

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

January 2014

SEMICONDUCTOR

FNA40860 Motion SPM[®] 45 Series

Features

- UL Certified No. E209204 (UL1557)
- 600 V 8 A 3-Phase IGBT Inverter with Integral Gate Drivers and Protection
- Low Thermal Resistance Using Ceramic Substrate
- Low-Loss, Short-Circuit Rated IGBTs
- Built-In Bootstrap Diodes and Dedicated Vs Pins Simplify PCB Layout
- Built-In NTC Thermistor for Temperature Monitoring
- Separate Open-Emitter Pins from Low-Side IGBTs for Three-Phase Current Sensing
- Single-Grounded Power Supply
- Optimized for 5 kHz Switching Frequency
- Isolation Rating: 2000 V_{rms} / min.

Applications

• Motion Control - Home Appliance / Industrial Motor

Related Resources

- <u>AN-9070 Motion SPM® 45 Series Users Guide</u>
- <u>AN-9071 Motion SPM® 45 Series Thermal Perfor-</u> mance Information
- <u>AN-9072 Motion SPM® 45 Series Mounting Guidance</u>
- RD-344 Reference Design (Three Shunt Solution)
- RD-345 Reference Design (One Shunt Solution)

General Description

FNA40860 is a Motion SPM® 45 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltover-current shutdown, age lockouts, thermal monitoring, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's robust short-circuit-rated IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

Figure 1. Package Overview

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FNA40860	FNA40860	SPMAA-A26	Rail	12

Integrated Power Functions

• 600 V - 8 A IGBT inverter for three-phase DC / AC power conversion (please refer to Figure 3)

Integrated Drive, Protection, and System Control Functions

- For inverter high-side IGBTs: gate drive circuit, high-voltage isolated high-speed level shifting
 control circuit Under-Voltage Lock-Out (UVLO) protection
- For inverter low-side IGBTs: gate drive circuit, Short-Circuit Protection (SCP)
 control supply circuit Under-Voltage Lock-Out (UVLO) protection
- Fault signaling: corresponding to UVLO (low-side supply) and SC faults
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt trigger input

Pin Configuration

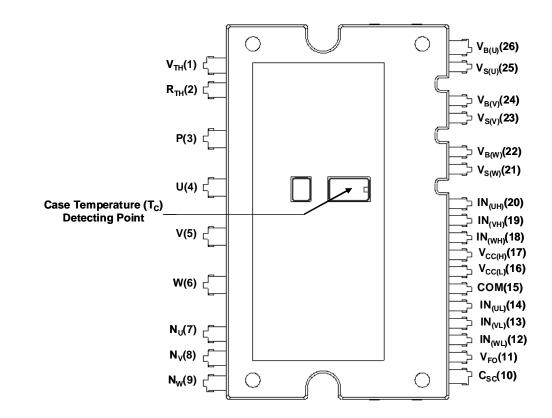


Figure 2. Top View

FNA40860
Motion (
SPM® 45
Series

Pin Number	Pin Name	Pin Description
1	V _{TH}	Thermistor Bias Voltage
2	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
3	Р	Positive DC-Link Input
4	U	Output for U-Phase
5	V	Output for V-Phase
6	W	Output for W-Phase
7	NU	Negative DC-Link Input for U-Phase
8	N _V	Negative DC-Link Input for V-Phase
9	N _W	Negative DC-Link Input for W-Phase
10	C _{SC}	Capacitor (Low-Pass Filter) for Short-circuit Current Detection Input
11	V _{FO}	Fault Output
12	IN _(WL)	Signal Input for Low-Side W-Phase
13	IN _(VL)	Signal Input for Low-Side V-Phase
14	IN _(UL)	Signal Input for Low-Side U-Phase
15	СОМ	Common Supply Ground
16	V _{CC(L)}	Low-Side Common Bias Voltage for IC and IGBTs Driving
17	V _{CC(H)}	High-Side Common Bias Voltage for IC and IGBTs Driving
18	IN _(WH)	Signal Input for High-Side W-Phase
19	IN _(VH)	Signal Input for High-Side V-Phase
20	IN _(UH)	Signal Input for High-Side U-Phase
21	V _{S(W)}	High-Side Bias Voltage Ground for W-Phase IGBT Driving
22	V _{B(W)}	High-Side Bias Voltage for W-Phase IGBT Driving
23	V _{S(V)}	High-Side Bias Voltage Ground for V-Phase IGBT Driving
24	V _{B(V)}	High-Side Bias Voltage for V-Phase IGBT Driving
25	V _{S(U)}	High-Side Bias Voltage Ground for U-Phase IGBT Driving
26	V _{B(U)}	High-Side Bias Voltage for U-Phase IGBT Driving

Internal Equivalent Circuit and Input/Output Pins V_{TH} (1) -^/// Thermister R_{TH} (2) P (3) (26) V_B UVB (25) V_{S(U)} UVS OUT(UH) (24) V_B UVS U(4) VVB (23) V_{S(V} VVS (22) V_{B(W} ٨ WVB (21) V_{S(W)} wvs OUT(VH) ŧ (20) IN(UH) IN(UH) VVS V (5) (19) IN_(VH) IN(VH) (18) IN(WH) IN(WH) (17) V_{CC(H)} VCC OUT(WH) СОМ WVS W(6) (16) V_{CC(L)} vcc OUT(UL) (15) COM сом N_U (7) (14) IN(UL) IN(UL) (13) IN_(VL) IN(VL) (12) IN_{(W} OUT(VL) IN(WL) (11) V_{FO} N_V (8) VFO (10) C_{SC} C(SC) OUT(WL) N_w (9) Figure 3. Internal Block Diagram

1st Notes:

1. Inverter high-side is composed of three IGBTs, freewheeling diodes, and one control IC for each IGBT.

- 2. Inverter low-side is composed of three IGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and protection functions.
- 3. Inverter power side is composed of four inverter DC-link input terminals and three inverter output terminals.

Absolute Maximum Ratings (T_J = 25°C, unless otherwise specified.)

Inverter Part

Symbol	Parameter	Conditions	Rating	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	450	V
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P - N _U , N _V , N _W	500	V
V _{CES}	Collector - Emitter Voltage		600	V
± I _C	Each IGBT Collector Current	$T_{C} = 25^{\circ}C, T_{J} < 150^{\circ}C$	8	А
$\pm I_{CP}$	Each IGBT Collector Current (Peak)	$\rm T_{C}$ = 25°C, $\rm T_{J}~<~150^{\circ}C,~Under~1~ms~Pulse$ Width	16	A
P _C	Collector Dissipation	T _C = 25°C per Chip	32	W
TJ	Operating Junction Temperature	(2nd Note 1)	-40 ~ 150	°C

2nd Notes:

1. The maximum junction temperature rating of the power chips integrated within the Motion SPM[®] 45 product is 150°C.

Control Part

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between $V_{CC(H)}$, $V_{CC(L)}$ - COM	20	V
V_{BS}	High - Side Control Bias Voltage	Applied between V_B(U) - V_S(U), V_B(V) - V_S(V), V_B(W) - V_S(W)	20	V
V _{IN}	Input Signal Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-0.3 ~ V _{CC} + 0.3	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	$-0.3 \sim V_{CC} + 0.3$	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} pin	1	mA
V _{SC}	Current-Sensing Input Voltage	Applied between C _{SC} - COM	$-0.3 \sim V_{CC} + 0.3$	V

Bootstrap Diode Part

Symbol	Parameter	Conditions	Rating	Unit
V _{RRM}	Maximum Repetitive Reverse Voltage		600	V
۱ _F	Forward Current	$T_{C} = 25^{\circ}C, T_{J} < 150^{\circ}C$	0.50	A
I _{FP}	Forward Current (Peak)	$\rm T_{C}$ = 25°C, $\rm T_{J}<150^{\circ}C,$ Under 1 ms Pulse Width	1.50	A
Τ _J	Operating Junction Temperature		-40 ~ 150	°C

Total System

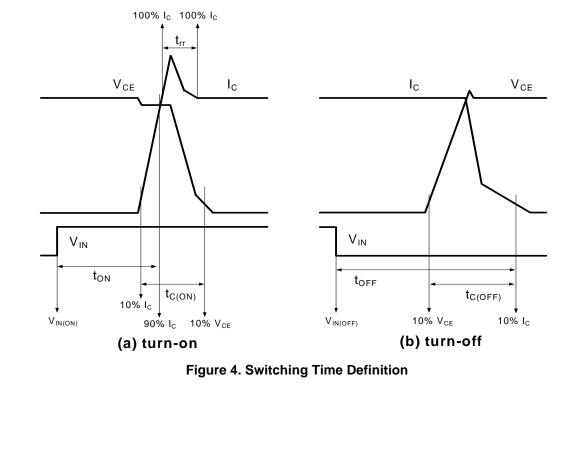
Symbol	Parameter	Conditions	Rating	Unit
V _{PN(PROT)}	Self-Protection Supply Voltage Limit (Short-Circuit Protection Capability)	$V_{CC} = V_{BS} = 13.5 \sim 16.5 V$ T _J = 150°C, Non-Repetitive, < 2 µs	400	V
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate	2000	V _{rms}

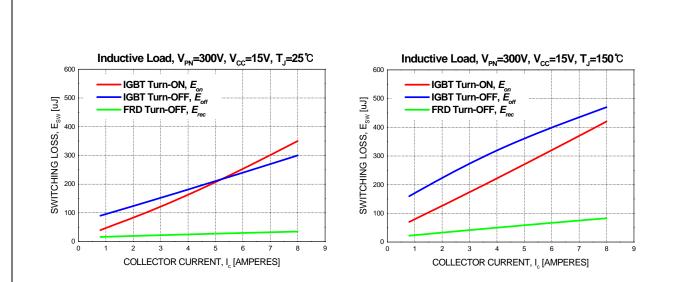
Thermal Resistance

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}	Junction to Case Thermal Resistance	Inverter IGBT Part (per 1 / 6 module)	-	-	3.8	°C / W
R _{th(j-c)F}		Inverter FWDi Part (per 1 / 6 module)	-	-	4.8	°C / W

2nd Notes:

2. For the measurement point of case temperature (T $_{C}$), please refer to Figure 2.

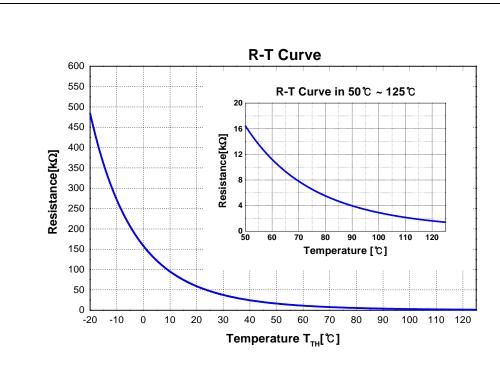

Electrical Characteristics (T_J = 25°C, unless otherwise specified.)


Inverter Part

S	ymbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V	CE(SAT)	Collector - Emitter Saturation Voltage	turation $V_{CC} = V_{BS} = 15 \text{ V}$ $I_C = 8 \text{ A}, T_J = 25^{\circ}\text{C}$ $V_{IN} = 5 \text{ V}$		-	1.7	2.2	V
	V _F	FWDi Forward Voltage	$V_{IN} = 0 V$	$I_F = 8 \text{ A}, T_J = 25^{\circ}\text{C}$	-	1.7	2.2	V
HS	t _{ON}	Switching Times	$\label{eq:VPN} \begin{array}{l} V_{PN} = 300 \; V, \; V_{CC} = V_{BS} = 15 \; V, \; I_{C} = 8 \; A \\ T_{J} = 25^{\circ}C \\ V_{IN} = 0 \; V \leftrightarrow 5 \; V, \; Inductive \; Load \\ (2nd \; Note \; 3) \end{array}$		0.45	0.75	1.25	μS
	t _{C(ON)}				-	0.20	0.45	μS
	t _{OFF}				-	0.80	1.30	μS
	t _{C(OFF)}				-	0.30	0.55	μS
	t _{rr}				-	0.15	-	μS
LS	t _{ON}		$V_{PN} = 300 \text{ V}, V_{CC} = V_{E}$	_{3S} = 15 V, I _C = 8 A	0.45	0.75	1.25	μS
	t _{C(ON)}		$T_J = 25^{\circ}C$ $V_{IN} = 0 V \leftrightarrow 5 V$, Induc	tive Load	-	0.20	0.45	μS
	t _{OFF}		(2nd Note 3)		-	0.80	1.30	μS
	t _{C(OFF)}				-	0.30	0.55	μS
	t _{rr}				-	0.15	-	μS
	I _{CES}	Collector - Emitter Leakage Current	V _{CE} = V _{CES}		-	-	1	mA

2nd Notes:

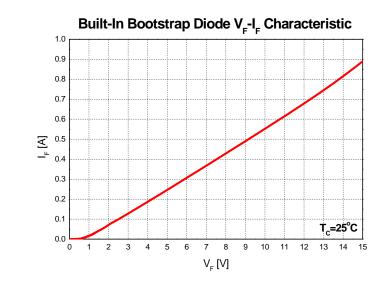
3. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.


Control Part

Symbol Parameter		Conditions		Min.	Тур.	Max.	Unit
I _{QCCH}	Quiescent V _{CC} Supply	$V_{CC(H)} = 15 \text{ V}, \text{ IN}_{(UH,VH,WH)} = 0 \text{ V}$	V _{CC(H)} - COM	-	-	0.10	mA
I _{QCCL}	Current	$V_{CC(L)} = 15 \text{ V}, \text{ IN}_{(UL,VL, WL)} = 0 \text{ V}$	V _{CC(L)} - COM	-	-	2.65	mA
I _{PCCH}	Operating V _{CC} Supply Current	$V_{CC(L)}$ = 15 V, f_{PWM} = 20 kHz, duty = 50%, Applied to One PWM Signal Input for High-Side	V _{CC(H)} - COM	-	-	0.15	mA
I _{PCCL}		$V_{CC(L)}$ = 15 V, f_{PWM} = 20 kHz, duty = 50%, Applied to One PWM Sig- nal Input for Low-Side	V _{CC(L)} - COM	-	-	3.65	mA
I _{QBS}	Quiescent V _{BS} Supply Current	V_{BS} = 15 V, IN _(UH, VH, WH) = 0 V	V _{B(U)} - V _{S(U)} , V _{B(V)} - V _{S(V)} , V _{B(W)} - V _{S(W)}	-	-	0.30	mA
I _{PBS}	Operating V _{BS} Supply Current	$V_{CC} = V_{BS} = 15 \text{ V}, f_{PWM} = 20 \text{ kHz},$ Duty = 50%, Applied to One PWM Signal Input for High-Side	$\begin{array}{c} V_{B(U)} \text{ - } V_{S(U)}, V_{B(V)} \text{ - } \\ V_{S(V)}, V_{B(W)} \text{ - } V_{S(W)} \end{array}$	-	-	2.00	mA
V _{FOH}	Fault Output Voltage	V_{SC} = 0 V, V _{FO} Circuit: 10 kΩ to 5 V Pull-up V _{SC} = 1 V, V _{FO} Circuit: 10 kΩ to 5 V Pull-up		4.5	-	-	V
V_{FOL}				-	-	0.5	V
V _{SC(ref)}	Short-Circuit Current Trip Level	V _{CC} = 15 V (2nd Note 4)		0.45	0.50	0.55	V
UV _{CCD}		Detection level		10.5	-	13.0	V
UV_CCR	Supply Circuit Under-Voltage	Reset level		11.0	-	13.5	V
UV_BSD	Protection	Detection level		10.0	-	12.5	V
UV_BSR		Reset level		10.5	-	13.0	V
t _{FOD}	Fault-Out Pulse Width			30	-	-	μS
V _{IN(ON)}	ON Threshold Voltage	Applied between IN(UH), IN(VH), II	N _(WH) , IN _(UL) , IN _(VL) ,	-	-	2.6	V
V _{IN(OFF)}	OFF Threshold Voltage	IN _(WL) - COM		0.8	-	-	V
R _{TH}	Resistance of	@T _{TH} = 25°C, (2nd Note 5)		-	47	-	kΩ
	Thermister	@T _{TH} = 100°C		-	2.9	-	kΩ

2nd Notes:

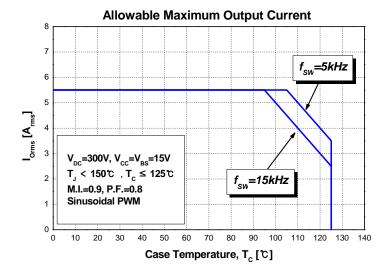
4. Short-circuit protection is functioning only at the low-sides.


5. T_{TH} is the temperature of thermister itselt. To know case temperature (T_C), please make the experiment considering your application.

Bootstrap Diode Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _F	Forward Voltage	I _F = 0.1 A, T _C = 25°C	-	2.5	-	V
t _{rr}	Reverse-Recovery Time	I _F = 0.1 A, T _C = 25°C	-	80	-	ns

Figure 7. Built-In Bootstrap Diode Characteristic


2nd Notes:

6. Built-in bootstrap diode includes around 15 $\,\Omega\,$ resistance characteristic.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	-	300	400	V
V _{CC}	Control Supply Voltage	Applied between V _{CC(H)} , V _{CC(L)} - COM	13.5	15.0	16.5	V
V_{BS}	High-Side Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}, \ V_{B(V)}$ - $V_{S(V)}, \ V_{B(W)}$ - $V_{S(W)}$	13.0	15.0	18.5	V
dV _{CC} / dt, dV _{BS} / dt	Control Supply Variation		- 1	-	1	V / μs
t _{dead}	Blanking Time for Preventing Arm-Short	For each input signal	1.5	-	-	μS
f _{PWM}	PWM Input Signal	$-40^{\circ}C < T_{J} < 150^{\circ}C$	-	-	20	kHz
V _{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including Surge-Voltage)	- 4		4	V
P _{WIN(ON)}	Minimun Input Pulse	(2nd Note 7)	0.5	-	-	μS
P _{WIN(OFF)}	Width		0.5	-	-	1

2nd Notes:

7. This product might not make response if input pulse width is less than the recommanded value.

2nd Notes:

8. This allowable output current value is the reference data for the safe operation of this product. This may be different from the actual application and operating condition.

Parameter	Conditions See Figure 9		Min.	Тур.	Max.	Unit
Device Flatness Mounting Torque			0	-	+ 120	μm
	Mounting Screw: M3	Recommended 0.7 N • m	0.6	0.7	0.8	N • m
	See Figure 10	Recommended 7.1 kg • cm	6.2	7.1	8.1	kg • cm
Weight			-	11	-	g

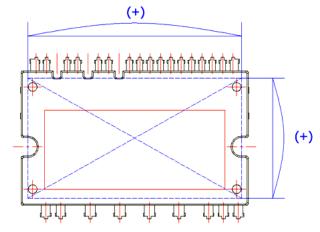
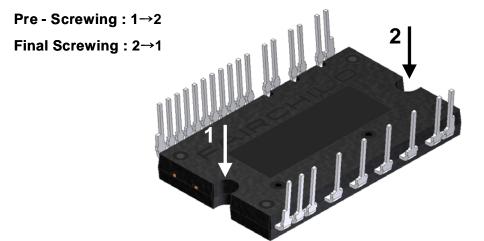



Figure 9. Flatness Measurement Position

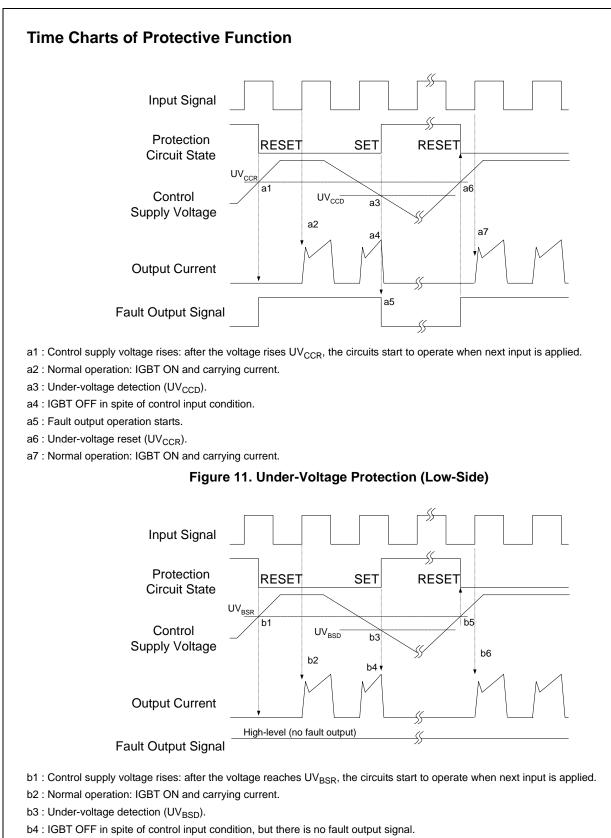
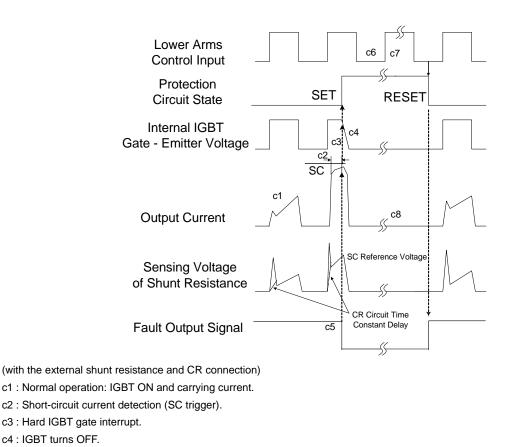
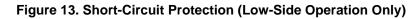


Figure 10. Mounting Screws Torque Order

2nd Notes:

9. Do not make over torque when mounting screws. Much mounting torque may cause ceramic cracks, as well as bolts and Al heat-sink destruction.
10. Avoid one side tightening stress. Figure 10 shows the recommended torque order for mounting screws. Uneven mounting can cause the ceramic substrate of the SPM[®] 45 package to be damaged. The pre-screwing torque is set to 20 ~ 30% of maximum torque rating.


©2013 Fairchild Semiconductor Corporation FNA40860 Rev. C3


b5 : Under-voltage reset (UV_{BSR}).

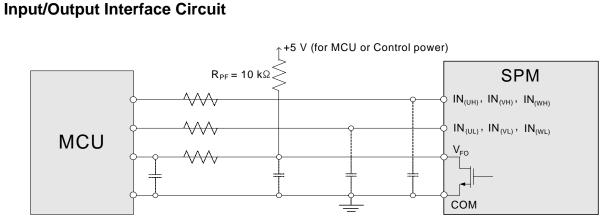

b6 : Normal operation: IGBT ON and carrying current.

Figure 12. Under-Voltage Protection (High-Side)

- c5 : Input "LOW": IGBT OFF state.
- c6 : Input "HIGH": IGBT ON state, but during the active period of fault output, the IGBT doesn't turn ON.
- c7 : IGBT OFF state.

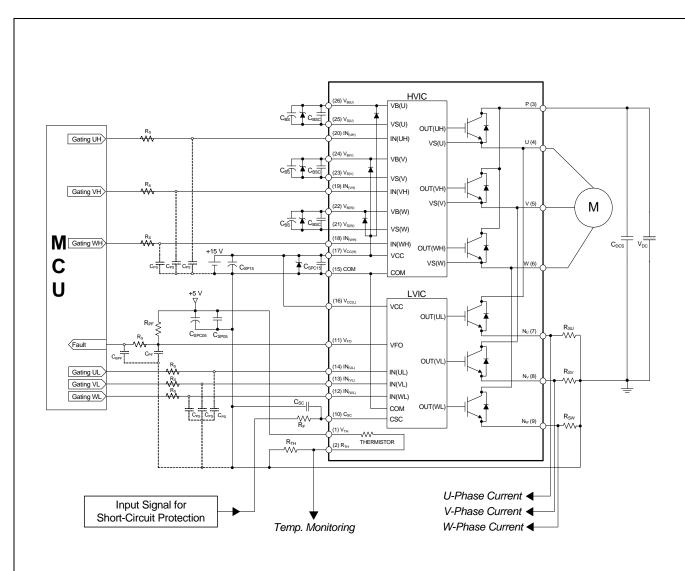


Figure 14. Recommended MCU I/O Interface Circuit

2nd Notes:

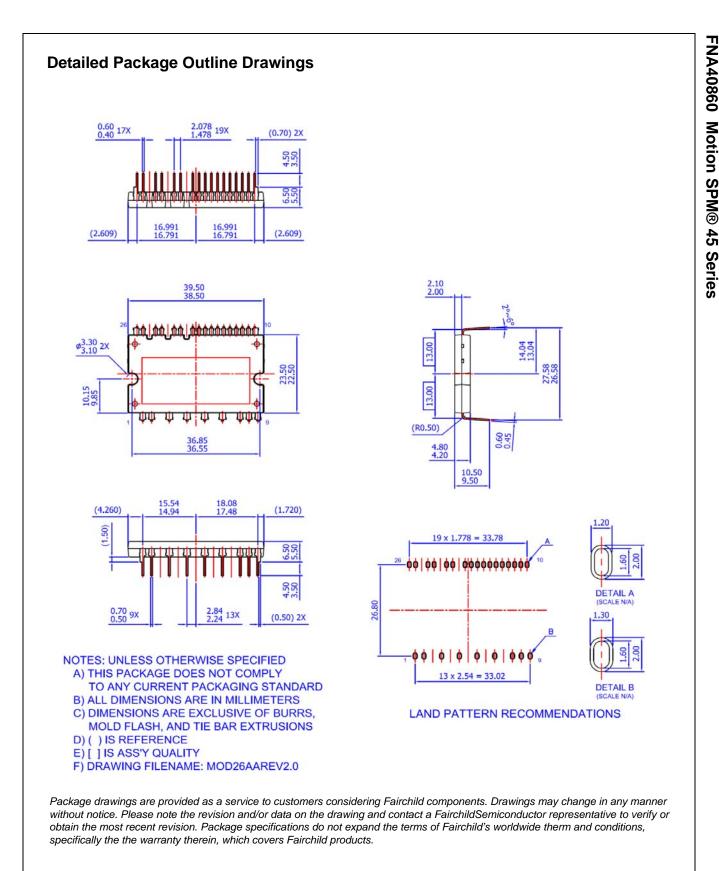

11. RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme in the application and the wiring impedance of the application's printed circuit board. The input signal section of the Motion SPM[®] 45 product integrates a 5 kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the signal voltage drop at input terminal.

Figure 15. Typical Application Circuit

3rd Notes:

- 1) To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).
- 2) By virtue of integrating an application-specific type of HVIC inside the Motion SPM[®] 45 product, direct coupling to MCU terminals without any optocoupler or transformer isolation is possible.
- 3) V_{FO} output is open-drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes I_{FO} up to 1 mA (please refer to Figure 14).
- 4) C_{SP15} of around seven times larger than bootstrap capacitor C_{BS} is recommended.
- 5) Input signal is active-HIGH type. There is a 5 kΩ resistor inside the IC to pull down each input signal line to GND. RC coupling circuits is recommanded for the prevention of input signal oscillation. R_SC_{PS} time constant should be selected in the range 50 ~ 150 ns (recommended R_S = 100 Ω, C_{PS} = 1 nF).
- 6) To prevent errors of the protection function, the wiring around R_F and C_{SC} should be as short as possible.
- 7) In the short-circuit protection circuit, please select the R_FC_{SC} time constant in the range 1.5 ~ 2 $\mu s.$
- 8) The connection between control GND line and power GND line which includes the N_U, N_V, N_W must be connected to only one point. Please do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power GND should be as short as possible.
- 9) Each capacitor should be mounted as close to the pins of the Motion SPM 45 product as possible.
 10) To prevent surge destruction, the wiring between the smoothing capacitor and the P & GND pins should be as short as possible. The use of a high-frequency non-inductive capacitor of around 0.1 ~ 0.22 μF between the P and GND pins is recommended.
- 11) Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance between the MCU and the relays.
- 12) The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair of control supply terminals (recommanded zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15 Ω).
- 13) Please choose the electrolytic capacitor with good temperature characteristic in C_{BS}. Also, choose 0.1 ~ 0.2 μ F R-category ceramic capacitors with good temperature and frequency characteristics in C_{BSC}.
- 14) For the detailed information, please refer to the AN-9070, AN-9071, AN-9072, RD-344, and RD-345.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/dwg/MO/MOD26AA.pdf

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowerTM AX-CAP **BitSiC™** Build it Now™ CorePLUS™ CorePOWERTM **CROSSVOLT**^{IM} CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficientMax[™] ESBCTh F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastvCore™ **FETBench™**

F-PFS" FRFET® Global Power Resource[™] GreenBridge^{TI} Green FPS™ Green FPS™ e-Series™ Gmax™ **GTOTM** IntelliMAXTM **ISOPLANAR**TM Making Small Speakers Sound Louder and Better MegaBuck MICROCOUPLER MicroFET MicroPak™ MicroPak2™ MillerDrive™ MotionMax[™] mWSaver OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

۲ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFET OSTM. Quiet Series™ RapidConfigure™ $\mathcal{O}^{\mathbb{N}}$ Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax™ SMART START Solutions for Your Success™ SPM® STEALTHTM SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

Sync-Lock™ SYSTEM GENERAL[®] TinvBoost[®]

TinyBuck[®] TinyCalc™ TinyLogic[®] TinyPOPTO™ TinyPWer™ TinyPWIre™ TrinFault Detect™ TRUECURRENT[®] WSerDes™

UHC[∞] Ultra FRFET[™] UniFET[™] VCX[™] VisualMax[™] VoltagePlus[™] XS[™]

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchi Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FNA40860</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.