40V 10A GATE DRIVER IN SOT26 ### Description ZXGD3006E6 is a 40V Gate Driver for switching IGBTs and SiC MOSFETs. It can transfer up to 10A peak source/sink current into the gate for effective charging and discharging of a large capacitive load. The ZXGD3006E6 can drive typically 4A into the low gate impedance of an IGBT, with just 1mA input from a controller. Also, the turn-on and turn-off switching behavior of the IGBT can be individually tailored to suit an application. In particular, by defining the switching characteristics appropriately, EMI and cross conduction problems can be reduced. ### **Applications** Gate driving IGBTs and SiC MOSFETs in: - Solar inverters - Power supplies - Plasma display panel power modules - DC-DC converters in electric cars #### **Features** - High-gain buffer with typically 4A output from 1mA input - 40V supply for +20V to -18V gate driving to prevent dV/dt induced false triggering - Emitter-follower that is rugged to latch-up / shoot-through issues, and delivers <10ns propagation delay time - Separate source and sink outputs for independent control of IGBT turn-on and turn-off times - Optimized pin-out to simplify PCB layout and reduce parasitic trace inductances - Near-zero quiescent supply current - Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2) - Halogen and Antimony free. "Green" Device (Note 3) - Qualified to AEC-Q101 Standards for High Reliability - PPAP capable (Note 4) ### **Mechanical Data** - Case: SOT26 - Case material: molded plastic. "Green" molding compound. - UL Flammability Rating 94V-0 - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202. Method 208 @3 - Weight: 0.018 grams (approximate) | Pin Name | Pin Function | | | |-----------------|-----------------------|--|--| | V _{CC} | Supply voltage high | | | | IN | Driver input pin | | | | V _{EE} | Supply voltage low | | | | SOURCE | Source current output | | | | SINK | Sink current output | | | ## Ordering Information (Notes 4 & 5) | Product | Compliance | Marking | Reel size (inches) | Tape width (mm) | Quantity per reel | |---------------|------------|---------|--------------------|-----------------|-------------------| | ZXGD3006E6TA | AEC-Q101 | 3006 | 7 | 8 | 3000 | | ZXGD3006E6QTA | Automotive | 3006 | 7 | 8 | 3000 | Notes: - 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. - 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen and Antimony free, "Green" and Lead-Free. - 3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. - 4. Automotive products are AEC-Q101 qualified and are PPAP capable. Automotive, AEC-Q101 and standard products are electrically and thermally the same, except where specified. - 5. For packaging details, go to our website at http://www.diodes.com ## **Marking Information** 3006 = Product Type Marking Code # **Typical Application Circuit** # **Maximum Ratings** (@T_A = +25°C, unless otherwise specified.) | Characteristic | Symbol | Value | Unit | |---|----------------------------|-------|------| | Supply voltage, with respect to V _{EE} | V _{CC} | 40 | V | | Input voltage, with respect to V _{EE} | V _{IN} | 40 | V | | Output difference voltage (Source – Sink) | $\Delta V_{(source-sink)}$ | ±7.5 | V | | Peak output current | I _{PK} | ±10 | Α | | Input current | I _{IN} | ±100 | mA | ## Thermal Characteristics (@TA = +25°C, unless otherwise specified.) | Characteristic | Symbol | Value | Unit | | |---|-----------------------------------|-------------|-------|--| | Power Dissipation (Notes 6 & 7) | D | 1.1 | W | | | Linear derating factor | P _D | 8.8 | mW/°C | | | Thermal Resistance, Junction to Ambient (Notes 6 & 7) | $R_{\theta JA}$ | JA 113 | | | | Thermal Resistance, Junction to Lead (Note 8) | $R_{ heta JL}$ | 105 | °C/W | | | Operating and Storage Temperature Range | T _J , T _{STG} | -55 to +150 | °C | | Notes: - For a device surface mounted on 25mm x 25mm x 0.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the device is measured when operating in a steady-state condition. The heatsink is split in half with the pin 1 (V_{CC}) and pin 3 (V_{EE}) connected separately to each half. For device with two active die running at equal power. Thermal resistance from junction to solder-point at the end of each lead on pin 1 (V_{CC}) and pin 3 (V_{EE}). ## Electrical Characteristics (@T_A = +25°C, unless otherwise specified.) | Characteristic | Symbol | Min | Тур | Max | Unit | Test Condition | |--|---|-----------------------|----------------------------------|-----------------------|------|--| | Output voltage, high | V _{OUT(hi)} | V _{CC} - 1.0 | V _{CC} - 0.8 | - | V | V _{IN} = V _{CC} C _L = 1nF | | Output voltage, low | V _{OUT(low)} | - | V _{EE} + 0.12 | V _{EE} + 0.3 | V | $V_{IN} = V_{EE}$ $R_{SOURCE} = 0\Omega$, $R_{SINK} = 0\Omega$ | | Cumply brookdown voltage | D) / | 40 | - | - | V | $I_Q = 100\mu A$, $V_{IN} = V_{CC}$ | | Supply breakdown voltage | BVcc | 40 | - | - | V | $I_Q = 100 \mu A, V_{IN} = V_{EE} = 0 V$ | | Outcoant ourselv oursest | | - | - | 50 | nA | $V_{CC} = 30V$, $V_{IN} = V_{CC}$ | | Quiescent supply current | ΙQ | - | - | 50 | ΠA | V_{CC} = 30V, V_{IN} = V_{EE} = 0V | | Source current | I _(source) | - | 4.0 | - | Α | V _{CC} = 5V, I _{IN} = 1mA, V _{OUT} = 0V | | Sink current | I _(sink) | - | 3.8 | - | Α. | V _{CC} = 5V, I _{IN} =-1mA, V _{OUT} = 5V | | Source current with varying input resistances | I _(source) | - | 6.4
5.5
3.9
2.2
0.44 | - | Α | $ \begin{vmatrix} R_{IN} = 200\Omega \\ R_{IN} = 1k\Omega \\ R_{IN} = 10k\Omega \\ R_{IN} = 100k\Omega \\ R_{IN} = 1000k\Omega \end{vmatrix} \\ V_{CC} = 15V, \ V_{EE} = 0V \\ V_{IN} = 15V \\ C_{L} = 100nF, \ R_{L} = 0.18\Omega \\ R_{SOURCE} = 0\Omega, \ R_{SINK} = 0\Omega $ | | Sink current
with varying input resistances | I(sink) | - | 7.7
6.5
4.4
2.3
0.46 | - | Α | $ \begin{aligned} R_{IN} &= 200\Omega \\ R_{IN} &= 1k\Omega \\ R_{IN} &= 10k\Omega \\ R_{IN} &= 100k\Omega \\ R_{IN} &= 1000k\Omega \end{aligned} \begin{aligned} V_{CC} &= 15V, \ V_{EE} = 0V \\ V_{IN} &= 15V \\ C_{L} &= 100nF, \ R_{L} = 0.18\Omega \\ R_{SOURCE} &= 0\Omega, \ R_{SINK} = 0\Omega \end{aligned}$ | | Switching times with low load capacitance $C_L = 10nF$ | $\begin{array}{c} t_{\text{d(rise)}} \\ t_{\text{r}} \\ t_{\text{d(fall)}} \\ t_{\text{f}} \end{array}$ | - | 8
48
16
35 | ı | ns | $\begin{split} &V_{CC}=15V,V_{EE}=0V\\ &V_{IN}=0\text{ to }15V\\ &R_{IN}=1k\Omega\\ &C_L=10nF,R_L=0.18\Omega\\ &R_{SOURCE}=0\;\Omega,R_{SINK}=0\;\Omega \end{split}$ | | Switching times
with high load capacitance C _L = 100nF | $\begin{array}{c} t_{\text{d(rise)}} \\ t_{\text{r}} \\ t_{\text{d(fall)}} \\ t_{\text{f}} \end{array}$ | - | 46
419
47
467 | - | ns | $\begin{split} &V_{CC}=15V,V_{EE}=0V\\ &V_{IN}=0to15V\\ &R_{IN}=1k\Omega\\ &C_L=100nF,R_L=0.18\Omega\\ &R_{SOURCE}=0\Omega,R_{SINK}=0\Omega \end{split}$ | | Switching times
with asymmetric source and sink resistors | $egin{array}{c} t_{ ext{d(rise)}} \ t_{ ext{r}} \ t_{ ext{d(fall)}} \ t_{ ext{f}} \end{array}$ | - | 27
208
11
53 | - | ns | $\begin{split} &V_{CC}=20\text{V}, \ V_{EE}=-18\text{V} \\ &V_{IN}=-18 \text{ to } 20\text{V} \\ &R_{IN}=1k\Omega \\ &C_{L}=10\text{nF}, \ R_{L}=0.18\Omega \\ &R_{SOURCE}=4.7\Omega, \ R_{SINK}=0\Omega \end{split}$ | # **Switching Test Circuit and Timing Diagram** ## Typical Switching Characteristics (@TA = +25°C, unless otherwise specified.) ## **Switching Speed** Low Load Capacitance $C_{\parallel} = 10nF$ Switching Speed Asymmetric Source and Sink Resistors ## **Switching Speed** High Load Capacitance $C_I = 100nF$ **Supply Current** ## Typical Switching Characteristics (@T_A = +25°C, unless otherwise specified.) # **Circuit Examples** ## **Package Outline Dimensions** Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version. | SOT26 | | | | | | |----------------------|-------|------|------|--|--| | Dim | Min | Max | Тур | | | | Α | 0.35 | 0.50 | 0.38 | | | | В | 1.50 | 1.70 | 1.60 | | | | С | 2.70 | 3.00 | 2.80 | | | | D | _ | _ | 0.95 | | | | Н | 2.90 | 3.10 | 3.00 | | | | J | 0.013 | 0.10 | 0.05 | | | | K | 1.00 | 1.30 | 1.10 | | | | L | 0.35 | 0.55 | 0.40 | | | | M | 0.10 | 0.20 | 0.15 | | | | α | 0° | 8° | _ | | | | All Dimensions in mm | | | | | | ## **Suggested Pad Layout** Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version. | Dimensions | Value (in mm) | |------------|---------------| | Z | 3.20 | | G | 1.60 | | Х | 0.55 | | Y | 0.80 | | C1 | 2.40 | | C2 | 0.95 | #### **IMPORTANT NOTICE** DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated. #### **LIFE SUPPORT** Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2012, Diodes Incorporated www.diodes.com Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.