
2KBP005M thru 2KBP10M, 3N253 thru 3N259

Vishay General Semiconductor

HALOGEN

FREE

Glass Passivated Single-Phase Bridge Rectifier

PRIMARY CHARACTERISTICS							
Package	KBPM						
I _{F(AV)}	2.0 A						
V _{RRM}	50 V to 1000 V						
I _{FSM}	60 A						
I _R	5 μΑ						
V _F	1.1 V						
T _J max.	165 °C						
Diode variations	In-Line						

FEATURES

- UL recognition file number E54214
- Ideal for printed circuit board
- · High surge current capability
- High case dielectric strength
- Solder dip 275 °C max. 10 s, per JESD 22-B106
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

General purpose use in AC/DC bridge full wave rectification for switching power supply, home appliances, office equipment, and telecommunication applications.

MECHANICAL DATA

Case: KBPM

Molding compound meets UL 94 V-0 flammability rating Base P/N-M4 - halogen-free and RoHS-compliant, commercial grade

Terminals: Silver plated leads, solderable

J-STD-002 and JESD 22-B102 **Polarity:** As marked on body

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)										
PARAMETER	SYMBOL	2KBP005M	2KBP01M	2KBP02M	2KBP04M	2KBP06M	2KBP08M	2KBP10M	LINIT	
		3N253	3N254	3N255	3N256	3N257	3N258	3N259	UNIT	
Maximum repetitive peak reverse voltage	V _{RRM}	50	100	200	400	600	800	1000	V	
Maximum RMS voltage	V_{RMS}	35	70	140	280	420	560	700	V	
Maximum DC blocking voltage	V_{DC}	50	100	200	400	600	800	1000	V	
Maximum average forward output rectified current at T _A = 55 °C	I _{F(AV)}	2.0							Α	
Peak forward surge current single half sine-wave superimposed on rated load	I _{FSM}	60							А	
Rating for fusing (t < 8.3 ms)	I ² t	15							A ² s	
Operating junction and storage temperature range	T _J , T _{STG}	- 55 to + 165							°C	

2KBP005M thru 2KBP10M, 3N253 thru 3N259

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)										
PARAMETER	TEST CONDITIONS	SYMBOL	2KBP0 05M	2KBP0 1M	2KBP0 2M	2KBP0 4M	2KBP0 6M	2KBP0 8M	2KBP 10M	UNIT
			3N253	3N254	3N255	3N256	3N257	3N258	3N259	
Maximum instantaneous forward voltage drop per diode	3.14 A	V _F	1.1						٧	
Maximum DC reverse current at rated	T _J = 25 °C	1	5.0							μΑ
DC blocking voltage per diode	T _J = 125 °C	I _R	500							
Typical junction capacitance per diode	4.0 V, 1 MHz	CJ	J 25					pF		

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)									
PARAMETER	SYMBOL	2KBP005M	2KBP01M	2KBP02M	2KBP04M	2KBP06M	2KBP08M	2KBP10M	UNIT
		3N253	3N254	3N255	3N256	3N257	3N258	3N259	
Typical thermal resistance (1)	$R_{\theta JA}$				30				°C/W
Typical thermal resistance (9	$R_{\theta JL}$		•	•	11	•			C/VV

Note

⁽¹⁾ Thermal resistance from junction to ambient and from junction to lead mounted on PCB with, 0.47" x 0.47" (12 mm x 12 mm) copper pads

ORDERING INFORMATION (Example)									
PREFERRED P/N	UNIT WEIGHT (g)	PACKAGE CODE	BASE QUANTITY	DELIVERY MODE					
2KBP06M-M4/51	1.895	51	600	Anti-static PVC tray					
3N257-M4/51	1.895	51	600	Anti-static PVC tray					

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

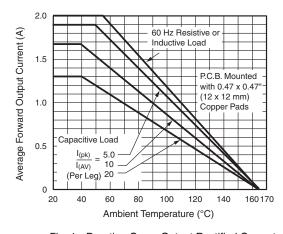


Fig. 1 - Derating Curve Output Rectified Current

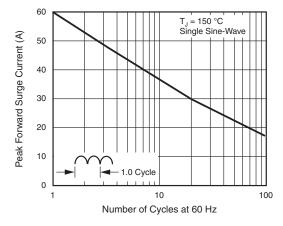


Fig. 2 - Derating Curve Output Rectified Current

Vishay General Semiconductor

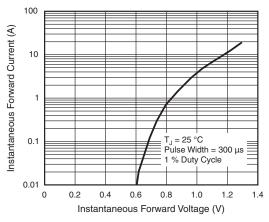


Fig. 3 - Typical Forward Characteristics Per Diode

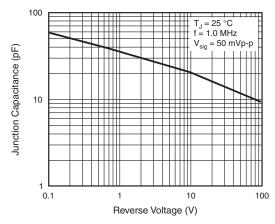


Fig. 5 - Typical Junction Capacitance Per Diode

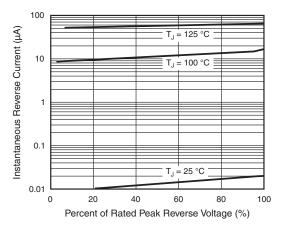
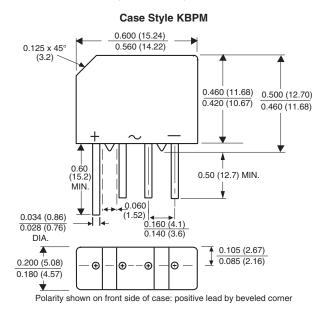



Fig. 4 - Typical Reverse Leakage Characteristics Per Diode

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.