
- Wide Operating Voltage Range of 2 V to 6 V
- High-Current Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 15 ns
- ±6-mA Output Drive at 5 V

SN54HC594 . . . J OR W PACKAGE SN74HC594 . . . D, DW, OR N PACKAGE (TOP VIEW)

- Low Input Current of 1 μA Max
- 8-Bit Serial-In, Parallel-Out Shift Registers With Storage
- Independent Direct Overriding Clears on Shift and Storage Registers
- Independent Clocks for Both Shift and Storage Registers

SN54HC594 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

The 'HC594 devices contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks and direct overriding clear (\overline{RCLR} , \overline{SRCLR}) inputs are provided on both the shift and storage registers. A serial ($Q_{H'}$) output is provided for cascading purposes.

Both the shift register (SRCLK) and storage register (RCLK) clocks are positive edge triggered. If both clocks are connected together, the shift register always is one count pulse ahead of the storage register.

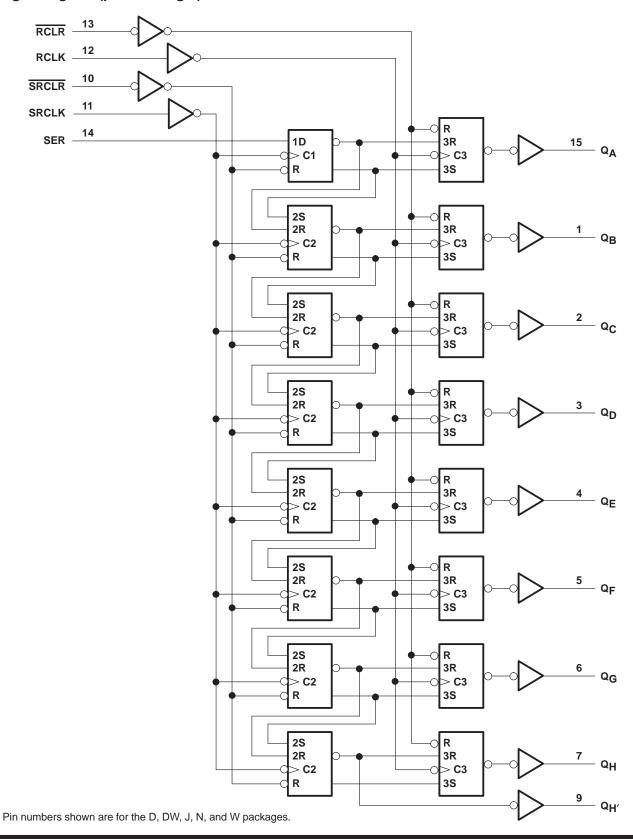
The parallel $(Q_A - Q_H)$ outputs have high-current capability. $Q_{H'}$ is a standard output.

ORDERING INFORMATION

TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube of 25	SN74HC594N	SN74HC594N
		Tube of 40	SN74HC594D	
-40°C to 85°C	SOIC - D	Reel of 2500	SN74HC594DR	HC594
-40°C to 85°C		Reel of 250	SN74HC594DT	
	0010 014	Tube of 40	SN74HC594DW	110504
	SOIC - DW	Reel of 2000	SN74HC594DWR	HC594
	CDIP – J	Tube of 25	SNJ54HC594J	SNJ54HC594J
–55°C to 125°C	CFP – W	Tube of 150	SNJ54HC594W	SNJ54HC594W
	LCCC - FK	Tube of 55	SNJ54HC594FK	SNJ54HC594FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SN54HC594, SN74HC594 8-BIT SHIFT REGISTERS WITH OUTPUT REGISTERS SCLS040F - DECEMBER 1982 - REVISED OCTOBER 2003

FUNCTION TABLE

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	RCLR	FUNCTION
Х	Х	L	Х	Χ	Shift register is cleared.
L	1	Н	Х	Х	First stage of shift register goes low. Other stages store the data of previous stage, respectively.
Н	н ↑ н х х			Х	First stage of shift register goes high. Other stages store the data of previous stage, respectively.
L	\downarrow	Н	Х	Х	Shift register state is not changed.
Х	Χ	X	X	L	Storage register is cleared.
Х	Х	X	\uparrow	Н	Shift register data is stored in the storage register.
Х	Х	X	\downarrow	Н	Storage register state is not changed.

logic diagram (positive logic)

timing diagram SRCLK **SER RCLK** SRCLR RCLR Q_A QC Q_D Q_E QF Q_{G} QH' absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Continuous output current, I_O (V_O = 0 to V_{CC}) ± 35 mA Continuous current through V_{CC} or GND ± 70 mA DW package 57°C/W N package 67°C/W Storage temperature range, T_{stq} –65°C to 150°C

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			SN	154HC59)4	SN	174HC59)4	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		2	5	6	2	5	6	V
		V _{CC} = 2 V	1.5			1.5			
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15		7	3.15			V
		V _{CC} = 6 V	4.2		\ </td <td>4.2</td> <td></td> <td></td> <td></td>	4.2			
		V _{CC} = 2 V		PEL	0.5			0.5	
VIL	Low-level input voltage	V _{CC} = 4.5 V		2	1.35			1.35	V
		VCC = 6 V		Ç	1.8			1.8	
VI	Input voltage		05	7	VCC	0		VCC	V
Vo	Output voltage		0		VCC	0		VCC	V
		V _{CC} = 2 V			1000			1000	
t _t	Input transition (rise and fall) time	V _{CC} = 4.5 V			500			500	ns
		VCC = 6 V			400			400	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			.,	Т	A = 25°C	;	SN54H	IC594	SN74H	IC594	
PARAMETER	TES	T CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		1.9		
		$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		4.4		
			6 V	5.9	5.999		5.9		5.9		
Voн	$V_I = V_{IH}$ or V_{IL}	$Q_{H'}$, $I_{OH} = -4 \text{ mA}$	45.7	3.98	4.3		3.7		3.84		V
		Q_A-Q_H , $I_{OH} = -6$ mA	4.5 V	3.98	4.3		3.7		3.84		
		$Q_{H'}$, $I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.2	EW	5.34		
		$Q_{A}-Q_{H}$, $I_{OH} = -7.8 \text{ mA}$	6 V	5.48	5.8		5.2	FL	5.34		
			2 V		0.002	0.1	4	0.1		0.1	
		I _{OL} = 20 μA	4.5 V		0.001	0.1	ζ ₀ ,	0.1		0.1	
			6 V		0.001	0.1	γ_{Q_i}	0.1		0.1	
VOL	VI = VIH or VIL	$Q_{H'}$, $I_{OL} = 4 \text{ mA}$	45.77		0.17	0.26) V	0.4		0.33	V
		Q_A-Q_H , $I_{OL} = 6 \text{ mA}$	4.5 V		0.17	0.26	7	0.4		0.33	
		$Q_{H'}$, $I_{OL} = 5.2 \text{ mA}$	6.1/		0.15	0.26		0.4		0.33	
		Q_A-Q_H , $I_{OL} = 7.8 \text{ mA}$	6 V		0.15	0.26		0.4		0.33	
lį	$V_I = V_{CC}$ or 0		6 V		±0.1	±100		±1000		±1000	nA
loz	$V_O = V_{CC}$ or 0		6 V		±0.01	±0.5		±10		±5	μΑ
ICC	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160		80	μΑ
C _i			2 V to 6 V		3	10		10		10	pF

SN54HC594, SN74HC594 8-BIT SHIFT REGISTERS WITH OUTPUT REGISTERS

SCLS040F - DECEMBER 1982 - REVISED OCTOBER 2003

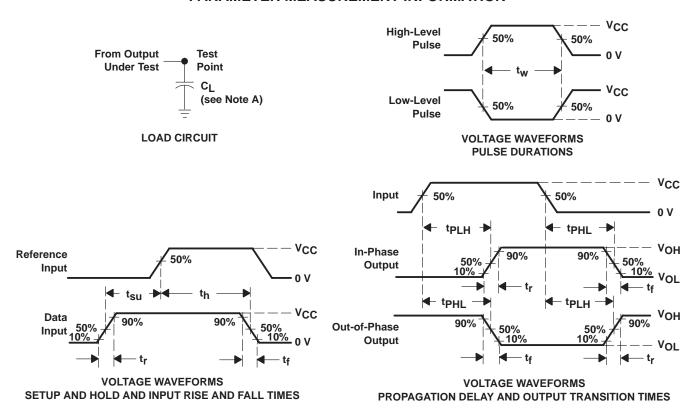
timing requirements over recommended operating free-air temperature range (unless otherwise noted)

				T _A =	25°C	SN54H	IC594	SN74H	IC594	
			VCC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		5		3.3		4	
fclock	Clock frequency		4.5 V		25		17		20	MHz
			6 V		29		20		24	
			2 V	100		150		125		
		SRCLK or RCLK high or low	4.5 V	20		30		25		
	Dulas dunation		6 V	17		25		21		
t _W	Pulse duration		2 V	100		150		125		ns
		SRCLR or RCLR low	4.5 V	20		30		25		
			6 V	17		25		21		
			2 V	90		135	2	110		
		SER before SRCLK↑	4.5 V	18		27	3	22		
			6 V	15		23	Q'	19		
			2 V	90		135		110		
		SRCLK↑ before RCLK↑†	4.5 V	18		27		22		
			6 V	15		23		19		
			2 V	50		75		63		
t _{su}	Setup time	SRCLR low before RCLK↑	4.5 V	10		15		13		ns
			6 V	9		13		11		
			2 V	20		20		20		
		SRCLR high (inactive) before SRCLK↑	4.5 V	10		10		10		
			6 V	10		10		10		
			2 V	5		5		5		
		RCLR high (inactive) before SRCLK↑	4.5 V	5		5		5		
			6 V	5		5		5		
			2 V	5		5		5		
th Hold time, SER after SRCLK↑	4.5 V	5		5		5		ns		
		6 V	5		5		5			

[†] This setup time ensures that the output register receives stable data from the shift-register outputs. The clocks may be tied together, in which case the output register is one clock pulse behind the shift register.

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

	FROM	то	l ,,	T,	4 = 25°C	;	SN54F	IC594	SN74F	IC594			
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT		
			2 V	5	8		3.3		4				
f _{max}			4.5 V	25	35		17		20		MHz		
			6 V	29	40		20		24				
			2 V		50	150		225		185			
	SRCLK	$Q_{H'}$	4.5 V		20	30		45		37			
			6 V		15	25		38		31			
t _{pd}			2 V		50	150		225		185	ns		
	RCLK	Q _A -Q _H	4.5 V		20	30		45		37			
			6 V		15	25		38		31			
			2 V		50	150	ζ),	225		185			
	SRCLR	Q _H ′	$Q_{H'}$	$Q_{H'}$	4.5 V		20	30	$g_{Q_{\zeta}}$	45		37	
4			6 V		15	25) V _G	38		31			
t _{PHL}			2 V		50	125		185		155	ns		
	RCLR	Q_A-Q_H	4.5 V		20	25		37		31			
			6 V		15	21		31		26			
			2 V		38	75		110		95			
		$Q_{H'}$	4.5 V		8	15		22		19			
+.			6 V		6	13		19		16	ne		
t _t		Q _A -Q _H 4	2 V		38	60		90		75	ns		
			4.5 V		8	12		18		15			
			6 V		6	10		15		13			


switching characteristics over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see Figure 1)

DADAMETER	FROM	то	\ \ \	T,	Վ = 25° C	;	SN54H	C594	SN74H	C594	LINUT
PARAMETER	(INPUT)	(OUTPUT)	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		90	200		300		250	
t _{pd}	RCLK	Q_A – Q_H	4.5 V		23	40		60		50	ns
·	, ,		6 V		19	34		51		43	
			2 V		90	200	Q	300		250	
t _{PHL}	RCLR	Q _A –Q _H	4.5 V		23	40	40	60		50	ns
			6 V		19	34	20	51		43	
			2 V		45	210	Deg	315		265	
t _t		Q _A -Q _H	4.5 V		17	42		63		53	ns
			6 V		13	36		53		45	

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	395	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 6$ ns, $t_f = 6$ ns.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLH and tpHL are the same as tpd.
- F. tf and tr are the same as tt.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74HC594D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DTE4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC594N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74HC594NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame

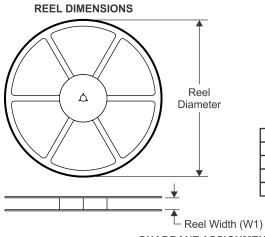
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

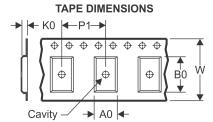
PACKAGE OPTION ADDENDUM

18-Sep-2008

retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

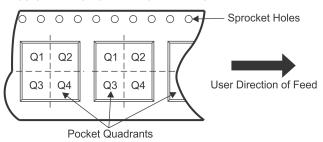
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

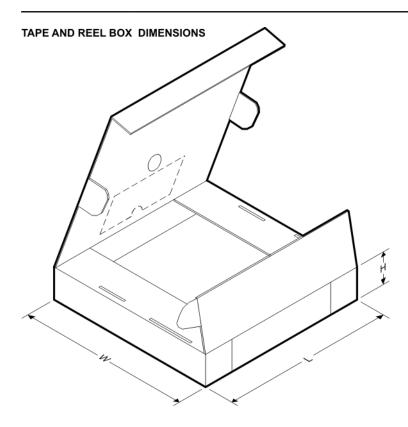
PACKAGE MATERIALS INFORMATION

www.ti.com 11-Oct-2012


TAPE AND REEL INFORMATION

_	_	
		3
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

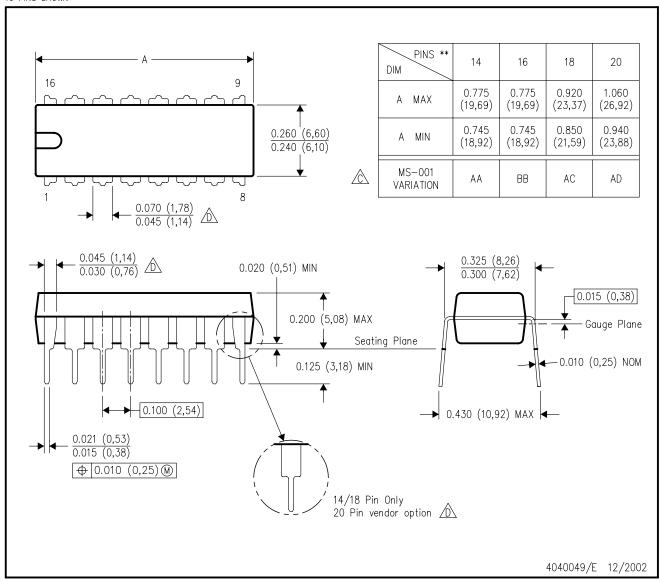


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC594DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC594DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74HC594DWRG4	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Oct-2012

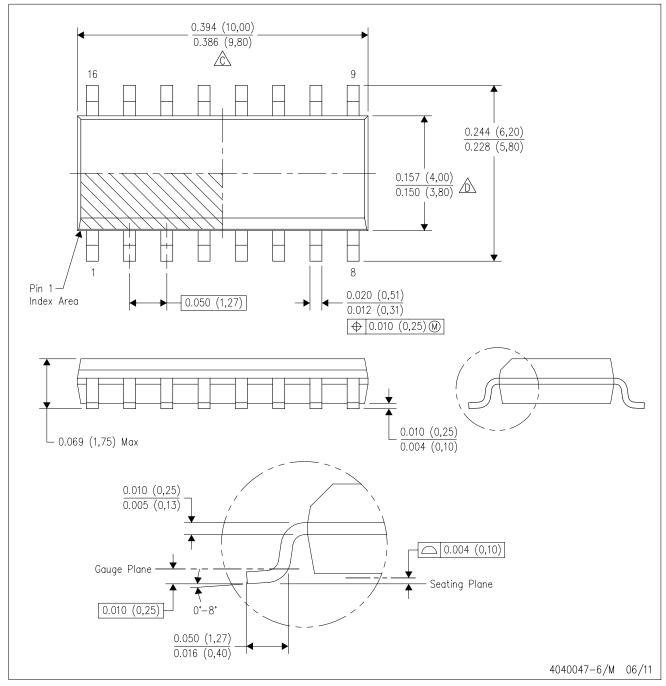

*All dimensions are nominal

7 til diritoriororio di o mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC594DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74HC594DWR	SOIC	DW	16	2000	366.0	364.0	50.0
SN74HC594DWRG4	SOIC	DW	16	2000	367.0	367.0	38.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

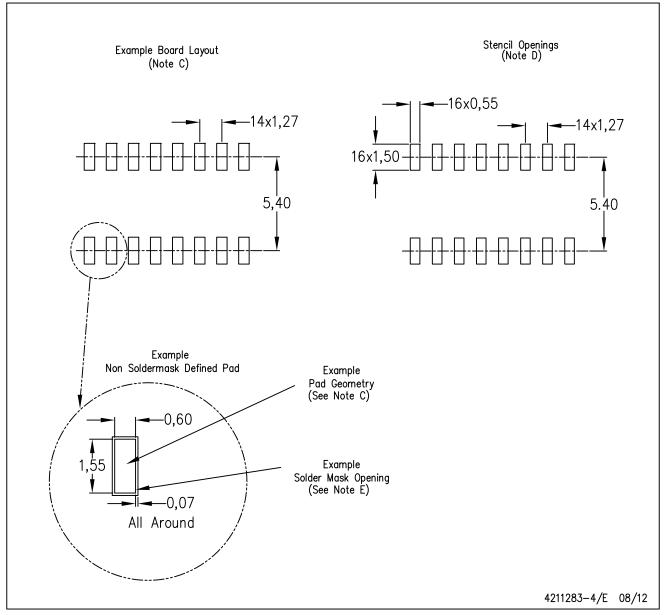
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

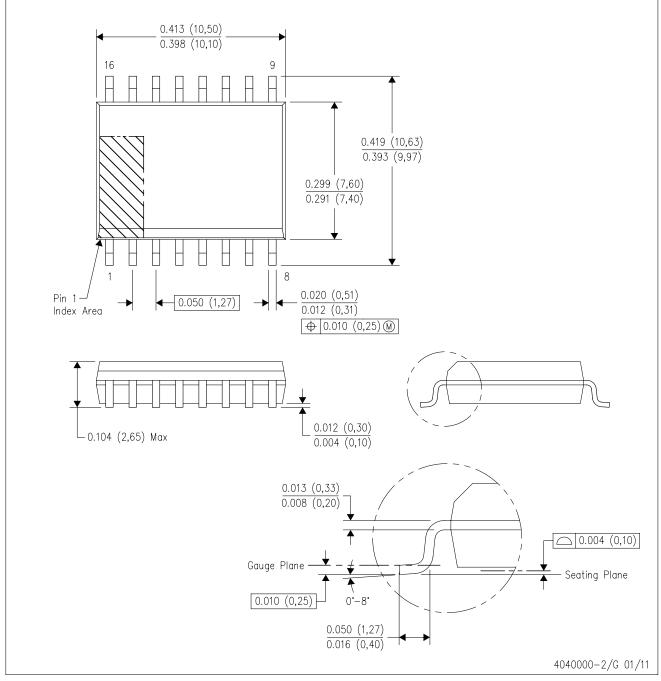
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

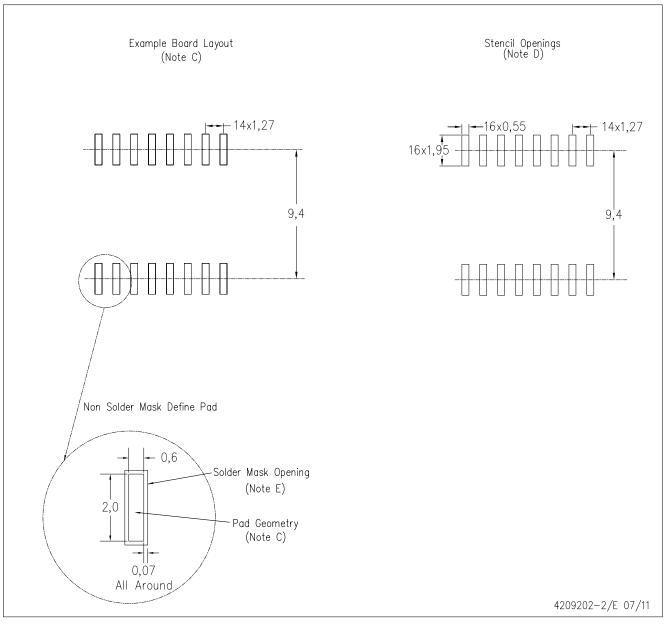
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/medical Interface interface.ti.com Medical www.ti.com/security

Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.