1.5A Ultra-Small Controlled Load Switch with Auto-Discharge Path

The NCP432 and NCP433 are a low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, due to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC's on the battery when not used.

Output discharge path is also embedded to eliminate residual voltages on the output (NCP433 only).

Proposed in wide input voltage range from 1.0 V to 3.6 V, and a very small 0.76 x 0.76 mm WLCSP4, 0.4 mm pitch.

Features

- 1 V 3.6 V Operating Range
- $50 \text{ m}\Omega \text{ P}$ MOSFET at 1.8 V
- DC Current up to 1.5 A
- Output Auto-discharge (NCP433)
- Active High EN Pin
- WLCSP4 0.76 x 0.76 mm
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices

ON Semiconductor®

http://onsemi.com

ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Figure 1. Typical Application Circuit

PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Туре	Description
IN	A2	POWER	Load-switch input voltage; connect a 1 μF or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	B1	POWER	Ground connection.
EN	B2	INPUT	Enable input, logic high turns on power switch.
OUT	A1	OUTPUT	Load-switch output; connect a 1 μF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.

BLOCK DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IN, OUT, EN, Pins:	V _{EN,} V _{IN,} V _{OUT}	-0.3 to + 4.0	V
From IN to OUT Pins: Input/Output	V _{IN,} V _{OUT}	0 to + 4.0	V
Maximum Junction Temperature	ТJ	-40 to + 125	°C
Storage Temperature Range	T _{STG}	-40 to + 150	°C
Human Body Model (HBM) ESD Rating are (Notes 1 and 2)	ESD HBM	7000	V
Machine Model (MM) ESD Rating are (Notes 1 and 2)	ESD MM	250	V
Charge Device Model (CDM) ESD Rating are (Notes 1 and 2)	ESD CDM	2000	V
Latch-up protection (Note 3) – Pins IN, OUT, EN	LU	100	mA
Moisture Sensitivity (Note 4)	MSL	Level 1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. According to JEDEC standard JESD22-A108.

2. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±7.0 kV per JEDEC standard: JESD22-A114 for all pins. Machine Model (MM) ±250 V per JEDEC standard: JESD22–A115 for all pins. Charge Device Model (CDM) ±2.0 kV per JEDEC standard: JESD22–C101 for all pins.

3. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78 class II.

4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	ameter Conditions		Min	Тур	Max	Unit
V _{IN}	Operational Power Supply			1.0		3.6	V
V _{EN}	Enable Voltage			0		3.6	
T _A	Ambient Temperature Range			-40	25	+85	°C
C _{IN}	Decoupling input capacitor			1			μF
C _{OUT}	Decoupling output capacitor			1			μF
$R_{\theta JA}$	Thermal Resistance Junction to Air	istance Junction to Air WLCSP package (Note 5)			150		°C/W
I _{OUT}	Maximum DC current					1.5	А
PD	Power Dissipation Rating (Note 6)	$T_A \le 25^{\circ}C$	WLCSP package		0.5		W
		T _A = 85°C	WLCSP package		0.2		W

5. The $R_{\theta JA}$ is dependent of the PCB heat dissipation and thermal via.

6. The maximum power dissipation (P_D) is given by the following formula:

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between -40°C to +85°C for V_{IN} between 1.0 V to 3.6 V (Unless otherwise noted). Typical values are referenced to T_A = + 25 °C and V_{IN} = 3.3 V (Unless otherwise noted).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
POWER SWITCH							
		V _{IN} = 3.6 V	T _A = 25 °C, I = 200 mA (Note 8)		35		
			$T_A = 85^{\circ}C$			55	
			T _A = 25°C, I = 200 mA		37		
		V _{IN} = 3.3 V	$T_A = 85^{\circ}C$			60	
R _{DS(on)}	Static drain-source on- state resistance	V 1.0.V	T _A = 25°C, I = 200 mA		50		mΩ
		V _{IN} = 1.8 V	$T_A = 85^{\circ}C$			80	
		V _{IN} = 1.2 V	T _A = 25°C, I = 200 mA		100		
			$T_A = 85^{\circ}C$			150	
		V _{IN} = 1.1 V	T _A = 25°C, I = 100 mA		120		
R _{DIS}	Output discharge path	EN = low	V _{IN} = 3.3 V, NCP433 only	40	65	90	Ω
T _R	Output rise time		C_{LOAD} = 1 µF, R_{LOAD} = 25 Ω (Note 7) from 10% to 90% of V_{OUT}	5	20	40	μs
Τ _F	Output fall time		C_{LOAD} = 1 µF, R_{LOAD} = 25 Ω (Note 7)	20	56	80	μs
T _{on}	Gate turn on	V _{IN} = 3.6 V	Gate turn on + Output rise time	20	47	115	μs
T _{en}	Enable time		From EN low to high to V _{OUT} 10%	15	30	75	μs
T _{dis}	Disable time		From EN high to low to V _{OUT} = 90% of fully on	2	11	20	μs
V _{IH}	High-level input voltage			0.9			V
V _{IL}	Low-level input voltage					0.5	V

QUIESCENT CURRENT

	$V_{IN} = 3.3 V, EN = Iow, No load$	0.01	0.6	μΑ	
IQ	Current consumption	$V_{IN} = 3.3 V, EN = high, No load$	0.2	0.6	μA

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground 8. Guaranteed by design and characterization, not production tested.

TIMINGS

Figure 3. Enable, Rise and Fall Time

TYPICAL CHARACTERISTICS

FUNCTIONAL DESCRIPTION

Overview

The NCP432 – NCP433 are high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a range of battery from 1.0 V to 3.6 V.

Enable Input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P MOS switch off.

The IN/OUT path is activated with a minimum of Vin of 1.0 V and EN forced to high level.

Auto Discharge (NCP433 only)

NMOS FET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin.

The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and $V_{IN} > 1.0$ V.

In order to limit the current across the internal discharge N–MOSFET, the typical value is set at 65 Ω .

Cin and Cout Capacitors

IN and OUT, 1 μ F, at least, capacitors must be placed as close as possible the part for stability improvement.

APPLICATION INFORMATION

Τī

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

 $\mathsf{P}_{\mathsf{D}} = \mathsf{R}_{\mathsf{DS(on)}} \times \left(\mathsf{I}_{\mathsf{OUT}}\right)^2$

P_D R_{DS(on)} I_{OUT} = Power dissipation (W) = Power MOSFET on resistance (Ω) = Output current (A) $T_J = P_D \times R_{\theta JA} + T_A$ = Junction temperature (°C)

 $R_{\theta JA}$ = Package thermal resistance (°C/W)

 T_A = Ambient temperature (°C)

PCB Recommendations

The NCP432 – NCP433 integrate an up to 1.5 A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the $R_{\theta JA}$ of the package can be decreased, allowing higher power dissipation.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NCP432FCT2G	AV	WLCSP4 (Pb-Free)	3000 / Tape & Reel
NCP433FCT2G	AT	WLCSP4 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WLCSP4, 0.76x0.76 CASE 567FJ **ISSUE O**

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.

2 COPLANARITY APPLIES TO SPHERICAL 3.

CROV	CROWNS OF SOLDER BALLS.						
	MILLIMETERS						
DIM	MIN MAX						
Α	0.57	0.63					
A1	0.18	0.23					
40	0.40						

Α	0.57	0.63	
A1	0.18	0.23	
A2	0.40	REF	
b	0.24	0.28	
D	0.76	BSC	
Е	0.76 BSC		
е	0.40 BSC		

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any reserves the inputs on the charges without in the holde to any products hereins. Solit CC makes howarrany, representation of guarantee regarding the subability in its products hereins, and a particular product of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC addited for each customer application by customer's technical experts. SCILLC sources are not designed, intended, or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and the officience activity and technique application because activity and the transmitter or the individual science and technique is indication when the discustor of the application is indicated to science and the application is earlier and the application is indicated to react a situation where the discustor of the application and the application and the application application and the application is indicated to a support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where the discustor of the application application, Buyer shall indemnify and hold SCILLC and the application applicati its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.