5 devices.
CP210x_GetDeviceMode() Gets the operating modes of interfaces of a CP2105 device.
CP210x_GetDeviceVersion() Gets the version number of a CP210x device.
CP210x_GetBaudRateConfig() Gets the baud rate configuration data of a CP210x device.
CP210x_GetLockValue() Gets the 1-byte Lock Value of a CP210x device.
CP210x_GetPortConfig() Gets the port configuration of a CP210x device.
CP210x_GetDualPortConfig() Gets the port configuration of a CP2105 device.
CP210x_GetQuadPortConfig() Gets the port configuration of a CP2108 device.
CP210x_Reset() Resets a CP210x device.

AN721

Rev. 1.0 23

In general, the user initiates communication with the target CP210x device by making a call to
CP210x_GetNumDevices(). This call returns the number of CP210x target devices. This number is used as a
range when calling CP210x_GetProductString() to build a list of devices connected to the host machine.

A handle to the device must first be opened by a call to CP210x_Open() using an index determined from the call to
CP210x_GetNumDevices(). The handle will be used for all subsequent accesses. When I/O operations are
complete, the device handle is closed by a call to CP210x_Close().

When programming a CP2105 device to configure the mode, the following functions must be called in the following
order:

CP210x_SetDeviceMode()

CP210x_SetDualPortConfig()

The remaining functions are provided to allow access to customizable values contained in the CP210x
programmable area.

6.1.1. CP210x_GetNumDevices

Description: This function returns the number of CP210x devices connected to the host.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetNumDevices(LPDWORD NumDevices)

Parameters: 1. NumDevices—Address of a DWORD that will contain the number of devices.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_DEVICE_NOT_FOUND,
CP210x_INVALID_PARAMETER

6.1.2. CP210x_GetProductString

Description: This function returns a NULL-terminated serial number (S/N) string, product description string, or
full path string for the device specified by an index passed in the DeviceNum parameter. The index
of the first device is 0, and the index of the last device is the value (NumDevices) returned by
CP210x_GetNumDevices() – 1.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetProductString(DWORD DeviceNum, 
LPVOID DeviceString, DWORD Options)

Parameters: 1. DeviceNum—Index of the device for which the product description string, serial number, or full
path is desired.

2. DeviceString—Variable of type CP210x_DEVICE_STRING returning the NULL-terminated
serial number, device description or full path string.

3. Options—Flag that determines if DeviceString contains the product description, serial number,
or full-path string.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_DEVICE_NOT_FOUND,
CP210x_INVALID_PARAMETER

AN721

24 Rev. 1.0

6.1.3. CP210x_GetPartNumber

Description: Returns the 1-byte Part Number contained in a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS WINAPI CP210x_GetPartNumber(HANDLE cyHandle, 
LPBYTE lpbPartNum);

Parameters: 1. Handle—Handle to the device returning a Part Number.

2. PartNum—Pointer to a 1-byte value returning the Part Number of the device.
A CP210x_CP2101_DEVICE denotes a CP2101 device, and a CP210x_CP2102_DEVICE
denotes a CP2102 device.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED

6.1.4. CP210x_Open

Description: Opens and returns a handle to a device using a device number determined by the number
returned from CP210x_GetNumDevices().

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_Open(DWORD DeviceNum, HANDLE* Handle)

Parameters: 1. DeviceNum—Device index. 0 for the first device, 1 for the second, etc.

2. Handle—Pointer to a variable where the handle to the device will be stored. This handle will be
used for all subsequent accesses to the device.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_DEVICE_NOT_FOUND,
CP210x_INVALID_PARAMETER

6.1.5. CP210x_Close

Description: Closes an open device handle.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_Close(HANDLE Handle)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE

AN721

Rev. 1.0 25

6.1.6. CP210x_SetVid

Description: Sets the 2-byte Vendor ID field of the Device Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetVid(HANDLE Handle, WORD Vid)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. VID—2-byte Vendor ID value.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED

6.1.7. CP210x_SetPid

Description: Sets the 2-byte Product ID field of the Device Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetPid(HANDLE Handle, WORD Pid)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. PID—2-byte Product ID value.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.8. CP210x_SetProductString

Description: Sets the Product Description String of the String Descriptor of a CP210x device. If the string is not
already in Unicode format, the function will convert the string to Unicode before committing it to
programmable memory. The character size limit (in characters, not bytes), NOT including a NULL
terminator, is CP210x_MAX_PRODUCT_STRLEN or CP2105_MAX_PRODUCT_STRLEN.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetProductString(HANDLE Handle, LPVOID Product,
BYTE Length, BOOL ConvertToUnicode=TRUE)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. Product—Buffer containing the Product String value.

3. Length—Length of the string in characters (not bytes), NOT including a NULL terminator.

4. ConvertToUnicode—Boolean flag that tells the function if the string needs to be converted to
Unicode. The flag is set to TRUE by default (i.e., the string is in ASCII format and needs to be
converted to Unicode).

AN721

26 Rev. 1.0

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.9. CP210x_SetInterfaceString

Description: Sets the Interface String for the one of the interfaces available on the CP2105 or CP2108. If the
string is not already in Unicode format, the function will convert the string to Unicode before com-
mitting it to programmable memory. The character size limit (in characters, not bytes), NOT includ-
ing a NULL terminator, is CP2105_MAX_INTERFACE_STRLEN.

Supported Devices: CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetInterfaceString(HANDLE Handle, BYTE Interfa-
ceNumber, LPVOID Interface, BYTE Length, BOOL ConvertToUnicode)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. InterfaceNumber—Set to 0 for Enhanced Interface String, or 1 for Standard Interface String on
the CP2105. 0-3 for the CP2108 which has 4 interfaces.

3. Interface—Buffer containing the Interface String.

4. Length—Length of the string in characters (not bytes), NOT including a NULL terminator.

5. ConvertToUnicode—Boolean flag that tells the function if the string needs to be converted to
Unicode. The flag is set to TRUE by default (i.e., the string is in ASCII format and needs to be
converted to Unicode).

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.10. CP210x_SetSerialNumber

Description: Sets the Serial Number String of the String Descriptor of a CP210x device. If the string is not
already in Unicode format, the function will convert the string to Unicode before committing it to
programmable memory. The character size limit (in characters, not bytes), NOT including a NULL
terminator, is CP210x_MAX_SERIAL_STRLEN.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetSerialNumber(HANDLE Handle, 
LPVOID SerialNumber, BYTE Length, BOOL ConvertToUnicode=TRUE)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. SerialNumber—Buffer containing the Serial Number String value.

3. Length—Length in characters (not bytes), NOT including a NULL terminator.

4. ConvertToUnicode—Boolean flag that tells the function if the string needs to be converted to
Unicode. The flag is set to TRUE by default, i.e. the string is in ASCII format and needs to be
converted to Unicode.

AN721

Rev. 1.0 27

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.11. CP210x_SetSelfPower

Description: Sets or clears the Self-Powered bit of the Power Attributes field of the Configuration Descriptor of
a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetSelfPower(HANDLE Handle, BOOL SelfPower)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. SelfPower—Boolean flag where TRUE means set the Self-Powered bit, and FALSE means
clear the Self-Powered bit.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.12. CP210x_SetMaxPower

Description: Sets the Max Power field of the Configuration Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetMaxPower(HANDLE Handle, BYTE MaxPower)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. MaxPower—1-byte value representing the maximum power consumption of the CP210x USB
device, expressed in 2 mA units.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.13. CP210x_SetFlushBufferConfig

Description: Sets the Flush Buffer configuration of a CP210x device.

Supported Devices: CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetMaxPower(HANDLE Handle, 
BYTE FlushBufferConfig)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. FlushBufferConfig—Set to determine which buffer(s) to flush (TX and/or RX) and upon which
event (Open and/or Close). See the header file for the bit defintions for this byte value.

AN721

28 Rev. 1.0

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_FUNCTION_NOT_SUPPORTED
CP210x_DEVICE_NOT_FOUND

6.1.14. CP210x_SetDeviceMode

Description: Sets the operating mode (GPIO or Modem) or each Interface of a CP210x device.

Supported Devices: CP2105

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetMaxPower(HANDLE Handle, 
BYTE DeviceModeECI, BYTE DeviceModeSCI)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. DeviceModeECI—Set to 0 for modem mode for Enhanced interface. Set to 1 for GPIO mode.

3. DeviceModeSCI—Set to 0 for modem mode for Enhanced interface. Set to 1 for GPIO mode.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_NOT_FOUND
CP210x_FUNCTION_NOT_SUPPORTED

6.1.15. CP210x_SetDeviceVersion

Description: Sets the Device Release Version field of the Device Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetDeviceVersion(HANDLE Handle, WORD Version)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. Version—2-byte Device Release Version number in Binary-Coded Decimal (BCD) format with
the upper two nibbles containing the two decimal digits of the major version and the lower two
nibbles containing the two decimal digits of the minor version.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.16. CP210x_SetBaudRateConfig

Description: Sets the baud rate configuration data of a CP210x device.

Supported Devices: CP2102, CP2103

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS WINAPI CP210x_SetBaudRateConfig(HANDLE cyHandle, BAUD_CON-
FIG* baudConfigData);

Parameters: 1. Handle—Handle to the device from which to get the Part Number.

AN721

Rev. 1.0 29

2. BaudConfigData—Pointer to a BAUD_CONFIG structure containing the Baud Config data to
be set on the device.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_PARAMETER, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.17. CP210x_SetLockValue

Description: Sets the 1-byte Lock Value of a CP210x device.

Supported Devices: CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS WINAPI CP210x_SetLockValue(HANDLE cyHandle);

Parameters: 1. Handle—Handle of the device to lock. This will permanently set the lock value to 0x01.

WARNING: Setting the lock value locks ALL customizable data and cannot be reset; only use
this function to keep all customizable data on the part permanently.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_PARAMETER, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.18. CP210xSetPortConfig

Description: Sets the current port pin configuration from the CP210x device.

Supported Devices: CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210X_STATUS CP210x_SetPortConfig(HANDLE Handle, LPVOID PortConfig)

Parameters: 1. Handle—Handle to the device as returned by CP210x_Open()

2. PortConfig—Pointer to a PORT_CONFIG structure

Return Value: CP210X_STATUS = CP210X_SUCCESS,
CP210X_INVALID_HANDLE,
CP210X_DEVICE_IO_FAILED,
CP210X_UNSUPPORTED_DEVICE

AN721

30 Rev. 1.0

6.1.19. CP210xSetDualPortConfig

Description: Sets the current port pin configuration from the CP210x device. SetDeviceMode() must be called
before calling this function.

Supported Devices: CP2105

Location: CP210x Manufacturing DLL

Prototype: CP210X_STATUS CP210x_SetPortConfig(HANDLE Handle, LPVOID DualPortCon-
fig)

Parameters: 1. Handle—Handle to the device as returned by CP210x_Open()

2. DualPortConfig—Pointer to a DUAL_PORT_CONFIG structure

Return Value: CP210X_STATUS = CP210X_SUCCESS,
CP210X_INVALID_HANDLE,
CP210X_DEVICE_IO_FAILED,
CP210X_UNSUPPORTED_DEVICE

6.1.20. CP210x_GetDeviceProductString

Description: Returns the Product Description String of the String Descriptor of a CP210x device. If the Convert-
ToASCII parameter is set, the string will be converted to ASCII format before being returned to the
caller. The character size limit (in characters, not bytes), NOT including a NULL terminator, is
CP210x_MAX_PRODUCT_STRLEN.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetDeviceProductString(HANDLE Handle, 
LPVOID Product, LPBYTE Length, BOOL ConvertToASCII=TRUE)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. Product—Pointer to a buffer returning the Product String value.

3. Length—Pointer to a BYTE value returning the length of the string in characters (not bytes),
NOT including a NULL terminator.

4. ConvertToASCII—Boolean flag that tells the function whether the string needs to be converted
to ASCII before it is returned to the caller. The flag is set to TRUE by default (i.e., the caller is
expecting the string in ASCII format).

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.21. CP210xSetQuadPortConfig

Description: Sets the current port pin configuration from the CP2108 device.

Supported Devices: CP2108

Location: CP210x Manufacturing DLL

AN721

Rev. 1.0 31

Prototype: CP210x_STATUS CP210x_SetQuadPortConfig(HANDLE Handle, LPVOID QuadPort-
Config)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. QuadPortConfig—Pointer to a QUAD_PORT_CONFIG structure.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED, 
CP210x_UNSUPPORTED_DEVICE

6.1.22. CP210x_GetDeviceInterfaceString

Description: Gets the specified interface string from a CP210x device. If the ConvertToASCII parameter is set,
the string will be converted to ASCII format before being returned to the caller. The character size
limit (in characters, not bytes), NOT including a NULL terminator, is CP210x_MAX_SERIAL_STR-
LEN.

Supported Devices: CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetDeviceInterfaceString(HANDLE Handle, 
BYTE InterfaceNumber, LPVOID Interface, BYTE Length, BOOL ConvertToAS-
CII)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. InterfaceNumber —Set to 0 for Enhanced Interface. Set to 1 for Standard Interface.

3. Interface—Pointer to buffer returning the selected Interface String value.

4. Length—Pointer to a BYTE value returning the length of the string in characters (not bytes),
NOT including a NULL terminator.

5. ConvertToASCII—Boolean flag that tells the function whether the string needs to be converted
to ASCII before it is returned to the caller. The flag is set to TRUE by default (i.e., the caller is
expecting the string in ASCII format).

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.23. CP210x_GetDeviceSerialNumber

Description: Gets the Serial Number String of the String Descriptor of a CP210x device. If the ConvertToASCII
parameter is set, the string will be converted to ASCII format before being returned to the caller.
The character size limit (in characters, not bytes), NOT including a NULL terminator, is CP210x_-
MAX_SERIAL_STRLEN.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetDeviceSerialNumber(HANDLE Handle, 
LPVOID SerialNumber, LPBYTE Length, BOOL ConvertToASCII=TRUE)

AN721

32 Rev. 1.0

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. SerialNumber —Pointer to a buffer returning the Serial Number String value.

3. Length—Pointer to a BYTE value returning the length of the string in characters (not bytes),
NOT including a NULL terminator.

4. ConvertToASCII—Boolean flag that tells the function whether the string needs to be converted
to ASCII before it is returned to the caller. The flag is set to TRUE by default (i.e., the caller is
expecting the string in ASCII format).

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.24. CP210x_GetDeviceVid

Description: Returns the 2-byte Vendor ID field of the Device Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetDeviceVid(HANDLE Handle, LPWORD Vid)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. VID—Pointer to a 2-byte value that returns the Vendor ID of the CP210x device.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED

6.1.25. CP210x_GetDevicePid

Description: Returns the 2-byte Product ID field of the Device Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetDevicePid(HANDLE Handle, LPWORD Pid)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. PID—Pointer to a 2-byte value that returns the Product ID of the CP210x device.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

AN721

Rev. 1.0 33

6.1.26. CP210x_GetSelfPower

Description: Returns the state of the Self-Powered bit of the Power Attributes field of the Configuration Descrip-
tor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetSelfPower(HANDLE Handle, LPBOOL SelfPower)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. SelfPower—Pointer to a boolean flag where TRUE means the Self-Powered bit is set, and
FALSE means the Self-Powered bit is cleared.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.27. CP210x_GetMaxPower

Description: Returns the 1-byte Max Power field of the Configuration Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetMaxPower(HANDLE Handle, LPBYTE MaxPower)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. MaxPower—Pointer to a 1-byte value returning the Maximum power consumption of the
CP210x USB device expressed in 2 mA units.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.28. CP210x_GetMaxPower

Description: Returns the 1-byte Max Power field of the Configuration Descriptor of a CP210x device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetMaxPower(HANDLE Handle, LPBYTE MaxPower)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. MaxPower—Pointer to a 1-byte value returning the Maximum power consumption of the
CP210x USB device expressed in 2 mA units.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_PARAMETER,

AN721

34 Rev. 1.0

CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.29. CP210x_GetFlushBufferConfig

Description: Returns the flush buffer configuration of a CP210x device.

Supported Devices: CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_GetFlushBufferConfig(HANDLE Handle, 
LPWORD FlushBufferConfig)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. FlushBufferConfig—Pointer to the values which indicates which buffer(s) are flushed (TX and/
or RX) and upon which event (Open and/or Close). See the header file for the bit defintions for
this byte value.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_DEVICE_NOT_FOUND,
CP210x_INVALID_HANDLE, 
CP210x_FUNCTION_NOT_SUPPORTED

6.1.30. CP210x_GetDeviceMode

Description: Gets the operating mode (GPIO or Modem) or each Interface of a CP210x device.

Supported Devices: CP2105

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_SetMaxPower(HANDLE Handle, 
BYTE DeviceModeECI, BYTE DeviceModeSCI)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

2. DeviceModeECI—Pointer to a 1-byte value returning the 0 if interface is in Modem mode, or 1
if GPIO mode.

3. DeviceModeSCI—Pointer to a 1-byte value returning the 0 if interface is in Modem mode, or 1
if GPIO mode.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_NOT_FOUND
CP210x_FUNCTION_NOT_SUPPORTED

6.1.31. CP210x_GetBaudRateConfig

Description: Returns the baud rate configuration data of a CP210x device.

Supported Devices: CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

AN721

Rev. 1.0 35

Prototype: CP210x_STATUS WINAPI CP210x_GetBaudRateConfig(HANDLE cyHandle, BAUD_CON-
FIG* baudConfigData);

Parameters: 1. Handle—Handle to the device on which to determine the lock value.

2. BaudConfigData—Pointer to a BAUD_CONFIG structure returning the Baud Config data of the
device.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.32. CP210x_GetLockValue

Description: Returns the 1-byte Lock Value of a CP210x device.

Supported Devices: CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS WINAPI CP210x_GetLockValue(HANDLE cyHandle,
LPBYTE lpbLockValue);

Parameters: 1. Handle—Handle to the device on which to determine the lock value.

2. LockValue—Pointer to a 1-byte value returning the Lock Value of the device. A 0x01 denotes
that the device is locked, and a 0x00 denotes that the device is unlocked.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_PARAMETER,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.33. CP210x_GetPortConfig

Description: Gets the current port pin configuration from the CP210x device.

Supported Devices: CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210X_STATUS CP210x_GetPortConfig(HANDLE Handle, LPVOID PortConfig)

Parameters: 1. Handle—Handle to the device as returned by CP210x_Open()

2. Port Config—Pointer to a PORT_CONFIG structure

Return Value: CP210X_STATUS = CP210X_SUCCESS,
CP210X_INVALID_HANDLE,
CP210X_DEVICE_IO_FAILED,
CP210X_UNSUPPORTED_DEVICE

AN721

36 Rev. 1.0

6.1.34. CP210xGetDualPortConfig

Description: Gets the current port pin configuration from the CP210x device.

Supported Devices: CP2105

Location: CP210x Manufacturing DLL

Prototype: CP210X_STATUS CP210x_SetPortConfig(HANDLE Handle, LPVOID DualPortCon-
fig)

Parameters: 1. Handle—Handle to the device as returned by CP210x_Open()

2. DualPortConfig—Pointer to a DUAL_PORT_CONFIG structure

Return Value: CP210X_STATUS = CP210X_SUCCESS,
CP210X_INVALID_HANDLE,
CP210X_DEVICE_IO_FAILED,
CP210X_UNSUPPORTED_DEVICE

6.1.35. CP210x_Reset

Description: Initiates a reset of the USB interface.
Note: There is a delay of ~1 second before the reset is initiated by the device firmware to give the application time to call

CP210x_Close() to close the device handle. No further operations should be performed with the device until it resets, re-
enumerates in Windows, and a new handle is opened.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Manufacturing DLL

Prototype: CP210x_STATUS CP210x_Reset(HANDLE Handle)

Parameters: 1. Handle—Handle to the device to close as returned by CP210x_Open().

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.1.36. CP210xGetQuadPortConfig

Description: Gets the current port pin configuration from the CP210x device.

Supported Devices: CP2105

Location: CP210x Manufacturing DLL

Prototype: CP210X_STATUS CP210x_SetPortConfig(HANDLE Handle, LPVOID DualPortCon-
fig)

Parameters: 1. Handle—Handle to the device as returned by CP210x_Open()

2. DualPortConfig—Pointer to a DUAL_PORT_CONFIG structure

Return Value: CP210X_STATUS = CP210X_SUCCESS,
CP210X_INVALID_HANDLE,
CP210X_DEVICE_IO_FAILED,
CP210X_UNSUPPORTED_DEVICE

AN721

Rev. 1.0 37

6.1.37. CP210x Manufacturing.DLL Type Definitions and Constants

Type Definitions from C++ Header File CP210xManufacturingDLL.h

// GetProductString() function flags
#define CP210x_RETURN_SERIAL_NUMBER 0x00
#define CP210x_RETURN_DESCRIPTION 0x01
#define CP210x_RETURN_FULL_PATH 0x02

// GetDeviceVersion() return codes
#define CP210x_CP2101_VERSION 0x01
#define CP210x_CP2102_VERSION 0x02
#define CP210x_CP2103_VERSION 0x03
#define CP210x_CP2104_VERSION 0x04
#define CP210x_CP2105_VERSION 0x05
#define CP210x_CP2108_VERSION 0x06

// Return codes
#define CP210x_SUCCESS 0x00
#define CP210x_DEVICE_NOT_FOUND 0xFF
#define CP210x_INVALID_HANDLE 0x01
#define CP210x_INVALID_PARAMETER 0x02
#define CP210x_DEVICE_IO_FAILED 0x03
#define CP210x_FUNCTION_NOT_SUPPORTED 0x04
#define CP210x_GLOBAL_DATA_ERROR 0x05
#define CP210x_FILE_ERROR 0x06
#define CP210x_COMMAND_FAILED 0x08
#define CP210x_INVALID_ACCESS_TYPE 0x09

// Type definitions
typedef int CP210x_STATUS;

// Buffer size limits
#define CP210x_MAX_DEVICE_STRLEN 256
#define CP210x_MAX_PRODUCT_STRLEN 126
#define CP210x_MAX_SERIAL_STRLEN 63
#define CP210x_MAX_MAXPOWER 250

// Type definitions
typedef char CP210x_DEVICE_STRING[CP210x_MAX_DEVICE_STRLEN];
typedef char CP210x_PRODUCT_STRING[CP210x_MAX_PRODUCT_STRLEN];
typedef char CP210x_SERIAL_STRING[CP210x_MAX_SERIAL_STRLEN];

//Baud Rate Aliasing definitions
#define NUM_BAUD_CONFIGS 32

AN721

38 Rev. 1.0

typedef struct
{

WORD BaudGen;
WORD Timer0Reload;
BYTE Prescaler;
DWORD BaudRate;

} BAUD_CONFIG;

#define BAUD_CONFIG_SIZE10

typedef BAUD_CONFIG BAUD_CONFIG_DATA[NUM_BAUD_CONFIGS];

//Port Config definitions
typedef struct
{

WORD Mode; // Push-Pull = 1, Open-Drain = 0
WORD Reset_Latch; // Logic High = 1, Logic Low = 0
WORD Suspend_Latch;// Logic High = 1, Logic Low = 0
unsigned char EnhancedFxn;

} PORT_CONFIG;

// Define bit locations for Mode/Latch for Reset and Suspend structures
#define PORT_RI_ON 0x0001
#define PORT_DCD_ON 0x0002
#define PORT_DTR_ON 0x0004
#define PORT_DSR_ON 0x0008
#define PORT_TXD_ON 0x0010
#define PORT_RXD_ON 0x0020
#define PORT_RTS_ON 0x0040
#define PORT_CTS_ON 0x0080

#define PORT_GPIO_0_ON 0x0100
#define PORT_GPIO_1_ON 0x0200
#define PORT_GPIO_2_ON 0x0400
#define PORT_GPIO_3_ON 0x0800

#define PORT_SUSPEND_ON 0x4000// Can't configure latch value
#define PORT_SUSPEND_BAR_ON 0x8000// Can't configure latch value

// Define bit locations for EnhancedFxn
#define EF_GPIO_0_TXLED 0x01 // Under device control
#define EF_GPIO_1_RXLED 0x02 // Under device control
#define EF_GPIO_2_RS485 0x04 // Under device control
#define EF_RESERVED_0 0x08 // Reserved, leave bit 3 cleared
#define EF_WEAKPULLUP 0x10 // Weak Pull-up on
#define EF_RESERVED_1 0x20 // Reserved, leave bit 5 cleared
#define EF_SERIAL_DYNAMIC_SUSPEND 0x40 // For 8 UART/Modem signals
#define EF_GPIO_DYNAMIC_SUSPEND 0x80 // For 4 GPIO signals

AN721

Rev. 1.0 39

6.2. CP210xRuntime.DLL
The CP210x Runtime API provides access to the GPIO port latch, and is meant for distribution with the product
containing a CP210x device.

 CP210xRT_ReadLatch()—Returns the GPIO port latch of a CP210x device.

 CP210xRT_WriteLatch()—Sets the GPIO port latch of a CP210x device.

 CP210xRT_GetPartNumber()—Returns the 1-byte Part Number of a CP210x device.

 CP210xRT_GetProductString ()—Returns the product string programmed to the device.

 CP210xRT_GetDeviceSerialNumber ()—Returns the serial number programmed to the device.

 CP210xRT_GetDeviceInterfaceString ()—Returns the interface string programmed to the device.

Typically, the user initiates communication with the target CP210x device by opening a handle to a COM port using
CreateFile() (See AN197: Serial Communication Guide for CP210x). The handle returned allows the user to call
the API functions listed above. Each of these functions are described in the following sections. Type definitions and
constants are defined in the file CP210xRuntimeDLL.h.

Note: Functions calls into this API are blocked until completed. This can take several milliseconds depending on USB traffic.

6.2.1. CP210xRT_ReadLatch

Description: Gets the current port latch value from the device.

Supported Devices: CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_ReadLatch(HANDLE Handle, LPBYTE Latch)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. Latch—Pointer for 1-byte return GPIO latch value [Logic High = 1, Logic Low = 0].

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED
CP210x_FUNCTION_NOT_SUPPORTED

6.2.2. CP210xRT_WriteLatch

Description: Sets the current port latch value for the device.

Supported Devices: CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_WriteLatch(HANDLE Handle, BYTE Mask, BYTE Latch)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. Mask—Determines which pins to change [Change = 1, Leave = 0].

3. Latch—1-byte value to write to GPIO latch [Logic High = 1, Logic Low = 0]

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED
CP210x_FUNCTION_NOT_SUPPORTED

AN721

40 Rev. 1.0

6.2.3. CP210xRT_GetPartNumber

Description: Gets the part number of the current device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetPartNumber(HANDLE Handle, LPBYTE PartNum)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. PartNum—Pointer to a byte containing the return code for the part number.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED

6.2.4. CP210xRT_GetDeviceProductString

Description: Gets the product string in the current device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetDeviceProductString(HANDLE cyHandle, 
LPVOID lpProduct, LPBYTE lpbLength, BOOL bConvertToASCII = TRUE)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. lpProduct—Variable of type CP210x_PRODUCT_STRING returning the NULL terminated
product string.

3. lpbLength—Length in characters (not bytes) not including a NULL terminator.

4. ConvertToASCII—Boolean that determines whether the string should be left in Unicode, or
converted to ASCII. This parameter is true by default, and will convert to ASCII.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED
CP210x_INVALID_PARAMETER

6.2.5. CP210xRT_GetDeviceSerialNumber

Description: Gets the serial number in the current device.

Supported Devices: CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetDeviceSerialNumber(HANDLE cyHandle, 
LPVOID lpProduct, LPBYTE lpbLength, BOOL bConvertToASCII = TRUE)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. lpProduct—Variable of type CP210x_SERIAL_STRING returning the NULL terminated serial
string.

3. lpbLength—Length in characters (not bytes) not including a NULL terminator.

AN721

Rev. 1.0 41

4. ConvertToASCII—Boolean that determines whether the string should be left in Unicode, or
converted to ASCII. This parameter is true by default, and will convert to ASCII.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED
CP210x_INVALID_PARAMETER

6.2.6. CP210xRT_GetDeviceInterfaceString

Description: Gets the interface string of the current device.

Supported Devices: CP2105, CP2108

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetDeviceInterfaceString(HANDLE cyHandle, 
LPVOID lpInterfaceString, LPBYTE lpbLength, BOOL bConvertToASCII = TRUE)

Parameters: 1. Handle—Handle to the Com port returned by CreateFile().

2. lpInterfaceString—Variable of type CP210x_SERIAL_STRING returning the NULL terminated
interface string.

3. lpbLength—Length in characters (not bytes) not including a NULL terminator.

4. ConvertToASCII—Boolean that determines whether the string should be left in Unicode, or
converted to ASCII. This parameter is true by default, and will convert to ASCII.

Return Value: CP210x_STATUS = CP210x_SUCCESS, 
CP210x_INVALID_HANDLE, 
CP210x_DEVICE_IO_FAILED
CP210x_INVALID_PARAMETER

AN721

42 Rev. 1.0

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при
поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

 Оперативные поставки широкого спектра электронных компонентов отечественного и
импортного производства напрямую от производителей и с крупнейших мировых
складов;

 Поставка более 17-ти миллионов наименований электронных компонентов;

 Поставка сложных, дефицитных, либо снятых с производства позиций;

 Оперативные сроки поставки под заказ (от 5 рабочих дней);

 Экспресс доставка в любую точку России;

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;

 Система менеджмента качества сертифицирована по Международному стандарту ISO
9001;

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну;

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

 Подбор оптимального решения, техническое обоснование при выборе компонента;

 Подбор аналогов;

 Консультации по применению компонента;

 Поставка образцов и прототипов;

 Техническая поддержка проекта;

 Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)
Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.

mailto:org@eplast1.ru

