

General Description

The MAX5982A/MAX5982B/MAX5982C provide a com-

plete interface for a powered device (PD) to comply with

the IEEE® 802.3af/at standard in a power-over-Ethernet

(PoE) system. The MAX5982A/MAX5982B/MAX5982C

provide the PD with a detection signature, classifica-

tion signature, and an integrated isolation power switch

with inrush current control. During the inrush period,

the MAX5982A/MAX5982B/MAX5982C limit the current

to less than 182mA before switching to the higher cur-

rent limit (1700mA to 2100mA) when the isolation power

MOSFET is fully enhanced. The devices feature an input

UVLO with wide hysteresis and long deglitch time to

compensate for twisted-pair cable resistive drop and to assure glitch-free transition during power-on/-off condi-

tions. The MAX5982A/MAX5982B/MAX5982C can with-

The MAX5982A/MAX5982B/MAX5982C support a

2-Event classification method as specified in the IEEE

802.3at standard and provide a signal to indicate when probed by a Type 2 power sourcing equipment (PSE).

The devices detect the presence of a wall adapter power

source connection and allow a smooth switchover from

The MAX5982A/MAX5982B/MAX5982C also provide a

power-good (PG) signal, two-step current limit and foldback, overtemperature protection, and di/dt limit. A sleep mode feature in the MAX5982A/MAX5982B provides low power consumption while supporting Maintain Power

Signature (MPS). An ultra-low-power sleep mode feature in the MAX5982A/MAX5982B further reduces power consumption while still supporting MPS. The MAX5982A/ MAX5982B also feature an LED driver that is automati-

The MAX5982A/MAX5982B/MAX5982C are available in a 16-pin, 5mm x 5mm, TQFN power package. These devices are rated over the -40°C to +85°C extended

the PoE power source to the wall power adapter.

stand up to 100V at the input.

cally activated during sleep mode.

Features

- Sleep Mode and Ultra-Low-Power Sleep (MAX5982A/MAX5982B)
- ♦ IEEE 802.3af/at Compliant
- 2-Event Classification or an External Wall Adapter Indicator Output
- Simplified Wall Adapter Interface
- ♦ PoE Classification 0–5
- ♦ 100V Input Absolute Maximum Rating
- ♦ Inrush Current Limit of 182mA Maximum
- Current Limit During Normal Operation Between 1700mA and 2100mA
- Current Limit and Foldback
- ♦ Legacy UVLO at 36V
- LED Driver with Programmable LED Current (MAX5982A/MAX5982B)
- Overtemperature Protection
- Thermally Enhanced, 5mm x 5mm, 16-Pin TQFN

_Applications

IEEE 802.3af/at Powered Devices IP Phones, Wireless Access Nodes, IP Security Cameras WiMAX™ Base Stations

Ordering Information appears at end of data sheet.

WiMAX is a trademark of WiMAX Forum. IEEE is a registered service mark of the Institute of Electrical and Electronics Engineers, Inc.

temperature range.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

VDD to VSS	0.3V to +100V
DET, RTN, WAD, PG, ZEC to VSS	0.3V to +100V
CLS, SL, WK, ULP, LED to VSS	0.3V to +6V
Maximum Current on CLS (100ms maximum).	100mA
Continuous Power Dissipation (TA = $+70^{\circ}$ C) (N	Note 1)

TQFN (derate	28.6mW/°C	above +70°C)
--------------	-----------	-------------	---

Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Maximum power dissipation is obtained using JEDEC JESD51-5 and JESD51-7 specifications.

PACKAGE THERMAL CHARACTERISTICS (Note 2)

TQFN

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = (V_{DD} - V_{SS}) = 48V, R_{DET} = 24.9k\Omega, R_{CLS} = 615\Omega$, and $R_{\overline{SL}} = 60.4k\Omega$. RTN, WAD, PG, $\overline{2EC}$, \overline{WK} , and \overline{ULP} unconnected, all voltages are referenced to V_{SS} , unless otherwise noted. T_A = T_J = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 3)

PARAMETER	SYMBOL	CC	MIN	ТҮР	MAX	UNITS	
DETECTION MODE							
Input Offset Current	IOFFSET	V _{IN} = 1.4V to 10.	1V (Note 4)			10	μA
Effective Differential Input Resistance	dR		10.1V with 1V step, AD = PG = $\overline{2EC}$ (Note 5)	23.95	25.00	25.50	kΩ
CLASSIFICATION MODE							
Classification Disable Threshold	Vth,cls	VIN rising (Note 6	5)	22.0	22.8	23.6	V
Classification Stability Time					0.2		ms
		$V_{IN} = 12.5V$ to 20.5V, $V_{DD} =$ RTN = WAD = PG = $\overline{2EC}$	Class 0, $R_{CLS} = 615\Omega$	0		3.96	mA
			Class 1, RCLS = 117Ω	9.12		11.88	
Classification Current			Class 2, $R_{CLS} = 66.5\Omega$	17.2		19.8	
Classification Current	ICLASS		Class 3, RCLS = 43.7Ω	26.3		29.7	
			Class 4, $R_{CLS} = 30.9\Omega$	36.4		43.6	
			Class 5, RCLS = 21.3Ω	52.7		63.3	
TYPE 2 (802.3at) CLASSIFICA	TION MODE						
Mark Event Threshold	VTHM	VIN falling		10.1	10.7	11.6	V
Hysteresis on Mark Event Threshold					0.82		V
Mark Event Current	IMARK	V_{IN} falling to enter $\leq 10.1V$	0.25		0.85	mA	
Reset Event Threshold	VTHR	V _{IN} falling		2.8	3.8	5.2	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = (V_{DD} - V_{SS}) = 48V, R_{DET} = 24.9k\Omega, R_{CLS} = 615\Omega$, and $R_{SL} = 60.4k\Omega$. RTN, WAD, PG, $\overline{2EC}$, \overline{WK} , and \overline{ULP} unconnected, all voltages are referenced to V_{SS}, unless otherwise noted. T_A = T_J = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 3)

PARAMETER	SYMBOL	co	MIN	TYP	MAX	UNITS	
POWER MODE							
VIN Supply Voltage Range						60	V
VIN Supply Current	IQ	Current through ir	nternal MOSFET = 0		0.25	0.55	mA
V _{IN} Turn-On Voltage	Von	V _{IN} rising		34.3	35.4	36.6	V
VIN Turn-Off Voltage	VOFF	V _{IN} falling		30			V
VIN Turn-On/-Off Hysteresis	VHYST_UVLO	(Note 7)		4.2			V
VIN Deglitch Time	toff_dly	VIN falling from 40	OV to 20V (Note 8)	30	120		μs
Inrush to Operating Mode Delay	^t DELAY	tDELAY = minimur after entering into	n PG current pulse width power mode	90	96	102	ms
L L L D MOOFFT			$T_J = +25^{\circ}C$		0.1	0.2	
Isolation Power MOSFET On-Resistance	Ron_Iso	I _{RTN} = 950mA	TJ = +85°C		0.15	0.25	Ω
On-nesistance			TJ = +125°C		0.2		
RTN Leakage Current	IRTN_LKG	VRTN = 12.5V to 3	30V			10	μA
CURRENT LIMIT							
Inrush Current Limit	linrush	During initial turn-	on period, VRTN = 1.5V	90	135	182	mA
Current Limit During Normal Operation	ILIM	After inrush completed, V _{RTN} = 1V (Note 9)		1700	1900	2100	mA
Current Limit in Foldback Condition	ILIM-FLDBK	Both during inrush and after inrush completed $V_{RTN} = 7.5V$			53		mA
Foldback Threshold		V _{RTN} (Note 10)		6.5	7.0	7.5	V
LOGIC	1	, , , , , , , , , , , , , , , , , , , ,		1			
WAD Detection Threshold	Vwad-ref	V _{WAD} rising, V _{IN} = 14V to 48V (referenced to RTN)		8	9	10	V
WAD Detection Threshold Hysteresis		VWAD falling, VRT unconnected	N = OV, VSS		0.35		V
WAD Input Current	Iwad-lkg	V _{WAD} = 10V (refe	erenced to RTN)			3.5	μA
2EC Sink Current		V2EC = 3.5V (refe VSS disconnected	,,	1	1.5	2.25	mA
2EC Off-Leakage Current		$V_{\overline{2EC}} = 48V$				1	μA
PG Sink Current		VRTN = 1.5V, VPG = 0.8V, during inrush period		125	230	375	μA
PG Off-Leakage Current		$V_{PG} = 60V$				1	μA
SLEEP MODE (MAX5982A/MA	X5982B)						
WK and ULP Logic Threshold	VTH	V_{WK} falling and V_{ULP} rising and falling		1.5		3	V
SL Logic Threshold		Falling		0.75	0.8	0.85	V
SL Current		$R_{\overline{SL}} = 0\Omega$			140		μA
		$R\overline{SL} = 60.4k\Omega, VL$	ed = 3.5V	10	10.5	11.5	
LED Current Amplitude	ILED	$R\overline{SL}$ = 30.2k Ω , VL	ED = 3.75V	19.5	20.9	22.5	mA
	1	$R_{\overline{SL}} = 30.2 k\Omega, V_{L}$		19			1

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = (V_{DD} - V_{SS}) = 48V, R_{DET} = 24.9k\Omega, R_{CLS} = 615\Omega, and R_{SL} = 60.4k\Omega. RTN, WAD, PG, ZEC, WK, and ULP unconnected, all voltages are referenced to V_{SS}, unless otherwise noted. TA = TJ = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 3)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LED Current Programmable Range			10		20	mA
LED Current with Grounded \overline{SL}		$V_{\overline{SL}} = 0V$	20.5	24.5	28.5	mA
LED Current Frequency	filed	Normal and ultra-low-power sleep modes		250		Hz
LED Current Duty Cycle	Diled	Normal and ultra-low-power sleep modes		25		%
V _{DD} Current Amplitude	Ivdd	Normal sleep mode, $V_{LED} = 3.5V$	10	11	12.2	mA
Internal Current Duty Cycle	Divdd	Normal and ultra-low-power sleep modes		75		%
Internal Current Enable Time	tMPS	Ultra-low-power sleep mode	80	84	88	ms
Internal Current Disable Time	tmpdo	Ultra-low-power sleep mode	220	228	236	ms
SL Delay Time	t <u>s</u>	Time VSL must remain below the \overline{SL} logic threshold to enter sleep and ultra-low-power modes (MAX5982A)	5.4	6.0	6.6	S
THERMAL SHUTDOWN						
Thermal-Shutdown Threshold	TSD	TJ rising		+150		°C
Thermal-Shutdown Hysteresis		TJ falling		30		°C

Note 3: All devices are 100% production tested at TA = +25°C. Limits over temperature are guaranteed by design.

Note 4: The input offset current is illustrated in Figure 1.

Note 5: Effective differential input resistance is defined as the differential resistance between V_{DD} and V_{SS}. See Figure 1.

Note 6: Classification current is turned off whenever the device is in power mode.

Note 7: UVLO hysteresis is guaranteed by design, not production tested.

Note 8: A 20V glitch on input voltage, which takes V_{DD} below V_{ON} shorter than or equal to t_{OFF_DLY} does not cause the MAX5982A/MAX5982B/MAX5982C to exit power-on mode.

Note 9: Maximum current limit during normal operation is guaranteed by design; not production tested.

Note 10: In power mode, current-limit foldback is used to reduce the power dissipation in the isolation MOSFET during an overload condition across V_{DD} and RTN.

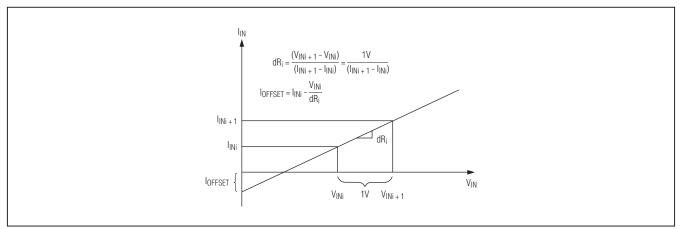
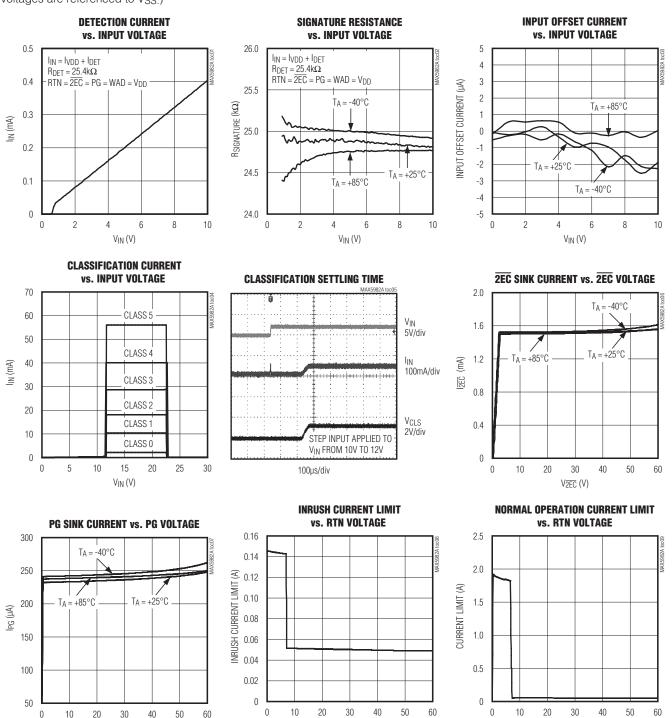



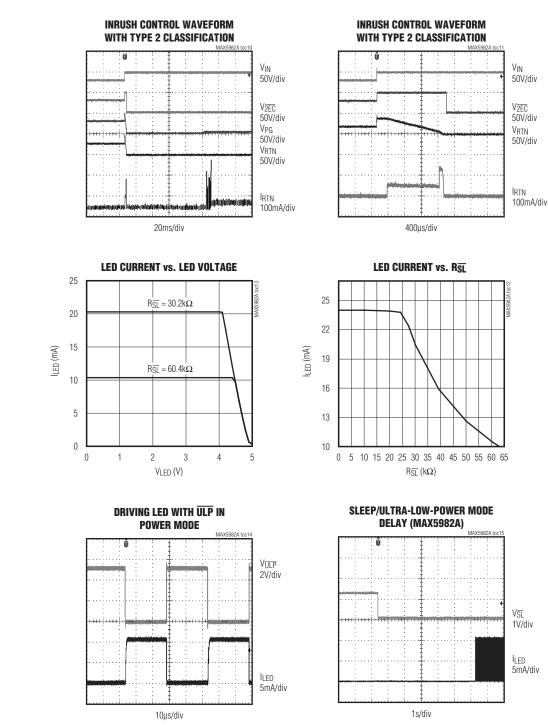
Figure 1. Effective Differential Input Resistance/Offset Current

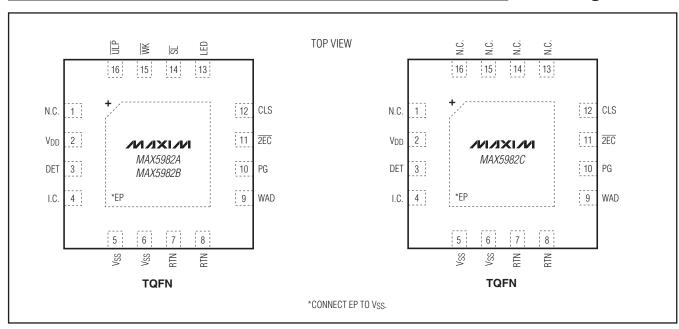
V_{RTN} (V)

Typical Operating Characteristics

 $(V_{IN} = (V_{DD} - V_{SS}) = 54V, R_{DET} = 24.9k\Omega, R_{CLS} = 615\Omega, and R_{\overline{SL}} = 60.4k\Omega. RTN, WAD, PG, \overline{2EC}, \overline{WK}, and \overline{ULP}$ unconnected; all voltages are referenced to VSS)

VPG (V)

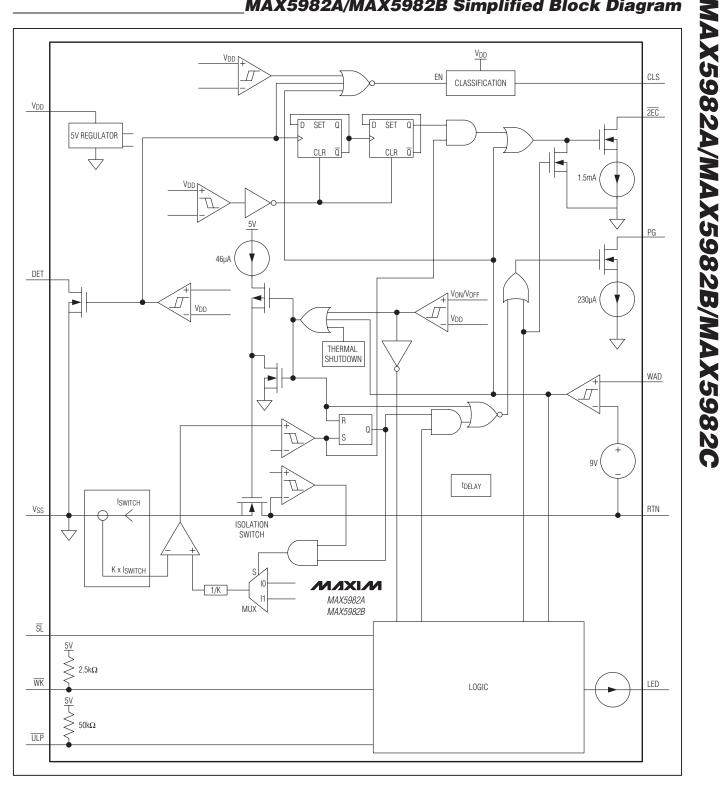

0


V_{RTN} (V)

MAX5982A/MAX5982B/MAX5982C

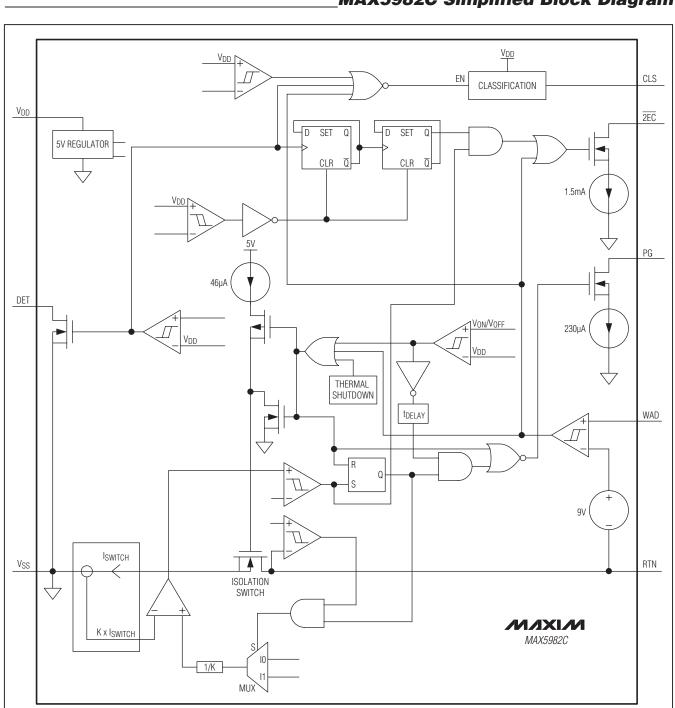
_Typical Operating Characteristics (continued)

 $(V_{IN} = (V_{DD} - V_{SS}) = 54V, R_{DET} = 24.9k\Omega, R_{CLS} = 615\Omega$, and $\overline{R_{SL}} = 60.4k\Omega$. RTN, WAD, PG, $\overline{2EC}$, \overline{WK} , and \overline{ULP} unconnected; all voltages are referenced to V_{SS}.)

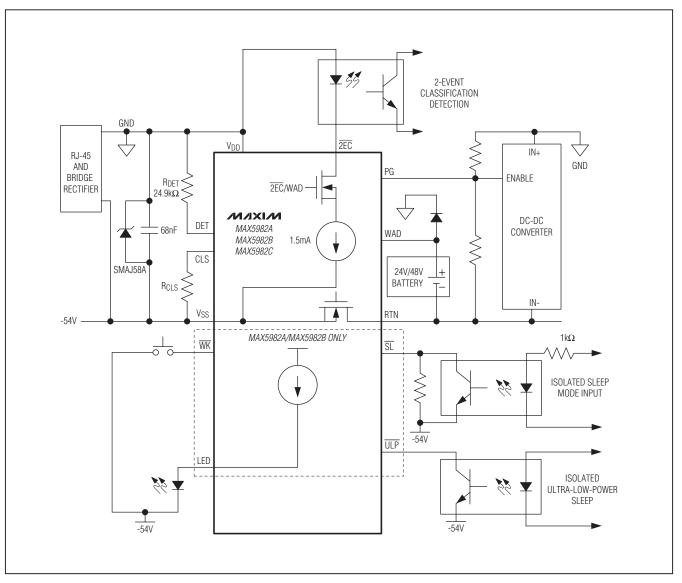

_Pin Configurations

_Pin Description

Р	IN		
MAX5982A/ MAX5982B	MAX5982C	NAME	FUNCTION
1	1, 13–16	N.C.	No Connection. Not internally connected.
2	2	VDD	Positive Supply Input. Connect a 68nF (min) bypass capacitor between VDD and VSS.
3	3	DET	Detection Resistor Input. Connect a signature resistor ($R_{DET} = 24.9 k\Omega$) from DET to V_{DD} .
4	4	I.C.	Internally Connected. Leave unconnected.
5, 6	5, 6	V _{SS}	Negative Supply Input. VSS connects to the source of the integrated isolation n-channel power MOSFET.
7, 8	7, 8	RTN	Drain of Isolation MOSFET. RTN connects to the drain of the integrated isolation n-channel power MOSFET. Connect RTN to the downstream DC-DC converter ground as shown in the <i>Typical Application Circuit</i> .
9	9	WAD	Wall Power Adapter Detector Input. Wall adapter detection is enabled the moment V _{DD} - V _{SS} crosses the mark event threshold. Detection occurs when the voltage from WAD to RTN is greater than 9V. When a wall power adapter is present, the isolation n-channel power MOSFET turns off and <u>ZEC</u> current sink turns on. Connect WAD directly to RTN when the wall power adapter or other auxiliary power source is not used.
10	10	PG	Open-Drain, Power-Good Indicator Output. PG sinks 230µA to disable the downstream DC-DC converter while turning on the hot-swap MOSFET switch. PG current sink is disabled during detection, classification, and in the steady-state power mode. The PG current sink is turned on to disable the downstream DC-DC converter when the device is in sleep mode.


PIN			
MAX5982A/ MAX5982B	MAX5982C	NAME	FUNCTION
11	11	2EC	2-Event Classification Detect or Wall Adapter Detect Output. A 1.5mA current sink is enabled at $\overline{2EC}$ when a Type 2 PSE or a wall adapter is detected. When powered by a Type 2 PSE, the $\overline{2EC}$ current sink is enabled after the isolation MOSFET is fully on until V _{IN} drops below the UVLO threshold. $\overline{2EC}$ is latched when powered by a Type 2 PSE until V _{IN} drops below the reset threshold. $\overline{2EC}$ also asserts when a wall adapter supply, typically greater than 9V, is applied between WAD and RTN. $\overline{2EC}$ is not latched if asserted by WAD. The $\overline{2EC}$ current sink is turned off when the device is in sleep mode.
12	12	CLS	Classification Resistor Input. Connect a resistor (R _{CLS}) from CLS to V _{SS} to set the desired classification current. See the classification current specifications in the <i>Electrical Characteristics</i> table to find the resistor value for a particular PD classification.
13		LED	LED Driver Output. During sleep mode, LED sources a periodic current (I _{LED}) at 250Hz with 25% duty cycle. The amplitude of I _{LED} is set by RSL according to the formula I _{LED} (in A) = 645.75/(RSL + 1200).
14		SL	Sleep Mode Enable Input. In the MAX5982B, a falling edge on \overline{SL} brings the device into sleep mode ($V_{\overline{SL}}$ must drop below 0.75V). In the MAX5982A, $V_{\overline{SL}}$ must remain below the threshold (0.75V) for a period of at least 6s after falling edge to bring the device into sleep mode. An external resistor ($R_{\overline{SL}}$) connected between \overline{SL} and V_{SS} sets the LED current (I_{LED}).
15		WK	Wake Mode Enable Input. $\overline{\text{WK}}$ has an internal 2.5k Ω pullup resistor to the internal 5V bias rail. A falling edge on $\overline{\text{WK}}$ brings the device out of sleep mode and into the normal operating mode (wake mode).
16	_	ULP	Ultra-Low-Power Sleep Enable Input (in Sleep Mode). $\overline{\text{ULP}}$ has an internal 50k Ω pullup resistor to the internal 5V bias rail. A falling edge on $\overline{\text{SL}}$ in the MAX5982B (and a 6s period below the $\overline{\text{SL}}$ threshold in the MAX5982A) while $\overline{\text{ULP}}$ is asserted low enables ultra-low-power sleep mode. When ultra-low-power sleep mode is enabled, the power consumption of the device is reduced even lower than normal sleep mode to comply with ultra-low-power sleep power requirements while still supporting MPS.
		EP	Exposed Pad. Do not use EP as an electrical connection to V _{SS} . EP is internally connected to V _{SS} through a resistive path and must be connected to V _{SS} externally. To optimize power dissipation, solder the exposed pad to a large copper power plane.

Pin Description (continued)


MAX5982A/MAX5982B Simplified Block Diagram

MAX5982C Simplified Block Diagram

Detailed Description

Operating Modes

Depending on the input voltage (VIN = VDD - VSS), the MAX5982A/MAX5982B/MAX5982C operate in four different modes: PD detection, PD classification, mark event, and PD power. The devices enter PD detection mode when the input voltage is between 1.4V and 10.1V. The device enters PD classification mode when the input voltage is between 12.6V and 20V. The devices enter PD power mode once the input voltage exceeds V_{ON}.

Detection Mode $(1.4V \le V_{IN} \le 10.1V)$

In detection mode, the power source equipment (PSE) applies two voltages on V_{IN} in the 1.4V to 10.1V range (1V step minimum) and then records the current measurements at the two points. The PSE then computes $\Delta V/\Delta I$ to ensure the presence of the 24.9k Ω signature resistor. Connect the signature resistor (RDET) from VDD to DET for proper signature detection. The MAX5982A/MAX5982B/MAX5982C pull DET low in detection mode. DET goes high impedance when the input voltage exceeds 12.5V. In detection mode, most of the MAX5982A/MAX5982B/MAX5982C internal circuitry is off and the offset current is less than 10µA.

If the voltage applied to the PD is reversed, install protection diodes at the input terminal to prevent internal damage to the MAX5982A/MAX5982B/MAX5982C (see the *Typical Application Circuit*). Since the PSE uses a slope technique ($\Delta V/\Delta I$) to calculate the signature resistance, the DC offset due to the protection diodes is subtracted and does not affect the detection process.

Classification Mode (12.6V \leq V_{IN} \leq 20V)

In the classification mode, the PSE classifies the PD based on the power consumption required by the PD. This allows the PSE to efficiently manage power distribution. Class 0–5 is defined as shown in Table 1. (The IEEE 802.3af/at standard defines only Class 0–4 and Class 5 for any special requirement.) An external resistor (R_{CLS}) connected from CLS to V_{SS} sets the classification current.

The PSE determines the class of a PD by applying a voltage at the PD input and measuring the current sourced out of the PSE. When the PSE applies a voltage between 12.6V and 20V, the MAX5982A/MAX5982B/MAX5982C exhibit a current characteristic with a value shown in Table 1. The PSE uses the classification current information to classify the power requirement of the PD. The classification current includes the current drawn by RCLS and the supply current of the MAX5982A/MAX5982B/ MAX5982C so the total current drawn by the PD is within the IEEE 802.3af/at standard figures. The classification current is turned off whenever the device is in power mode.

2-Event Classification and Detection

During 2-Event classification, a Type 2 PSE probes PD for classification twice. In the first classification event, the PSE presents an input voltage between 12.6V and 20.5V and the MAX5982A/MAX5982B/MAX5982C present the programmed load I_{CLASS}. The PSE then drops the probing voltage below the mark event threshold of 10.1V and the MAX5982A/MAX5982B/MAX5982C present the mark current (I_{MARK}). This sequence is repeated one more time.

When the MAX5982A/MAX5982B/MAX5982C are powered by a Type 2 PSE, the 2-Event identification output $\overline{2EC}$ asserts low after the internal isolation n-channel MOSFET is fully turned on. $\overline{2EC}$ current sink is turned off when VDD goes below the UVLO threshold (VOFF) and turns on when VDD goes above the UVLO threshold (VON), unless VDD goes below VTHR to reset the latched output of the Type 2 PSE detection flag.

CLASS	MAXIMUM POWER USED BY PD	Rcls (Ω)	V _{IN} * (V)	CLASS CURRENT SEEN AT VIN (mA)		CLASSIFICAT	2.3at PD ION CURRENT ATION (mA)
	(W)			MIN	MAX	MIN	MAX
0	0.44 to 12.95	615	12.6 to 20	0	4	0	5
1	0.44 to 3.94	117	12.6 to 20	9	12	8	13
2	3.84 to 6.49	66.5	12.6 to 20	17	20	16	21
3	6.49 to 12.95	43.7	12.6 to 20	26	30	25	31
4	12.95 to 25.5	30.9	12.6 to 20	36	44	35	45
5	> 25.5	21.3	12.6 to 20	54	64	51	68

Table 1. Setting Classification Current

*VIN is measured across the MAX5982A/MAX5982B/MAX5982C input VDD to VSS.

Alternatively, the $\overline{\text{2EC}}$ output also serves as a wall adapter detection output when the MAX5982A/MAX5982B/MAX5982C are powered by an external wall power adapter. See the *Wall Power Adapter Detection and Operation* section for more information.

Power Mode (Wake Mode)

The MAX5982A/MAX5982B/MAX5982C enter power mode when V_{IN} rises above the undervoltage-lockout threshold (VON). When V_{IN} rises above VON, the MAX5982A/MAX5982B/MAX5982C turn on the internal n-channel isolation MOSFET to connect V_{SS} to RTN with inrush current limit internally set to 53mA when V_{RTN} - V_{SS} > 7V and 135mA when V_{RTN} - V_{SS} < 7V. The isolation MOSFET is fully turned on when the voltage at RTN is near V_{SS} and the inrush current is reduced below the inrush limit. Once the isolation MOSFET is fully turned on, the MAX5982A/MAX5982B/MAX5982B/MAX5982C change the current limit to 1900mA (typ). The open-drain powergood output (PG) remains low for a minimum of tDELAY until the power MOSFET fully turns on to keep the downstream DC-DC converter disabled during inrush.

Undervoltage Lockout

The MAX5982A/MAX5982B/MAX5982C operate up to a 60V supply voltage with a turn-on UVLO threshold (VON) at 35.4V and a turn-off UVLO threshold (VOFF) at 31V. When the input voltage is above VON, the MAX5982A/MAX5982B/MAX5982C enter power mode and the internal MOSFET is turned on. When the input voltage goes below VOFF for more than tOFF_DLY, the MOSFET turns off.

Sleep and Ultra-Low-Power Sleep Modes (MAX5982A/MAX5982B)

The MAX5982A/MAX5982B feature a sleep mode, which pulls PG low while keeping the internal n-channel isolation MOSFET turned on. The PG output is used to disable downstream DC-DC converters reducing the power consumption of the overall PD system in sleep mode. In sleep mode, the LED driver output (LED) sources periodic current pulses. The LED current (ILED) is set by an external resistor (RSE); see the *Applications Information* section for more information. To enable sleep mode, apply a falling edge to SE (MAX5982B) or hold SE low for a minimum of 6 seconds after a falling edge.

An ultra-low-power sleep mode allows the MAX5982A/ MAX5982B to further reduce power consumption while maintaining the power signature of the standard. The ultra-low-power sleep enable input ULP is internally held high with a 50k Ω pullup resistor to the internal 5V bias of the MAX5982A/MAX5982B. To enable ultra-lowpower sleep sleep mode, set ULP to logic-low and apply a falling edge to SL (MAX5982B) or hold SL low for a

from the output LED to VSS. During sleep mode/ultra-low power sleep mode, the LED is driven by current pulses
with the amplitude set by the resistor connected from SL

following formula:
$$I_{LED} = \frac{645.75}{R_{\overline{SL}} + 1200}$$
 (in amperes)

to VSS. The LED driver current amplitude is program-

mable from 10mA to 20mA using RSL according to the

minimum of 6s (MAX5982A). Apply a falling edge on the

wake-mode enable input (WK) to disable sleep or ultra-

The MAX5982A/MAX5982B drive an LED connected

LED Driver (MAX5982A/MAX5982B)

low-power sleep mode and resume normal operation.

Power-Good Output

An open-drain output (PG) is used to allow disabling downstream DC-DC converter until the n-channel isolation MOSFET is fully turned on. PG is pulled low to V_{SS} for a period of t_{DELAY} and until the internal isolation MOSFET is fully turned on. The PG is also pulled low during sleep mode and coming out of thermal shutdown.

Thermal-Shutdown Protection

The MAX5982A/MAX5982B/MAX5982C include thermal protection from excessive heating. If the junction temperature exceeds the thermal-shutdown threshold of +150°C, the MAX5982A/MAX5982B/MAX5982C turn off the internal power MOSFET, LED driver, and $\overline{2EC}$ current sink. When the junction temperature falls below +120°C, the devices enter inrush mode and then return to power mode. Inrush mode ensures the downstream DC-DC converter is turned off as the internal power MOSFET is turned on.

Wall Power Adapter Detection and Operation

For applications where an auxiliary power source such as a wall power adapter is used to power the PD. the MAX5982A/MAX5982B/MAX5982C feature wall power adapter detection. The MAX5982A/MAX5982B/ MAX5982C give highest priority to the WAD and smoothly switch the power supply to WAD when it is detected. Once the input voltage (VDD - VSS) exceeds the mark event threshold, the MAX5982A/MAX5982B/MAX5982C enable wall adapter detection. The wall power adapter is connected from WAD to RTN. The MAX5982A/ MAX5982B/MAX5982C detect the wall power adapter when the voltage from WAD to RTN is greater than 9V. When a wall power adapter is detected, the internal n-channel isolation MOSFET turns off. ZEC current sink turns on, and classification current is disabled if VIN is in the classification range.

Applications Information Operation with 12V Adapter Layout Procedure

Careful PCB layout is critical to achieve high efficiency and low EMI. Follow these layout guidelines for optimum performance:

- 1) Place the input capacitor, classification resistor, and transient voltage suppressor as close as possible to the MAX5982A/MAX5982B/MAX5982C.
- Use large SMT component pads for power dissipating devices such as the MAX5982A/MAX5982B/ MAX5982C and the external diodes.
- 3) Use short and wide traces for high-power paths.
- 4) Place enough vias in the pad for the EP of the MAX5982A/MAX5982B/MAX5982C so that heat generated inside can be effectively dissipated by the PCB copper. The recommended spacing for the vias is 1mm to 1.2mm pitch. The thermal vias should be plated (1oz copper) and have a small barrel diameter (0.3mm to 0.33mm).

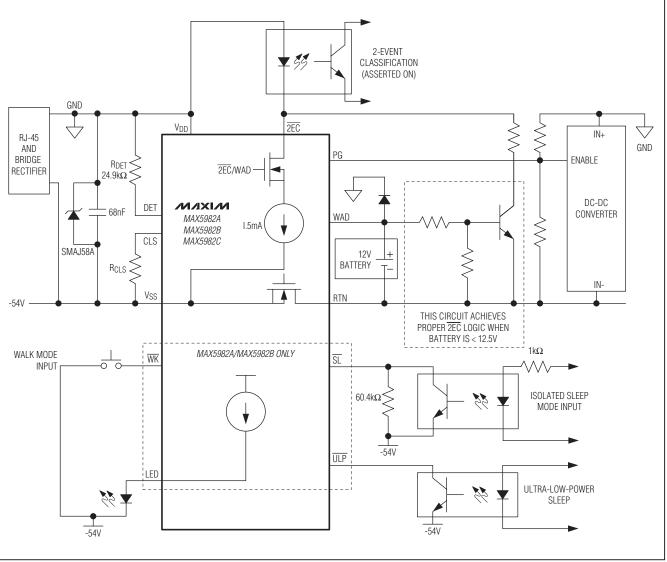
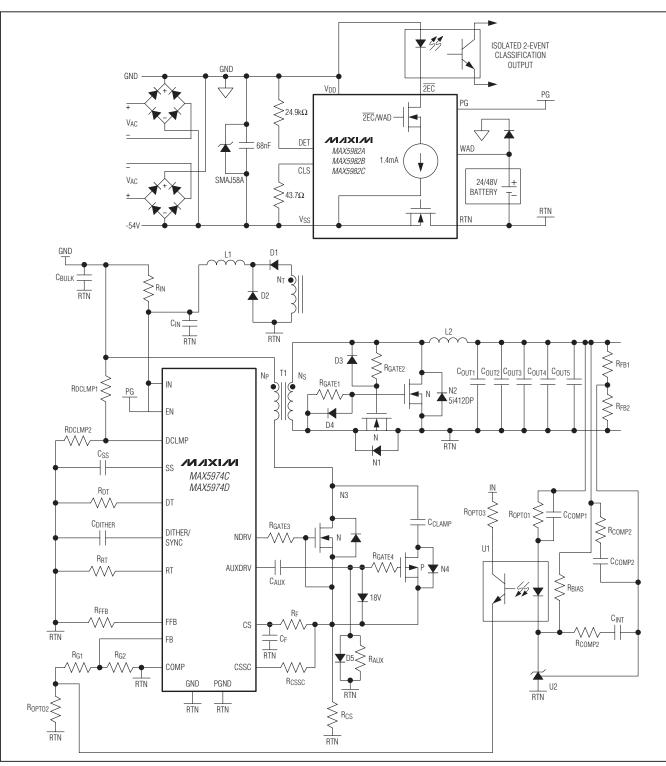



Figure 2. Typical Configuration When Using a 12V Wall Power Adapter

Typical Application Circuit

MAX5982A/MAX5982B/MAX5982C

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	SLEEP/ULTRA-LOW- POWER MODE	6s FILTER DELAY ON SL
MAX5982AETE+	-40°C to +85°C	16 TQFN-EP*	Yes	Yes
MAX5982BETE+	-40°C to +85°C	16 TQFN-EP*	Yes	No
MAX5982CETE+	-40°C to +85°C	16 TQFN-EP*	No	_

+Denotes a lead(Pb)-free/RoHS-compliant package.

*EP = Exposed pad.

Chip Information

_____Package Information

PROCESS: BICMOS

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
16 TQFN-EP	T1655+4	<u>21-0140</u>	<u>90-0121</u>

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	6/11	Initial release	—

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.