www.ti.com SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### **FEATURES** - RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM) - Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards - Operates With 3-V to 5.5-V V_{CC} Supply - Operates up to 400 kbit/s - Five Drivers and Three Receivers - Auto-Powerdown Plus Feature Enables Flexible Power-Down Mode - Low Standby Current . . . 1 μA Typical - External Capacitors . . . $4 \times 0.1 \mu F$ - Accepts 5-V Logic Input With 3.3-V Supply - Always-Active Noninverting Receiver Output (ROUT1B) - Alternative High-Speed Pin-Compatible Device (1 Mbit/s) for SNx5C3238 - ESD Protection for RS-232 Interface Pins - ±15 kV Human-Body Model (HBM) - ±8 kV IEC61000-4-2, Contact Discharge - ±15 kV IEC61000-4-2, Air-Gap Discharge #### **APPLICATIONS** - Battery-Powered Systems - PDAs - Notebooks - Subnotebooks - Laptops - Palmtop PCs - Hand-Held Equipment - Modems - Printers **RHB PACKAGE** #### **DESCRIPTION/ORDERING INFORMATION** The MAX3238E consists of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection on the driver output (DOUT) and receiver input (RIN) terminals. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between notebook and subnotebook computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT1B), which allows applications using the ring indicator to transmit data while the device is powered down. This device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/μs driver output slew rate. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH \pm 15-kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### **DESCRIPTION/ORDERING INFORMATION (CONTINUED)** Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and $\overline{\text{FORCEOFF}}$ is high. During this mode of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 μ A. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and $\overline{\text{FORCEOFF}}$ are high. With auto-powerdown plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. $\overline{\text{INVALID}}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. $\overline{\text{INVALID}}$ is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 5 for receiver input levels. #### **ORDERING INFORMATION** | T _A | PACKA | GE ⁽¹⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|------------|-------------------|-----------------------|------------------| | | SSOP – DB | Tube of 50 | MAX3238ECDB | MAX3238EC | | | 220b – DB | Reel of 2000 | MAX3238ECDBR | WIAA3230EC | | 0°C to 70°C | TSSOP – PW | Tube of 50 | MAX3238ECPW | MP238EC | | 0 0 10 70 0 | 1330F - FW | Reel of 2000 | MAX3238ECPWR | WIF230EC | | | SOIC - DW | Reel of 2000 | MAX3238ECDWR | MAX3238EC | | | QFN – RHB | Reel of 2000 | MAX3238ECRHBR | Preview | | | 2000 00 | Tube of 50 | MAX3238EIDB | MAX3238EI | | | SSOP – DB | Reel of 2000 | MAX3238EIDBR | IVIAA3230EI | | 40°C to 95°C | TSSOP – PW | Tube of 50 | MAX3238EIPW | MD220EL | | −40°C to 85°C | 1330P = PW | Reel of 2000 | MAX3238EIPWR | MP238EI | | | SOIC - DW | Reel of 2000 | MAX3238ICDWR | MAX3238EI | | | QFN – RHB | Reel of 2000 | MAX3238EIRHBR | Preview | ⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. # MAX3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ± 15 -kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### **FUNCTION TABLES** #### Each Driver(1) | | | INPUTS | | OUTPUT | | |-----|---------|----------|---|--------|------------------------------| | DIN | FORCEON | FORCEOFF | TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION | DOUT | DRIVER STATUS | | X | Χ | L | X | Z | Powered off | | L | Н | Н | X | Н | Normal operation with | | Н | Н | Н | X | L | auto-powerdown plus disabled | | L | L | Н | <30 s | Н | Normal operation with | | Н | L | Н | <30 s | L | auto-powerdown plus enabled | | L | L | Н | >30 s | Z | Powered off by | | Н | L | Н | >30 s | Z | auto-powerdown plus feature | ⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance #### Each Receiver(1) | | | INPUTS | | OUT | PUTS | | |------|-----------|----------|---|--------|--------------------|-----------------------| | RIN1 | RIN2-RIN3 | FORCEOFF | TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION | ROUT1B | ROUT2 AND
ROUT3 | RECEIVER STATUS | | L | Х | L | X | L | Z | Powered off while | | Н | X | L | X | Н | Z | ROUT1B is active | | L | L | Н | <30 s | L | Н | | | L | Н | Н | <30 s | L | L | Normal operation with | | Н | L | Н | <30 s | Н | Н | auto-powerdown plus | | Н | Н | Н | <30 s | Н | L | disabled/enabled | | Open | Open | Н | <30 s | L | Н | | ⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### LOGIC DIAGRAM (POSITIVE LOGIC) #### MAX3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 ### Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|---|----------------------------|-------|----------------|------| | V_{CC} | Supply voltage range ⁽²⁾ | | -0.3 | 6 | V | | V+ | Positive-output supply voltage range (2) | | -0.3 | 7 | V | | V- | Negative-output supply voltage range ⁽²⁾ | | 0.3 | -7 | V | | V+ - V- | Supply voltage difference ⁽²⁾ | | | 13 | V | | V | lanut valta an unua | Driver (FORCEOFF, FORCEON) | -0.3 | 6 | V | | V _I | Input voltage range | Receiver | -25 | 25 | V | | V | Outrot valta as varia | Driver | -13.2 | 13.2 | \/ | | Vo | Output voltage range | Receiver (ĪNVALID) | -0.3 | $V_{CC} + 0.3$ | V | | | | DB package | | 62 | | | 0 | | DW package | | 46 | 0000 | | θ_{JA} | Package thermal impedance (3)(4) | PW package | | 62 | °C/W | | | | RHB package | | TBD | | | T _J | Operating virtual junction temperature | | | 150 | °C | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to network GND. ### Recommended Operating Conditions⁽¹⁾ See Figure 6 | | | | | MIN | NOM | MAX | UNIT | |-----------------|---|---------------------|--------------------------|-----|-----|-----|------| | | Supply voltage | | $V_{CC} = 3.3 \text{ V}$ | 3 | 3.3 | 3.6 | V | | | Supply voltage | | $V_{CC} = 5 V$ | 4.5 | 5 | 5.5 | V | | V | Driver and central high level input valtage | DIN, FORCEOFF, | V _{CC} = 3.3 V | 2 | | 5.5 | V | | V _{IH} | Driver and control high-level input voltage | FORCEON | $V_{CC} = 5 V$ | 2.4 | | 5.5 | V | | V_{IL} | Driver and control low-level input voltage | DIN, FORCEOFF, FORC | EON | 0 | | 8.0 | ٧ | | V_{I} | Receiver input voltage | | | -25 | | 25 | ٧ | | _ | Operating free air temperature | | MAX3238EC | 0 | | 70 | °C | | IA | Operating free-air temperature | | MAX3238EI | -40 | | 85 | .0 | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. #### Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARA | METER | TEST CONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |-----------------|-------------------------|------------------------------|---|-----|--------------------|-----|------| | I _I | Input leakage current | FORCEOFF, FORCEON | | | ±0.01 | ±1 | μΑ | | | | Auto-powerdown plus disabled | No load, FORCEOFF and FORCEON at V _{CC} | | 0.5 | 2 | mA | | I _{CC} | Supply current | Powered off | No load, FORCEOFF at GND | | 1 | 10 | | | | (T _A = 25°C) | Auto-powerdown plus enabled | No load, FORCEOFF at V _{CC} ,
FORCEON at GND,
All RIN are open or grounded | | 1 | 10 | μΑ | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.15$ V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 $V \pm 0.3$ V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V + 0.5 V ⁽³⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. ⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7. and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. ## 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### **DRIVER SECTION** #### Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARAMETER | TE | ST CONDITIONS | 3 | MIN | TYP ⁽²⁾ | MAX | UNIT | |-----------------|---|--|-----------------------------|----------------------------------|-----|--------------------|------|------| | V_{OH} | High-level output voltage | All DOUT at $R_L = 3 \text{ k}\Omega$ to | GND | | 5 | 5.4 | | V | | V_{OL} | Low-level output voltage | All DOUT at $R_L = 3 \text{ k}\Omega$ to | GND | | -5 | -5.4 | | V | | I _{IH} | High-level input current | $V_I = V_{CC}$ | | | | ±0.01 | ±1 | μΑ | | I _{IL} | Low-level input current | V _I at GND | | | | ±0.01 | ±1 | μΑ | | | Chart aircuit autaut aurrant(3) | V _{CC} = 3.6 V, | V _O = 0 V | | | ±35 | ±60 | A | | Ios | Short-circuit output current ⁽³⁾ | $V_{CC} = 5.5 V,$ | $V_O = 0 V$ | | | ±40 | ±100 | mA | | r _o | Output resistance | V_{CC} , V+, and V- = 0 V, | $V_O = \pm 2 V$ | | 300 | 10M | | Ω | | | Output looks as surrent | FORCEOFF = GND | $V_0 = \pm 12 V$, | V_{CC} = 3 V to 3.6 V | | | ±25 | ^ | | I _{OZ} | Output leakage current | FUNCEUFF = GND | $V_{O} = \pm 10 \text{ V},$ | V _{CC} = 4.5 V to 5.5 V | | | ±25 | μΑ | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. #### Switching Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARAMETER | TEST C | ONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |--------------------|------------------------------|---|--|-----|--------------------|-----|--------| | | Maximum data rate | C _L = 1000 pF,
One DOUT switching, | $R_L = 3 \text{ k}\Omega$,
See Figure 1 | 250 | 400 | | kbit/s | | t _{sk(p)} | Pulse skew ⁽³⁾ | C _L = 150 pF to 2500 pF,
See Figure 2 | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ | | 100 | | ns | | CD(tr) | Slew rate, transition region | V _{CC} = 3.3 V, | C _L = 150 pF to 1000 pF | 6 | | 30 | V/us | | SR(tr) | (see Figure 1) | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$ | $C_L = 150 \text{ pF to } 2500 \text{ pF}$ | 4 | | 30 | ν/μ5 | Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. #### **ESD Protection** | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------|----------------------------------|-----|------| | | НВМ | ±15 | | | DOUT | IEC 61000-4-2, Air-Gap Discharge | ±15 | kV | | | IEC 61000-4-2, Contact Discharge | ±8 | | All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. ⁽³⁾ Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. ## 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### **RECEIVER SECTION** #### Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |------------------|---|--|-----------------------|-----------------------|-----|------| | V_{OH} | High-level output voltage | $I_{OH} = -1 \text{ mA}$ | V _{CC} - 0.6 | V _{CC} - 0.1 | | V | | V_{OL} | Low-level output voltage | I _{OL} = 1.6 mA | | | 0.4 | V | | \/ | Positive-going input threshold voltage | $V_{CC} = 3.3 \text{ V}$ | | 1.5 | 2.4 | V | | V _{IT+} | Positive-going input threshold voltage | V _{CC} = 5 V | | 1.8 | 2.4 | V | | V | Negative-going input threshold voltage | $V_{CC} = 3.3 \text{ V}$ | 0.6 | 1.2 | | V | | V_{IT-} | Negative-going input threshold voltage | V _{CC} = 5 V | 0.8 | 1.5 | | V | | V_{hys} | Input hysteresis (V _{IT+} - V _{IT-}) | | | 0.3 | | V | | I_{OZ} | Output leakage current (except ROUT1B) | FORCEOFF = 0 V | | ±0.05 | ±10 | μΑ | | r _i | Input resistance | $V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$ | 3 | 5 | 7 | kΩ | ⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. #### Switching Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | TYP ⁽²⁾ | UNIT | |--------------------|---|---|--------------------|------| | t _{PLH} | Propagation delay time, low- to high-level output | C _L = 150 pF, See Figure 3 | 150 | ns | | t _{PHL} | Propagation delay time, high- to low-level output | C _L = 150 pF, See Figure 3 | 150 | ns | | t _{en} | Output enable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$ | 200 | ns | | t _{dis} | Output disable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$ | 200 | ns | | t _{sk(p)} | Pulse skew ⁽³⁾ | See Figure 3 | 50 | ns | Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μF at V_{CC} = 5 V \pm 0.5 V. #### **ESD Protection** | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------|----------------------------------|-----|------| | | НВМ | ±15 | | | RIN | IEC 61000-4-2, Air-Gap Discharge | ±15 | kV | | | IEC 61000-4-2, Contact Discharge | ±8 | | ⁽²⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. ## 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### **AUTO-POWERDOWN PLUS SECTION** #### **Electrical Characteristics** over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |-------------------------|--|--|-----------------------|-----|------| | V _{T+(valid)} | Receiver input threshold for INVALID high-level output voltage | FORCEON = GND, FORCEOFF = V _{CC} | | 2.7 | V | | V _{T-(valid)} | Receiver input threshold for INVALID high-level output voltage | FORCEON = GND, FORCEOFF = V _{CC} | -2.7 | | V | | V _{T(invalid)} | Receiver input threshold for INVALID low-level output voltage | FORCEON = GND, FORCEOFF = V _{CC} | -0.3 | 0.3 | V | | V _{OH} | INVALID high-level output voltage | I _{OH} = -1 mA, FORCEON = GND,
FORCEOFF = V _{CC} | V _{CC} - 0.6 | | V | | V _{OL} | INVALID low-level output voltage | I _{OL} = 1.6 mA, FORCEON = GND,
FORCEOFF = V _{CC} | | 0.4 | V | #### **Switching Characteristics** over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | MIN | TYP ⁽¹⁾ | MAX | UNIT | |----------------------|---|-----|--------------------|-----|------| | t _{valid} | Propagation delay time, low- to high-level output | | 0.1 | | μs | | t _{invalid} | Propagation delay time, high- to low-level output | | 50 | | μs | | t _{en} | Supply enable time | | 25 | | μs | | t _{dis} | Receiver or driver edge to auto-powerdown plus | 15 | 30 | 60 | S | (1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. ## 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### PARAMETER MEASUREMENT INFORMATION - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 1. Driver Slew Rate - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 2. Driver Pulse Skew - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_f \le 10 \ ns$. Figure 3. Receiver Propagation Delay Times ## 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH \pm 15-kV ESD (HBM) PROTECTION SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### PARAMETER MEASUREMENT INFORMATION (continued) - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: $Z_0 = 50~\Omega$, 50% duty cycle, $t_r \le 10~\text{ns}$, $t_f \le 10~\text{ns}$. - C. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - D. t_{PZL} and t_{PZH} are the same as t_{en} . Figure 4. Receiver Enable and Disable Times SLLS710A-FEBRUARY 2006-REVISED APRIL 2006 #### PARAMETER MEASUREMENT INFORMATION (continued) † Auto-powerdown plus disables drivers and reduces supply current to 1 $\mu A.$ - NOTES: A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 5 kbit/s, Z_{O} = 50 Ω , 50% duty cycle, $t_{f} \le 10$ ns, $t_{f} \le 10$ ns. Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time WITH ±15-kV ESD (HBM) PROTECTION #### **APPLICATION INFORMATION** #### **V_{CC} vs CAPACITOR VALUES** † C3 can be connected to V_{CC} or GND. NOTES: A. Resistor values shown are nominal. B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown | v _{cc} | C1 | C2, C3, and C4 | | | | | |--|--|--------------------------------------|--|--|--|--| | $\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.15 V} \\ \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$ | 0.1 μF
0.22 μF
0.047 μF
0.22 μF | 0.1 μF
0.22 μF
0.33 μF
1 μF | | | | | Figure 6. Typical Operating Circuit and Capacitor Values 24-Jan-2013 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|--------------------|------|-------------|----------------------------|------------------|--------------------|--------------|-------------------|---------| | MAX3238ECDB | ACTIVE | SSOP | DB | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDBG4 | ACTIVE | SSOP | DB | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDBR | ACTIVE | SSOP | DB | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDBRG4 | ACTIVE | SSOP | DB | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDW | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDWG4 | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDWR | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECDWRG4 | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MAX3238EC | Samples | | MAX3238ECPW | ACTIVE | TSSOP | PW | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MP238EC | Samples | | MAX3238ECPWG4 | ACTIVE | TSSOP | PW | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MP238EC | Samples | | MAX3238ECPWR | ACTIVE | TSSOP | PW | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MP238EC | Samples | | MAX3238ECPWRG4 | ACTIVE | TSSOP | PW | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | MP238EC | Samples | | MAX3238EIDB | ACTIVE | SSOP | DB | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIDBG4 | ACTIVE | SSOP | DB | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIDBR | ACTIVE | SSOP | DB | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIDBRG4 | ACTIVE | SSOP | DB | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIDW | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | www.ti.com 24-Jan-2013 | Orderable Device | Status | Package Type | _ | | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|---------|----|-------------|----------------------------|------------------|--------------------|--------------|-------------------|---------| | | (1) | | Drawing | | | (2) | | (3) | | (4) | | | MAX3238EIDWG4 | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIDWR | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIDWRG4 | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MAX3238EI | Samples | | MAX3238EIPW | ACTIVE | TSSOP | PW | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MP238EI | Samples | | MAX3238EIPWG4 | ACTIVE | TSSOP | PW | 28 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MP238EI | Samples | | MAX3238EIPWR | ACTIVE | TSSOP | PW | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MP238EI | Samples | | MAX3238EIPWRG4 | ACTIVE | TSSOP | PW | 28 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | MP238EI | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and ⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device. #### **PACKAGE OPTION ADDENDUM** 24-Jan-2013 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. PACKAGE MATERIALS INFORMATION www.ti.com 5-Feb-2013 #### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | MAX3238ECDBR | SSOP | DB | 28 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | MAX3238ECDWR | SOIC | DW | 28 | 1000 | 330.0 | 32.4 | 11.35 | 18.67 | 3.1 | 16.0 | 32.0 | Q1 | | MAX3238ECPWR | TSSOP | PW | 28 | 2000 | 330.0 | 16.4 | 6.9 | 10.2 | 1.8 | 12.0 | 16.0 | Q1 | | MAX3238EIDBR | SSOP | DB | 28 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | MAX3238EIDWR | SOIC | DW | 28 | 1000 | 330.0 | 32.4 | 11.35 | 18.67 | 3.1 | 16.0 | 32.0 | Q1 | | MAX3238EIPWR | TSSOP | PW | 28 | 2000 | 330.0 | 16.4 | 6.9 | 10.2 | 1.8 | 12.0 | 16.0 | Q1 | www.ti.com 5-Feb-2013 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | MAX3238ECDBR | SSOP | DB | 28 | 2000 | 367.0 | 367.0 | 38.0 | | MAX3238ECDWR | SOIC | DW | 28 | 1000 | 367.0 | 367.0 | 55.0 | | MAX3238ECPWR | TSSOP | PW | 28 | 2000 | 367.0 | 367.0 | 38.0 | | MAX3238EIDBR | SSOP | DB | 28 | 2000 | 367.0 | 367.0 | 38.0 | | MAX3238EIDWR | SOIC | DW | 28 | 1000 | 367.0 | 367.0 | 55.0 | | MAX3238EIPWR | TSSOP | PW | 28 | 2000 | 367.0 | 367.0 | 38.0 | DW (R-PDSO-G28) #### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AE. DW (R-PDSO-G28) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Refer to IPC7351 for alternate board design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G28) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 ## PW (R-PDSO-G28) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## PW (R-PDSO-G28) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### DB (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.