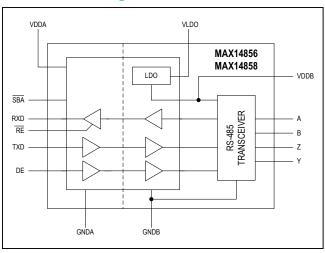
5kV_{RMS} Isolated 500kbps/25Mbps Full-Duplex RS-485/RS-422 Transceivers with ±35kV ESD Protection

General Description

The MAX14856/MAX14858 isolated RS-485/RS-422 transceivers provide 5000V_{RMS} (60s) of galvanic isolation between the cable side (RS-485/RS-422 driver/receiver-side) and the UART side of the device. Isolation improves communication by breaking ground loops and reduces noise when there are large differences in ground potential between ports. These devices allow for robust communication up to 500kbps (MAX14856) or 25Mbps (MAX14858).


The devices include one drive channel and one receive channel. The receiver is 1/4-unit load, allowing up to 128 transceivers on a common bus.

Integrated true fail-safe circuitry ensures a logic-high on the receiver output when inputs are shorted or open. Undervoltage lockout disables the driver when the cable side or UART side power supplies are below functional levels.

The driver outputs and receiver inputs are protected from ±35kV electrostatic discharge (ESD) to GNDB on the cable side, as specified by the Human Body Model (HBM).

The devices are available in a wide-body 16-pin SOIC package and operate over the -40°C to +105°C temperature range.

Functional Diagram

Benefits and Features

- High-Performance Transceiver Enables Flexible Designs
 - Integrated LDO for Cable Side Power
 - Compliant with RS-485 EIA/TIA-485 Standard
 - 500kbps (MAX14856)/25Mbps (MAX14858)
 Maximum Data Rate
 - · Allows Up to 128 Devices on the Bus
- Integrated Protection Ensures for Robust Communication
 - ±35kV ESD (HBM) on Driver Outputs/Receiver Inputs
 - 5kV_{RMS} Withstand Isolation Voltage for 60 Seconds (VISO)
 - 1200VPEAK Maximum Repetitive Peak-Isolation Voltage (VIORM)
 - 848V_{RMS} Maximum Working-Isolation Voltage (VIOWM)
 - > 30 Years Lifetime at Rated Working Voltage
 - Withstands ±10kV Surge per IEC 61000-4-5
 - · Thermal Shutdown

Safety Regulatory Approvals

- UL According to UL1577
- cUL According to CSA Bulletin 5A

Applications

- Industrial Automation Equipment
- Programmable Logic Controllers
- HVAC
- Power Meters

Ordering Information appears at end of data sheet.

5kV_{RMS} Isolated 500kbps/25Mbps Full-Duplex RS-485/RS-422 Transceivers with ±35kV ESD Protection

Absolute Maximum Ratings

V _{DDA} to GNDA0.3V to +6V	Continuous Power Dissipation (T _A = +70°C)
V _{DDB} to GNDB0.3V to +6V	16-pin Wide SOIC
V _{LDO} to GNDB0.3V to +16V	(derate 14.1mW/°C above +70°C)1126.8mW
TXD, DE, RE to GNDA0.3V to +6V	Operating Temperature Range40°C to +105°C
SBA, RXD to GNDA0.3V to (V _{DDA} + 0.3V)	Junction Temperature+150°C
A, B, Z, Y to GNDB8V to +13V	Storage Temperature Range65°C to +150°C
Short Circuit Duration (RXD, SBA to GNDA,	Lead Temperature (soldering, 10s)+300°C
A, B, Y, Z ,V _{DDB} to GNDB)Continuous	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

Junction-to-Ambient Thermal Resistance (θ_{JA})......71°C/W Junction-to-Case Thermal Resistance (θ_{JC})......23°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC Electrical Characteristics

 $(V_{DDA} - V_{GNDA} = 1.71V \text{ to } 5.5V, V_{DDB} - V_{GNDB} = 3.0V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{DDA} - V_{GNDA} = 3.3V, V_{DDB} - V_{GNDB} = 3.3V, V_{GNDA} = V_{GNDB}, \text{ and } T_A = +25^{\circ}C.) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER							
Supply Voltage	V_{DDA}		1.71		5.5	V	
Supply Voltage	V_{DDB}		3.0		5.5	V	
Supply Current	I _{DDA}	V_{DDA} = 5V, DE = high, \overline{RE} = TXD = low, RXD unconnected, no load		3.9	6.6	mA	
сирру сипси	I _{DDB}	DE = high, \overline{RE} = TXD = low, RXD unconnected, no bus load, V _{DDB} = 3.3V		7	12.5	110.	
Undervoltage-Lockout	V_{UVLOA}	V _{DDA} rising	1.50	1.58	1.65	V	
Threshold	V _{UVLOB}	V _{DDB} rising	2.55	2.7	2.85	V	
Undervoltage-Lockout	V _{UVHYSTA}			50		mV	
Threshold Hysteresis	V _{UVHYSTB}			200		IIIV	
LDO							
LDO Supply Voltage	V _{LDO}	Relative to GNDB, LDO is on (Note 4)	3.18		14	V	
LDO Supply Current	ILDO	DE = high, TXD = low, no bus load, V _{LDO} = 5.5V		7.5	12.9	mA	
LDO Output Voltage	V _{DDB}		3.0	3.3	3.6	V	
LDO Current Limit				300		mA	
Load Regulation		V _{LDO} = 3.3V, I _{LOAD} = 20mA to 40mA		0.19	1.7	mV/mA	
Line Regulation		V _{LDO} = 3.3V to 14V, I _{LOAD} = 20mA		0.12	1.8	mV/V	
Dropout Voltage		V _{LDO} = 3.18V, I _{DDB} = -120mA		100	180	mV	

DC Electrical Characteristics (continued)

 $(V_{DDA} - V_{GNDA} = 1.71V \text{ to } 5.5V, V_{DDB} - V_{GNDB} = 3.0V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{DDA} - V_{GNDA} = 3.3V, V_{DDB} - V_{GNDB} = 3.3V, V_{GNDA} = V_{GNDB}, \text{ and } T_A = +25^{\circ}\text{C.}) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CONI	MIN	TYP	MAX	UNITS	
Load Capacitance		Nominal value (Not	e 7)	1		10	μF
LOGIC INTERFACE (TXD, RXD	, DE, RE, SE	BA)					
Innut High Voltage	.,	RE, TXD, DE to	2.25V ≤ V _{DDA} ≤ 5.5V	0.7 x V _{DDA}			V
Input High Voltage	VIH	GNDA	1.71V ≤ V _{DDA} ≤ 1.89V	0.78 x V _{DDA}			V
Input Low Voltage	VIL	RE, TXD, DE to	2.25V ≤ V _{DDA} ≤ 5.5V			0.8	V
Input 20W Voltage	VIL.	GNDA	1.71V ≤ V _{DDA} ≤ 1.89V			0.6	•
Input Hysteresis	VHYS	RE, TXD, DE to GI	NDA		220		mV
Input Capacitance	C _{IN}	RE, TXD, DE, f = 1	MHz		2		pF
Input Pullup Current	IPU	TXD		-10	-4.5	-1.5	μA
Input Pulldown Current	IPD	DE, RE		1.5	4.5	10	μA
SBA Pullup Resistance	R _{SBA}			3	5	8	kΩ
Output Voltage High	Voн	RXD to GNDA, IOL	_{IT} = -4mA	V _{DDA} -0.4			V
.	VOL	RXD to GNDA, I _{OUT} = 4mA				0.40	V
Output Voltage Low		SBA to GNDA, IOUT = 4mA				0.45	V
Short-Circuit Output Pullup Current	ISH_PU	$\frac{0V \le V_{RXD} \le V_{DD}}{RE} = low$	-42			mA	
Short-Circuit Output Pulldown		$0V \le V_{RXD} \le V_{DD}$ -200mV, $\overline{RE} = low$	4, (VA - VB) <			40	
Current	^I SH_PD	0V ≤ V SBA ≤ V _{DD} , and working	, side B is powered			60	mA
Three-State Output Current	loz	0V ≤ V _{RXD} ≤ V _{DD}	ς, RE = high	-1		+1	μA
DRIVER	1			1			
		$R_L = 54\Omega$, TXD = h	igh or low, Figure 1a	1.5			
Differential Driver Output	IVodl	R _L = 100Ω, TXD =	high or low, Figure 1a	2.0			V
		-7V ≤ V _{CM} ≤ +12V,	Figure 1b	1.5		5	
Change in Magnitude of Differential Driver Output Voltage	ΔV _{OD}	R_L = 100Ω or 54Ω,	Figure 1a (Note 5)			0.2	V
Driver Common Mode Output Voltage	Voc	R_L = 100Ω or 54Ω, Figure 1a (Note 5)			V _{DDB} /	3	V
Change in Magnitude of Common-Mode Voltage	ΔV _{OC}	$R_L = 100\Omega \text{ or } 54\Omega,$	Figure 1a (Note 5)			0.2	V

DC Electrical Characteristics (continued)

 $(V_{DDA} - V_{GNDA} = 1.71V \text{ to } 5.5V, V_{DDB} - V_{GNDB} = 3.0V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{DDA} - V_{GNDA} = 3.3V, V_{DDB} - V_{GNDB} = 3.3V, V_{GNDA} = V_{GNDB}, \text{ and } T_A = +25^{\circ}\text{C.}) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS
Driver Short-Circuit Output Current	losp	GNDB ≤ V _{OUT} ≤ - 6)	GNDB ≤ V _{OUT} ≤ +12V, output low (Note 6)			+250	mA
Current		-7V ≤ V _{OUT} ≤ V _{D[}	OB, output high (Note 6)	-250		-30	
Single-Ended Driver Output Voltage High	Voн	Y and Z outputs, I	_{Y,Z} = -20mA	2.2			V
Single-Ended Driver Output Voltage Low	V _{OL}	Y and Z outputs, I	_{Y,Z} = +20mA			0.8	V
Differential Driver Output Capacitance	C _{OD}	$DE = \overline{RE} = high, f$	= 4MHz		12		pF
RECEIVER							
Innut Current (A and D)	1. 1-	, DDD	V _{IN} = +12V			+250	
Input Current (A and B)	IA, IB		V _{IN} = -7V	-200			μA
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤ +12\	/	-200	-120	-10	mV
Receiver Input Hysteresis	ΔV _{TH}	V _{CM} = 0V			20		mV
Receiver Input Resistance	R _{IN}	-7V ≤ V _{CM} ≤ +12\	/, DE = low	48			kΩ
Differential Input Capacitance	C _{A,B}	Measured between low at 6MHz	n A and B, DE = \overline{RE} =		12		pF
PROTECTION							
Thermal-Shutdown Threshold	T _{SHDN}	Temperature Risin	g		+160		°C
Thermal-Shutdown Hysteresis	T _{HYST}				15		°C
ESD Protection (A and B Pins to GNDB)		Human Body Mod	el		±35		
		IEC 61000-4-2 Air Gap Discharge			±18		kV
		IEC 61000-4-2 Co	ntact Discharge	±8			
ESD Protection (All Other Pins)		Human Body Mod		±4		kV	

Switching Electrical Characteristics (MAX14856)

 $(V_{DDA}-V_{GNDA}=1.71 V\ to\ 5.5 V,\ V_{DDB}-V_{GNDB}=3.0 V\ to\ 5.5 V,\ T_{A}=T_{MIN}\ to\ T_{MAX},\ unless\ otherwise\ noted.$ Typical values are at $V_{DDA}-V_{GNDA}=3.3 V,\ V_{DDB}-V_{GNDB}=3.3 V,\ V_{GNDA}=V_{GNDB},\ and\ T_{A}=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC						
Common Mode Transient Immunity	СМТІ	(Note 8)		35		kV/µs
Glitch Rejection		TXD, DE, RXD	10	17	29	ns
DRIVER						
Driver Propagation Delay	[†] DPLH, [†] DPHL	R_L = 54 Ω , C_L = 50pF, Figure 2 and Figure 3			1040	ns
Differential Driver Output Skew tDPLH - tDPHL	^t DSKEW	R_L = 54 Ω , C_L = 50pF, Figure 2 and Figure 3			144	ns
Driver Differential Output Rise or Fall Time	tLH, tHL	R_L = 54 Ω , C_L = 50pF, Figure 2 and Figure 3			900	ns
Maximum Data Rate	DR _{MAX}		500			kbps
Driver Enable to Output High	^t DZH	R_L = 110Ω, C_L = 50pF, Figure 5			2540	ns
Driver Enable to Output Low	t _{DZL}	R_L = 110Ω, C_L = 50pF, Figure 5			2540	ns
Driver Disable Time from Low	t _{DLZ}	$R_L = 110\Omega$, $C_L = 50$ pF, Figure 5			140	ns
Driver Disable Time from High	t _{DHZ}	R_L = 110Ω, C_L = 50pF, Figure 4			140	ns
RECEIVER						
Receiver Propagation Delay	tRPLH, tRPHL	C _L = 15pF, Figure 6 and Figure 7 (Note 9)			240	ns
Receiver Output Skew tRPLH - tRPHL	tRSKEW	C _L = 15pF, Figure 6 and Figure 7 (Note 9)			34	ns
Maximum Data Rate	DR _{MAX}		500			kbps
Receiver Enable to Output High	^t RZH	R_L = 1k Ω , C_L = 15pF, S2 closed, Figure 8			20	ns
Receiver Enable to Output Low	^t RZL	R_L = 1k Ω , C_L = 15pF, S1 closed, Figure 8			30	ns
Receiver Disable Time From Low	t _{RLZ}	R_L = 1k Ω , C_L = 15pF, S1 closed, Figure 8			20	ns
Receiver Disable Time From High	^t RHZ	R_L = 1k Ω , C_L = 15pF, S2 closed, Figure 8			20	ns

Switching Electrical Characteristics (MAX14858)

 $(V_{DDA} - V_{GNDA} = 1.71V \text{ to } 5.5V, V_{DDB} - V_{GNDB} = 3.0V \text{ to } 5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{DDA} - V_{GNDA} = 3.3V, V_{DDB} - V_{GNDB} = 3.3V, V_{GNDA} = V_{GNDB}, \text{ and } T_A = +25^{\circ}C.) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC						
Common Mode Transient Immunity	СМТІ	(Note 8)		35		kV/μs
Glitch Rejection		TXD, DE, RXD	10	17	29	ns
DRIVER						
Driver Propagation Delay	^t DPLH, ^t DPHL	R_L = 54 Ω , C_L = 50pF, Figure 2 and Figure 3			65	ns
Differential Driver Output Skew tDPLH - tDPHL	^t DSKEW	R_L = 54 Ω , C_L = 50pF, Figure 2 and Figure 3			7	ns
Driver Differential Output Rise or Fall Time	t _{LH} , t _{HL}	R_L = 54 Ω , C_L = 50pF, Figure 2 and Figure 3			10	ns
Maximum Data Rate	DR _{MAX}		25			Mbps
Driver Enable to Output High	^t DZH	R_L = 110Ω, C_L = 50pF, Figure 4			80	ns
Driver Enable to Output Low	t _{DZL}	R_L = 110Ω, C_L = 50pF, Figure 5			80	ns
Driver Disable Time from Low	t _{DLZ}	$R_L = 110\Omega$, $C_L = 50pF$, Figure 5			80	ns
Driver Disable Time from High	t _{DHZ}	$R_L = 110\Omega$, $C_L = 50pF$, Figure 4			80	ns
RECEIVER						
Receiver Propagation Delay	^t RPLH, ^t RPHL	C _L = 15pF, Figure 6 and Figure 7 (Note 9)			65	ns
Receiver Output Skew tRPLH - tRPHL	tRSKEW	C _L = 15pF, Figure 6 and Figure 7 (Note 9)			7	ns
Maximum Data Rate	DR _{MAX}		25			Mbps
Receiver Enable to Output High	^t RZH	R_L = 1k Ω , C_L = 15pF, S2 closed, Figure 8			20	ns
Receiver Enable to Output Low	^t RZL	R_L = 1k Ω , C_L = 15pF, S1 closed, Figure 8			30	ns
Receiver Disable Time From Low	^t RLZ	R_L = 1k Ω , C_L = 15pF, S1 closed, Figure 8			20	ns
Receiver Disable Time From High	^t RHZ	R_L = 1k Ω , C_L = 15pF, S2 closed, Figure 8			20	ns

- **Note 2:** All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature are guaranteed by design.
- **Note 3:** All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to their respective ground (GNDA or GNDB), unless otherwise noted.
- Note 4: V_{LDO} max indicates voltage capability of the circuit. Power dissipation requirements may limit V_{LDO} max to a lower value.
- **Note 5:** ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the TXD input changes state.
- Note 6: The short circuit output current applies to the peak current just prior to current limiting.
- Note 7: Not production tested. Guaranteed by design.
- Note 8: CMTI is the maximum sustainable common-mode voltage slew rate while maintaining the correct output states. CMTI applies to both rising and falling common-mode voltage edges. Tested with the transient generator connected between GNDA and GNDB. V_{CM} = 1kV
- Note 9: Capacitive load includes test probe and fixture capacitance.

Insulation Characteristics

PARAMETER	SYMBOL	CONDITIONS	VALUE	UNITS
Partial Discharge Test Voltage	V _{PR}	Method B1 = V _{IORM} x 1.875 (t = 1s, partial discharge < 5pC)	2250	VP
Maximum Repetitive Peak Withstand Voltage	VIORM	(Note 7)	1200	VP
Maximum Working Isolation Voltage	VIOWM	(Note 7)	848	V _{RMS}
Maximum Transient Isolation Voltage	VIOTM	t = 1s	8400	VP
Maximum Withstand Isolation Voltage	VISO	t = 60s, f = 60Hz (Note 7, 8)	5000	V _{RMS}
Maximum surge Isolation Voltage	VIOSM	IEC 61000-4-5, 1.2/50μs	10	kV
Insulation Resistance	R _S	T _A = +150°C, V _{IO} = 500V	>109	Ω
Barrier Capacitance Input to Output	CIO		2	pF
Creepage Distance	CPG	Wide SO	8	mm
Clearance Distance	CLR	Wide SO	8	mm
Internal Clearance		Distance through insulation	0.015	mm
Comparitive Tracking Resistance Index	CTI	Material Group II (IEC 60112)	575	
Climatic Category			40/125/21	
Pollution Degree (DIN VDE 0110, Table 1)			2	

Note 10: V_{IORM} , V_{IOWM} , and V_{ISO} are defined by the IEC 60747-5-5 standard. Note 11: Product is qualified at V_{ISO} for 60 seconds. 100% production tested at 120% of V_{ISO} for 1 second.

Safety Regulatory Approvals

UL

The MAX14856/MAX14858 is certified under UL1577. For more details, see File E351759.

Rate up to $5000V_{\mbox{RMS}}$ isolation voltage for basic insulation.

cUL

The MAX14856/MAX14858 is certified under UL1577. For more details, see File E351759. Rate up to 5000V_{RMS} isolation voltage for basic insulation.

Maxim Integrated | 7 www.maximintegrated.com

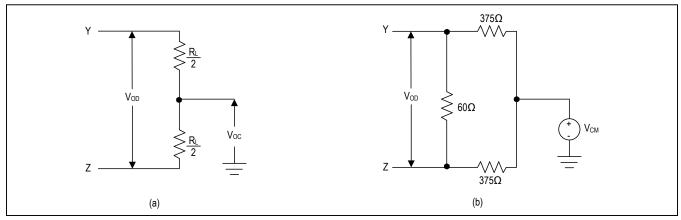


Figure 1. Driver DC Test Load

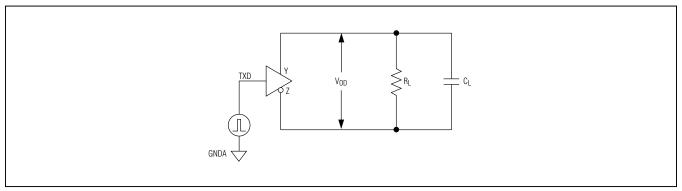


Figure 2. Driver Timing Test Circuit

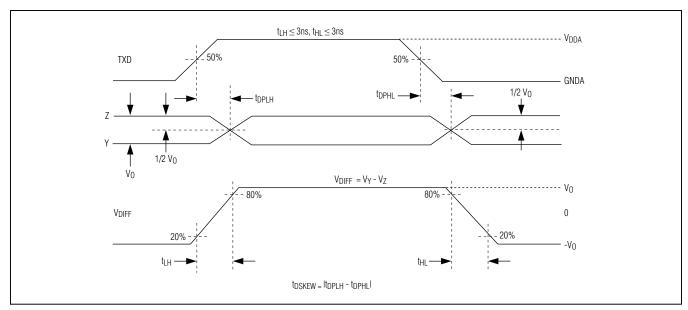


Figure 3. Driver Propagation Delays

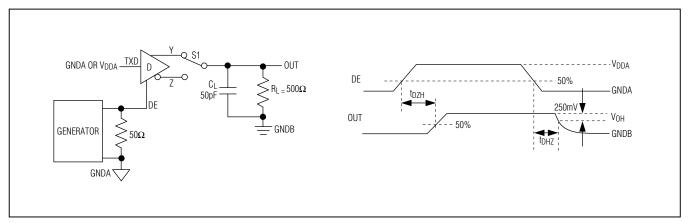


Figure 4. Driver Enable and Disable Times (t_{DHZ} , t_{DZH})

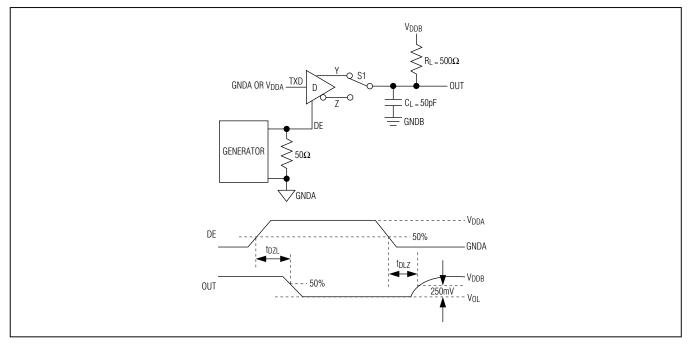


Figure 5. Driver Enable and Disable Times (t_{DZL} , t_{DLZ})

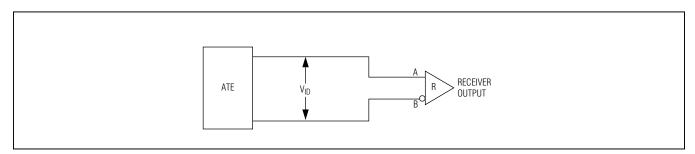


Figure 6. Receiver Propagation Delay Test Circuit

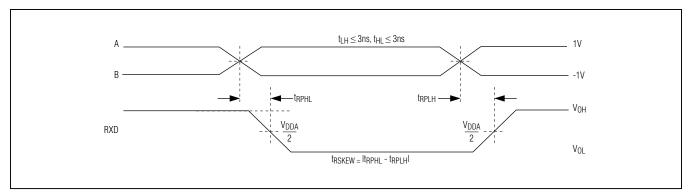
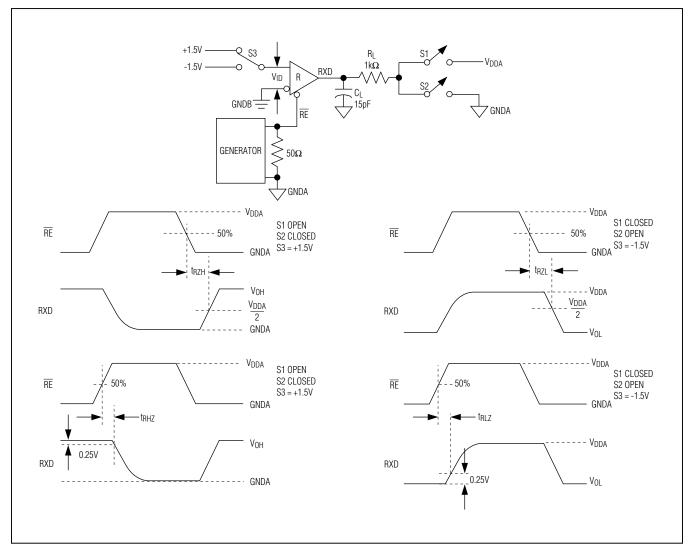
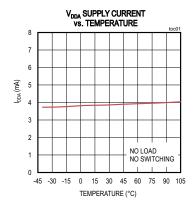
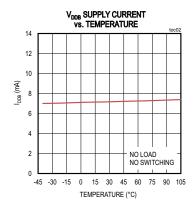
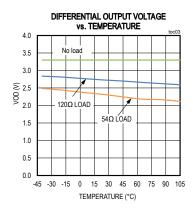
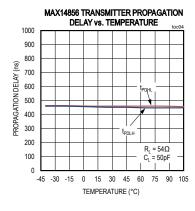
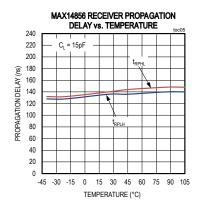


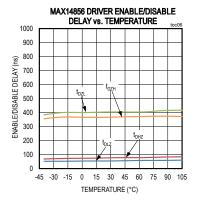
Figure 7. Receiver Propagation Delays

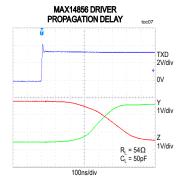




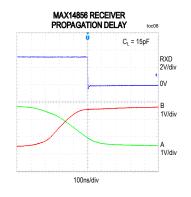

Figure 8. Receiver Enable and Disable Times

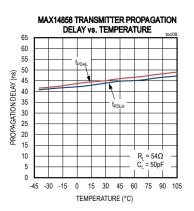

Typical Operating Characteristics

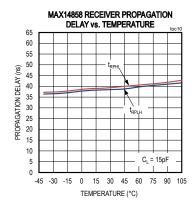

(VDDA - VGNDA = 3.3V, VDDB - VGNDB = 3.3V, VGNDA = VGNDB, and TA = +25°C, unless otherwise noted.)

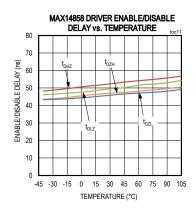


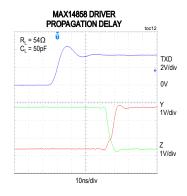


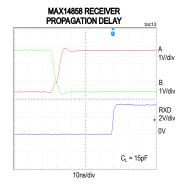


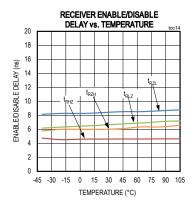


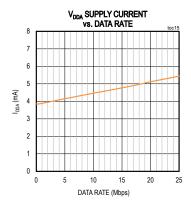




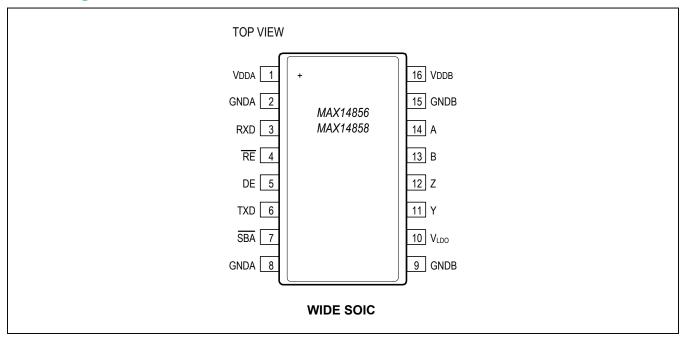



Typical Operating Characteristics (continued)


(VDDA - VGNDA = 3.3V, VDDB - VGNDB = 3.3V, VGNDA = VGNDB, and TA = +25°C, unless otherwise noted.)







Pin Configuration

Pin Description

PIN	NAME	REFERENCE	FUNCTION
1	V _{DDA}	GNDA	UART/Logic-Side Power Input. Bypass V_{DDA} to GNDA with both 0.1µF and 1µF capacitors as close to the device as possible.
2, 8	GNDA	-	UART/Logic-Side Ground. GNDA is the ground reference for digital signals.
3	RXD	GNDA	Receiver Data Output. Drive \overline{RE} low to enable RXD. With \overline{RE} low, RXD is high when $(V_A - V_B) > -10$ mV and is low when $(V_A - V_B) < -200$ mV. RXD is high when V_{DDB} is less than V_{UVLOB} . RXD is high impedance when \overline{RE} is high.
4	RE	GNDA	Receiver Output Enable. Driver \overline{RE} low or connect to GNDA to enable RXD. Drive \overline{RE} high to disable RXD. RXD is high-impedance when \overline{RE} is high. \overline{RE} has an internal 4.5 μ A pulldown to GNDA.
5	DE	GNDA	Driver Output Enable. Drive DE high to enable bus driver outputs Y and Z. Drive DE low or connect to GNDA to disable Y and Z. Y and Z are high impedance when DE is low. DE has an internal 4.5µA pull-down to GNDA.
6	TXD	GNDA	Driver Input. With DE high, a low on TXD forces the noninverting output (Y) low and the inverting output (Z) high. Similarly, a high on TXD forces the noninverting output high and the inverting output low. TXD has an internal 4.5µA pullup to VDDA.
7	SBA	GNDA	Side B Active Indicator Output. \overline{SBA} asserts low when side B is powered and working. \overline{SBA} has an internal $5k\Omega$ pull-up resistor to V_{DDA} .

5kV_{RMS} Isolated 500kbps/25Mbps Full-Duplex RS-485/RS-422 Transceivers with ±35kV ESD Protection

Pin Description (continued)

PIN	NAME	REFERENCE	FUNCTION
9, 15	GNDB	-	Cable Side Ground. GNDB is the ground reference for the internal LDO and the RS-485/RS-422 bus signals.
10	V _{LDO}	GNDB	LDO Power Input. Connect a minimum voltage of 3.18V to V_{LDO} to power the cable side of the transceiver. Bypass V_{LDO} to GNDB with both $0.1\mu F$ and $1\mu F$ capacitors as close to the device as possible. To disable the internal LDO, leave V_{LDO} unconnected or connect to GNDB.
11	Υ	GNDB	Noninverting Driver Output
12	Z	GNDB	Inverting Driver Output
13	В	GNDB	Inverting Receiver Input
14	Α	GNDB	Noninverting Receiver Input
16	V _{DDB}	GNDB	Cable Side Power Input/Isolated LDO Power Output. Bypass V_{DDB} to GNDB with both 0.1 μ F and 1 μ F capacitor as close to the device as possible. V_{DDB} is the output of the internal LDO when power is applied to V_{LDO} . When the internal LDO is not used (V_{LDO} is unconnected or connected to GNDB), V_{DDB} is the positive supply input for the cable side of the IC.

Function Tables

	TRANSMITTING						
	INP	UTS		OUTPUTS			
V _{DDA}	V _{DDB}	DE	TXD	Υ	Z		
≥ V _{UVLOA}	≥ V _{UVLOB}	1	1	1	0		
≥ V _{UVLOA}	≥ V _{UVLOB}	1	0	0	1		
≥ V _{UVLOA}	≥ V _{UVLOB}	0	X	High-Z	High-Z		
< V _{UVLOA}	≥ V _{UVLOB}	X	X	High-Z	High-Z		
≥ V _{UVLOA}	< V _{UVLOB}	X	X	High-Z	High-Z		
< V _{UVLOA}	< V _{UVLOB}	X	X	High-Z	High-Z		

^{*}Note: Drive DE low to disable the transmitter outputs. Drive DE high to enable the transmitter outputs. DE has an internal pulldown to GNDA.

X = Don't care

	RECEIVING						
	INPU	ITS		OUTPUTS			
V _{DDA}	V _{DDB}	RE	(V _A - V _B)	RXD			
≥ V _{UVLOA}	≥ V _{UVLOB}	0	> -10mV	1			
≥ V _{UVLOA}	≥ V _{UVLOB}	0	< -200mV	0			
≥ V _{UVLOA}	≥ V _{UVLOB}	0	Open/Short	1			
≥ V _{UVLOA}	≥ V _{UVLOB}	1	X	High-Z			
< V _{UVLOA}	≥ V _{UVLOB}	X	X	High-Z			
≥ V _{UVLOA}	< V _{UVLOB}	0	X	1			
< V _{UVLOA}	< V _{UVLOB}	Χ	X	High-Z			

^{*}Note: Drive \overline{RE} high to disable the receiver output. Drive \overline{RE} low to enable to receiver output. \overline{RE} has an internal pulldown to GNDA. X = Don't care

	SBA					
V _{DDA}	V_{DDB}	SBA				
< V _{UVLOA}	< V _{UVLOB}	High				
< V _{UVLOA}	≥ V _{UVLOB}	High				
≥ V _{UVLOA}	< V _{UVLOB}	High				
≥ V _{UVLOA}	≥ V _{UVLOB}	Low				

Detailed Description

The MAX14856/MAX14858 isolated RS-485/RS-422 transceivers provide 5000V_{RMS} (60s) of galvanic isolation between the RS-485/RS-422 cable side of the transceiver and the UART side. These devices allow up to 500kbps (MAX14856)/25Mbps (MAX14858) communication across an isolation barrier when a large potential exists between grounds on each side of the barrier.

Isolation

Data isolation is achieved using high-voltage capacitors that allow data transmission between the UART side and the RS-485/RS-422 cable side of the transceiver.

Integrated LDO

The devices include an internal low-dropout regulator with a set 3.3V (typ) output that is used to power the cableside of the IC. The output of the LDO is V_{DDB} . The LDO has a 300mA (typ) current limit. If the LDO is unused, connect V_{LDO} to GNDB and apply +3.3V directly to V_{DDB} .

True Fail-Safe

The devices guarantee a logic-high on the receiver output when the receiver inputs are shorted or open, or when connected to a terminated transmission line with all drivers disabled. The receiver threshold is fixed between -10mV and -200mV. If the differential receiver input voltage (V_A – V_B) is greater than or equal to -10mV, RXD is logic-high. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to zero by the termination resistors. Due to the receiver thresholds of the devices, this results in a logic-high at RXD.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or bus contention. The first, a current limit on the output stage, provides immediate protection against short circuits over the entire common-mode voltage range. The second, a thermal-shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds +160°C (typ).

Thermal Shutdown

The devices are protected from overtemperature damage by integrated thermal shutdown circuitry. When the junction temperature (T_J) exceeds +160°C (typ), the driver outputs go high-impedance. The device resumes normal operation when T_J falls below +145°C (typ).

Applications Information

128 Transceivers on the Bus

The standard RS-485 receiver input impedance is one unit load. A standard driver can drive up to 32 unit-loads. The devices' transceivers have a 1/4-unit load receiver, which allows up to 128 transceivers, connected in parallel, on one communication line. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32 unit-loads to the line.

Typical Application

The MAX14856/MAX14858 full-duplex transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figure 9 and Figure 10 show typical network application circuits. To minimize reflections, the bus should be terminated at both ends in its characteristics impedance, and stub lengths off the main line should be kept as short as possible.

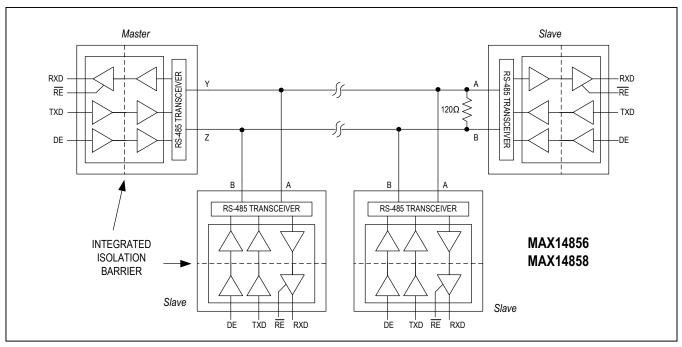


Figure 9. Typical Isolated Full-Duplex RS-485/RS-422 Application

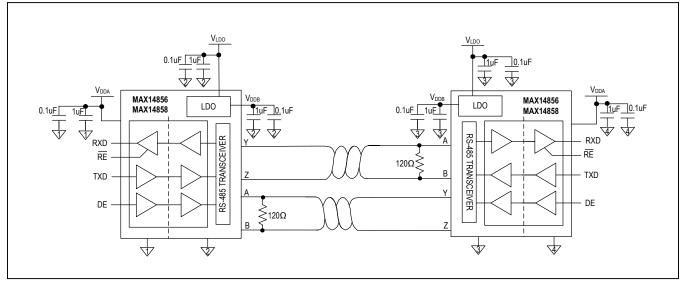


Figure 10. Typical Isolated Point-to-Point Application

5kV_{RMS} Isolated 500kbps/25Mbps Full-Duplex RS-485/RS-422 Transceivers with ±35kV ESD Protection

Layout Considerations

It is recommended to design an isolation, or "keep-out," channel underneath the isolator that is free from ground and signal planes. Any galvanic or metallic connection between the cable side and UART side will defeat the isolation.

Ensure that the decoupling capacitors between V_{DDA} and GNDA and between V_{LDO} , V_{DDB} , and GNDB are located as close as possible to the IC to minimize inductance.

Route important signal lines close to the ground plane to minimize possible external influences. On the cable side of the devices, it is good practice to have the bus connectors and termination resistor as close as possible to the A and B pins.

Extended ESD Protection

ESD protection structures are incorporated on all pins to protect against electrostatic discharge encountered during handling and assembly. The driver outputs and receiver inputs of the MAX14856/MAX14858 have extra protection against static electricity to both the UART side and cable side ground references. The ESD structures withstand high-ESD events during normal operation and when powered down. After an ESD event, the devices keep working without latch-up or damage.

Bypass V_{DDA} to GNDA and bypass V_{DDB} and V_{LDO} to GNDB with $0.1\mu F$ and $1\mu F$ capacitors to ensure maximum ESD protection.

ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX14856/MAX14858 are characterized for protection to the cable side ground (GNDB) to the following limits:

- ±35kV HBM
- ±18kV using the Air-Gap Discharge method specified in IEC 61000-4-2
- ±8kV using the Contact Discharge method specified in IEC 61000-4-2

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model (HBM)

<u>Figure 11</u> shows the HBM test model, while <u>Figure 12</u> shows the current waveform it generates when discharged in a low-impedance state. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5 kΩ resistor.

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX14856/MAX14858 help in designing equipment to meet IEC 61000-4-2 without the need for additional ESD protection components.

The major difference between tests done using the HBM and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the HBM.

<u>Figure 13</u> shows the IEC 61000-4-2 model and <u>Figure 14</u> shows the current waveform for IEC 61000-4-2 ESD Contact Discharge Test.

5kV_{RMS} Isolated 500kbps/25Mbps Full-Duplex RS-485/RS-422 Transceivers with ±35kV ESD Protection

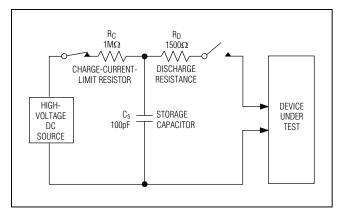


Figure 11. Human Body ESD Test Model

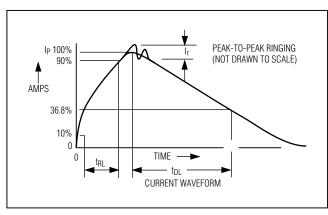


Figure 12. Human Body Current Waveform

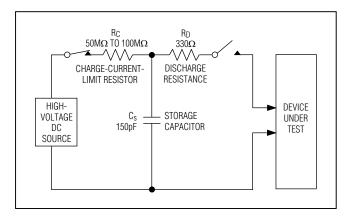


Figure 13. IEC 61000-4-2 ESD Test Model

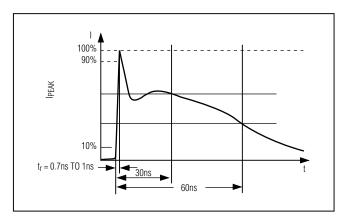
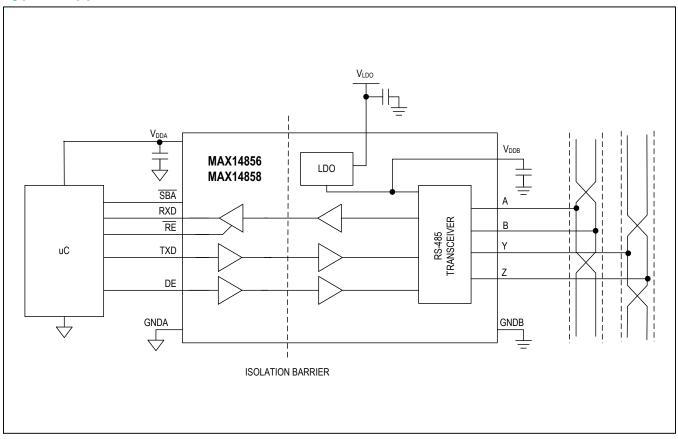



Figure 14. IEC 61000-4-2 ESD Generator Current Waveform

Typical Application Circuit

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	
MAX14856GWE+	-40°C to +105°C	16 SOIC (W)	
MAX14856GWE+T	-40°C to +105°C	16 SOIC (W)	
MAX14858GWE+	-40°C to +105°C	16 SOIC (W)	
MAX14858GWE+T	-40°C to +105°C	16 SOIC (W)	

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND PATTERN
TYPE	CODE	NO.	NO.
16 SOIC	W16M+9	21-0042	90-0107

T = Tape and Reel.

5kV_{RMS} Isolated 500kbps/25Mbps Full-Duplex RS-485/RS-422 Transceivers with ±35kV ESD Protection

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/15	Initial release	_
1	1/17	Updated pending safety approvals	1, 7

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.