FemtoClock® NG Crystal/LVCMOS-to-LVDS/LVCMOS Frequency Synthesizer **DATASHEET** ## GENERAL DESCRIPTION The ICS8440259D-05 is a 9 output synthesizer optimized to generate Gigabit and 10 Gigabit Ether-net. Using a 25MHz, 18pF parallel resonant crystal, the device will generate 125MHz and 3.90625MHz clocks with mix-ed LVDS and LVCMOS/LVTTL output levels. The ICS8440259D-05 uses IDT's 3rd generations low phase noise VCO technology and can achieve <1ps typical rms phase jitter, easily meeting Ethernet jitter requirements. The ICS8440259D-05 is packaged in a small, 32-pin VFQFN package that is optimum for applications with space limitations. #### **F**EATURES - Five differential LVDS outputs at 125MHz Three LVCMOS/LVTTL single-ended outputs at 125MHz One LVCMOS/LVTTL single-ended output at 3.90625MHz - Selectable crystal oscillator interface or LVCMOS/LVTTL single-ended input and PLL bypass from a single select pin - VCO range: 510MHz 650MHz - RMS phase jitter @ 125MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.41ps (typical) - Full 3.3V supply mode - 0°C to 70°C ambient operating temperature - Available in lead-free (RoHS 6) package ## **BLOCK DIAGRAM** 1 TABLE 1. PIN DESCRIPTIONS | Number | Name | Ту | ре | Description | |-------------------------|-------------------------|--------|----------|---| | 1, 2 | Q0, nQ0 | Output | | Differential clock outputs. LVDS interface levels. | | 3, 9, 15, 17,
21, 32 | GND | Power | | Power supply ground. | | 4, 5 | Q1, nQ1 | Output | | Differential clock outputs. LVDS interface levels. | | 6, 12 | V
DDO_LVDS | Power | | Output supply pins for Q[0:4]/nQ[0:4] LVDS outputs. | | 7, 8 | Q2, nQ2 | Output | | Differential clock outputs. LVDS interface levels. | | 10, 11 | Q3, nQ3 | Output | | Differential clock outputs. LVDS interface levels. | | 13, 14 | Q4, nQ4 | Output | | Differential clock outputs. LVDS interface levels. | | 16, 27 | V _{DD} | Power | | Core supply pins. | | 18, 20,
22, 24 | Q5, Q6,
Q7, Q8 | Output | | Single-ended clock outputs. LVCMOS/LVTTL interface levels. | | 19, 23 | V _{DDO_LVCMOS} | Power | | Output supply pins for Q5:Q8 LVCMOS outputs. | | 25 | V | Power | | Analog supply pin. | | 26 | nPLL_BYPASS | Input | Pullup | Input select and PLL bypass control pin. See Table 3. LVCMOS/LVTTL interface levels. | | 28 | nc | Unused | | No connect. | | 29 | REF_CLK | Input | Pulldown | Single-ended reference clock input. Only selected in nPLL_BYPASS mode. LVCMOS/LVTTL interface levels. | | 30,
31 | XTAL_IN, XTAL_
OUT | Input | | Crystal oscillator interface. XTAL_OUT is the output. XTAL_IN is the input. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-------------------------------|-------|------------------------------------|---------|---------|---------|-------| | C | Input Capacitance | | | | 4 | | pF | | C _{PD} | Power Dissipation Capacitance | | $V_{DD, V_{DDO, LVCMOS}} = 3.465V$ | | 15 | | pF | | R | Input Pulldown Resistor | | | | 51 | | kΩ | | R _{out} | Output Impedance | Q5:Q8 | | | 25 | | Ω | TABLE 3. PLL BYPASS AND INPUT SELECT FUNCTION TABLE | Inputs | | | | | | |---------------------------------------|--------------|----------------------------|--|--|--| | nPLL_BYPASS PLL Bypass Input Selected | | | | | | | 0 | PLL Bypassed | REF_CLK | | | | | 1 | PLL Enabled | XTAL_IN/XTAL_OUT (default) | | | | #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_{po} -0.5V to V_{po} + 0.5V Outputs, I_{o} (LVCMOS) -0.5V to $V_{documents} + 0.5V$ Outputs, I (LVDS) Continuous Current 10mA Surge Current 15mA Operating Temperature Range, Ta -40° C to $+85^{\circ}$ C Storage Temperature, T_{STG} -65° C to 150° C Package Thermal Impedance, $\theta_{\text{\tiny LA}}$ 37°C/W (0 mps) **NOTE:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO_LVCMOS} = V_{DDO_LVCMOS} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------------------|------------------------------|-------------------|------------------------|---------|-----------------|-------| | $V_{_{DD}}$ | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDA} | Analog Supply Voltage | | V _{DD} - 0.40 | 3.3 | V _{DD} | V | | V
DDO_LVCMOS,
V
DDO_LVDS | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | |
 DD | Power Supply Current | Output Not Loaded | | | 120 | mA | | DDA | Analog Supply Current | Output Not Loaded | | | 40 | mA | | DDO_LVCMOS | LVCMOS Output Supply Current | Output Not Loaded | | | 20 | mA | |
 DDO_LVDS | LVDS Output Supply Current | Output Not Loaded | | | 165 | mA | Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO_LVCMOS} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|---------------------|-------------|-----------------|---------|---------|-----------------------|-------| | V _{IH} | Input High Voltage | | | 2 | | V _{DD} + 0.3 | V | | V _{IL} | Input Low Voltage | | | -0.3 | | 0.8 | V | | [| Input High Current | REF_CLK | | | | 150 | μΑ | | I _{IH} | Input High Current | nPLL_BYPASS | | | | 5 | μA | | | Innut Low Current | REF_CLK | | -5 | | | μΑ | | l _{IL} | Input Low Current | nPLL_BYPASS | | -150 | | | μA | | V _{OH} | Output High Voltage | Q5:Q8 | I = -12mA | 2.6 | | | V | | V _{OL} | Output Low Voltage | Q5:Q8 | I = 12mA | | | 0.5 | V | Table 4C. LVDS DC Characteristics, $V_{dd} = V_{ddo_{LVDS}} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------------|----------------------------------|-----------------|---------|---------|---------|-------| | V _{od} | Differential Output Voltage | | 300 | 400 | 545 | mV | | $\Delta V_{_{\mathrm{OD}}}$ | V _{op} Magnitude Change | | | | 50 | mV | | Vos | Offset Voltage | | 1.25 | 1.35 | 1.50 | V | | ΔV_{os} | V _{os} Magnitude Change | | | | 50 | mV | TABLE 5. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|---------------------------------|---------|---------|---------|-------| | Mode of Oscillation | Mode of Oscillation Fundamental | | I | | | | Frequency | | | 25 | | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | | Drive Level | | | | 1 | mW | NOTE: Characterized using an 18pF parallel resonant crystal. **Table 6. AC Characteristics,** $V_{DD} = V_{DDO\ LVCMOS} = V_{DDO\ LVCMOS} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--------------------------|---------------------------|----------------------------|---------|---------|---------|-------| | | | Q0/nQ0:Q4/nQ4 | | | 125 | | MHz | | f _{out} | Output
Frequency | Q5:Q7 | | | 125 | | MHz | | | requericy | Q8 | | | 3.90625 | | MHz | | +::+/ <i>(</i> X) | RMS Phase Jitter | Q0:4/nQ0:4 | 125MHz, (1.875MHz - 20MHz) | | 0.44 | | ps | | tjit(Ø) | (Random);
NOTE 1 | Q5:Q7 | 125MHz, (1.875MHz - 20MHz) | | 0.41 | | ps | | | Output
Rise/Fall Time | Q0/nQ0:Q4/nQ4
(NOTE 2) | 125MHz, 20% to 80% | 0.5 | | 1.20 | ns | | t _R / t _F | | Q0/nQ0:Q4/nQ4 | 125MHz, 20% to 80% | 0.4 | | 0.65 | ns | | R F | | Q5:Q7 | 125MHz, 20% to 80% | 0.35 | | 1.20 | ns | | | | Q8 (NOTE 2) | 3.90625MHz, 20% to 80% | 1.0 | | 1.65 | ns | | | | Q0/nQ0:Q4/nQ4 | 125MHz | 45 | | 55 | % | | odc | Output
Duty Cycle | Q5:Q7 | 125MHz | 42 | | 58 | % | | | Duty Cycle | Q8 | 3.90625MHz | 49 | | 51 | % | | odc | Output | Q0/nQ0:Q4/nQ4 | 125MHz | 47 | | 53 | % | | | Duty Cycle, | Q5:Q7 | 125MHz | 43 | | 57 | % | | | BYPASS Mode | Q8 | 3.90625MHz | 49 | | 51 | % | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE: TA, Ambient Temperature applied using forced air flow. NOTE 1: Please refer to the Phase Noise Plots. NOTE 2: Output loaded with 15pF. ## PARAMETER MEASUREMENT INFORMATION #### 3.3V LVDS OUTPUT LOAD AC TEST CIRCUIT #### 3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT #### LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ## LVDS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD LVDS OUTPUT RISE/FALL TIME LVCMOS OUTPUT RISE/FALL TIME ### RMS PHASE JITTER ## DIFFERENTIAL OUTPUT VOLTAGE SETUP ## OFFSET VOLTAGE SETUP ## **APPLICATION INFORMATION** #### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS8440259D-05 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\tiny DD}, V_{\tiny DDA}, V_{\tiny DDO_LVDS}$ and $V_{\tiny DDO_LVCMOS}$ should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic $V_{\tiny DD}$ pin and also shows that $V_{\tiny DDA}$ requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the $V_{\tiny DDA}$ pin. FIGURE 1. POWER SUPPLY FILTERING #### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS #### INPUTS: #### **CRYSTAL INPUTS** For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1k Ω resistor can be tied from XTAL_IN to ground. #### REF_CLK INPUT For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the REF_CLK to ground. #### LVCMOS CONTROL PINS All control pins have internal pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **OUTPUTS:** #### **LVCMOS OUTPUTS** All unused LVCMOS output can be left floating. There should be no trace attached. #### **LVDS OUTPUTS** All unused LVDS output pairs can be either left floating or terminated with 100 Ω across. If they are left floating, there should be no trace attached. #### CRYSTAL INPUT INTERFACE The ICS8440259D-05 has been characterized with 18pF parallel resonant crystals. The capacitor values shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. FIGURE 2. CRYSTAL INPUT INTERFACE #### LVCMOS TO XTAL INTERFACE The XTAL_IN input can accept a single-ended LVCMOS signal through an AC couple capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE ### 3.3V LVDS DRIVER TERMINATION A general LVDS interface is shown in Figure 4. In a 100 Ω differential transmission line environment, LVDS drivers require a matched load termination of 100 Ω across near the receiver input. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs. FIGURE 4. TYPICAL LVDS DRIVER TERMINATION #### VFQFN EPAD THERMAL RELEASE PATH In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 5*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/ shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadfame Base Package, Amkor Technology. FIGURE 5. P.C. ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH - SIDE VIEW (DRAWING NOT TO SCALE) ## POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS8440259D-05. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS8440259D-05 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{pp} = 3.3V + 5\% = 3.465V$, which gives worst case results. #### **Core and LVDS Output Power Dissipation** • Power (core, LVDS) = $V_{DDMAY} * (I_{DD} + I_{DDOJVDS} + I_{DDAJVDS} + I_{DDAJVDS}) = 3.465 V * (120mA + 165mA + 40mA) =$ **1126.13mW** #### **LVCMOS Output Power Dissipation** - Power (LVCMOS, no load) = $V_{DD.MAX} * I_{DDO.LVCMOS} = 3.465V * 20mA = 69.3mW$ - Output Impedance R_{out} Power Dissipation due to Loading 50Ω to V_{DDO}/2 Output Current I_{OUT} = V_{DDO MAX} / [2 * $(50\Omega + R_{OUT})$] = 3.465V / [2 * $(50\Omega + 25\Omega)$] = **23.1mA** - Power Dissipation on the R_{out} per LVCMOS output Power $(R_{out}) = R_{out} * (I_{out})^2 = 25\Omega * (23.1mA)^2 = 13.3mW$ per output - Total Power Dissipation on the R_{оит} Total Power ($$R_{aux}$$) = 13.3mW * 4 = **53.2mW** Dynamic Power Dissipation at 125MHz Power (125MHz) = $$C_{pD}$$ * Frequency * $(V_{DDO})^2$ = 15pF * 125MHz * $(3.465V)^2$ = **22.5mW per output** Total Power (125MHz) = **22.5mW** * **3** = **67.5mW** Dynamic Power Dissipation at 3.9MHz **Power (3.9MHz)** = $$C_{_{PD}}$$ * frequency * $(V_{_{DDO}})^2$ = 15pF * 3.90625MHz * $(3.465V)^2$ = **0.7mW per output** #### **Total Power Dissipation** - Total Power - = Power (core, LVDS) + Power (LVCMOS, no load) + Total Power (R_{OUT}) + Total Power (125MHz) + Total Power (3.9MHz) - = 1126.13mW + 69.3mW + 53.2mW + 67.5mW + 0.7mW - = 1391.51mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature $\theta_{\text{JA}} = Junction\text{-to-Ambient Thermal Resistance}$ Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 37° C/W per Table 7. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 1.391\text{W} * 37^{\circ}\text{C/W} = 121.5^{\circ}\text{C}$. This is below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer). Table 7. Thermal Resistance θ_{JA} for 32-Lead VFQFN, Forced Convection #### θ_{JA} vs. Air Flow (Meters per Second) Multi-Layer PCB, JEDEC Standard Test Boards **0** 37.0°C/W **1** 32.4°C/W **2.5** 29.0°C/W ## **RELIABILITY INFORMATION** Table 8. $\theta_{_{JA}} \text{vs. Air Flow Table for 32 Lead VFQFN}$ $\theta_{\mbox{\tiny JA}}$ vs. Air Flow (Meters per Second) 0 1 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 37.0°C/W 32.4°C/W 29.0°C/W ### TRANSISTOR COUNT The transistor count for ICS8440259D-05 is: 2975 #### PACKAGE OUTLINE - K SUFFIX FOR 32 LEAD VFQFN NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. TABLE 9. PACKAGE DIMENSIONS | JEDEC VARIATION
ALL DIMENSIONS IN MILLIMETERS (VHHD -2/ -4) | | | | | | | |--|-----------------|-------|--|--|--|--| | SYMBOL | Minimum Maximum | | | | | | | N | 32 | | | | | | | Α | 0.80 | 1.0 | | | | | | A1 | 0 0.05 | | | | | | | А3 | 0.25 Reference | | | | | | | b | 0.18 | 0.30 | | | | | | е | 0.50 E | BASIC | | | | | | N _D | 8 | 3 | | | | | | N _E | 8 | 3 | | | | | | D, E | 5.0 BASIC | | | | | | | D2, E2 | 3.0 | 3.3 | | | | | | L | 0.30 | 0.50 | | | | | Reference Document: JEDEC Publication 95, MO-220 #### Table 10. Ordering Information | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|-------------|---------------------------|--------------------|-------------| | 8440259DK-05LF | ICS0259D05L | 32 Lead "Lead-Free" VFQFN | Tray | 0°C to 70°C | | 8440259DK-05LFT | ICS0259D05L | 32 Lead "Lead-Free" VFQFN | Tape & Reel | 0°C to 70°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. ### **Revision History** 9/3/14 Updated datasheet format Pg 1 Removed Block Diagram VCO limits Removed references to leaded devices Pg 15 Ordering Information - removed leaded devices **Corporate Headquarters** 6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.