GENERAL-PURPOSE LOW-VOLTAGE COMPARATORS #### **FEATURES** - 2.7-V and 5-V Performance - Low Supply Current - LMV331 . . . 130 μA Typ - LMV393 . . . 210 μA Typ - LMV339 . . . 410 μA Typ - Input Common-Mode Voltage Range Includes Ground - Low Output Saturation Voltage 200 mV Typical - Open-Collector Output for Maximum Flexibility # DESCRIPTION/ ORDERING INFORMATION The LMV393 and LMV339 devices are low-voltage (2.7 V to 5.5 V) versions of the dual and quad comparators, LM393 and LM339, which operate from 5 V to 30 V. The LMV331 is the single-comparator version. The LMV331, LMV339, and LMV393 are the most cost-effective solutions for applications where low-voltage operation, low power, space saving, and price are the primary specifications in circuit design for portable consumer products. These devices offer specifications that meet or exceed the familiar LM339 and LM393 devices at a fraction of the supply current. LMV393 . . . D, DDU, DGK OR PW PACKAGE (TOP VIEW) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ### ORDERING INFORMATION(1) | T _A | | PACKAGE ⁽²⁾ | | ORDERABLE PART NUMBER | TOP-SIDE
MARKING ⁽³⁾ | |----------------|------------------|------------------------|--------------|-----------------------|------------------------------------| | | | SC-70 – DCK | Reel of 3000 | LMV331IDCKR | Do | | | Cinala | 3C-70 - DCK | Reel of 250 | LMV331IDCKT | R2_ | | Single | Single | SOT23-5 – DBV | Reel of 3000 | LMV331IDBVR | D4I | | | | 30123-5 - DBV | Reel of 250 | LMV331IDBVT | R1I_ | | | MSOP/VSSOP - DGK | Reel of 2500 | LMV393IDGKR | R9_ | | | | | SOIC D | Tube of 75 | LMV393ID | MV/2021 | | | Dual | SOIC – D | Reel of 2500 | LMV393IDR | MV393I | | -40°C to 125°C | Dual | TCCOD DW | Tube of 90 | LMV393IPW | M\/2021 | | | | TSSOP – PW | Reel of 2000 | LMV393IPWR | MV393I | | | | VSSOP - DDU | Reel of 3000 | LMV393IDDUR | RABR | | | | SOIC - D | Tube of 50 | LMV339ID | I Maaol | | | | 201C - D | Reel of 2500 | LMV339IDR | LM339I | | | Quad | TSSOP – PW | Tube of 150 | LMV339IPW | M\/220I | | | | 1350F - PW | Reel of 2000 | LMV339IPWR | MV339I | | | | μQFN – RUC | Reel of 3000 | LMV339IRUCR | RT_ | - (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. - (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. - (3) DBV/DCK/DGK/RUC: The actual top-side marking has one additional character that designates the wafer fab/assembly site. #### **SYMBOL (EACH COMPARATOR)** #### SIMPLIFIED SCHEMATIC # Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) | | | | | MIN | MAX | UNIT | | |------------------|--|--|-------------|----------|------------------|------|--| | V _{CC} | Supply voltage ⁽²⁾ | | | | 5.5 | V | | | V_{ID} | Differential input voltage (3) | | | | ±5.5 | V | | | VI | Input voltage range (either input) | | | 0 | V _{CC+} | V | | | | Duration of output short circuit (one amplifier) to ground (4) | At or below T _A = V _{CC} ≤ 5.5 V | U | nlimited | | | | | | | Dunashana | 8 pin | | 97 | | | | | | D package | 14 pin | | 86 | | | | | | DBV package | | 206 | | | | | | | DCK package | | | | | | | θ_{JA} | Package thermal impedance (5) (6) | DDU package | | 210 | °C/W | | | | | | RUC package | RUC package | | | | | | | | DGK package | | | 172 | | | | | | DW poekogo | 8 pin | | 149 | | | | | | PW package | 14 pin | | 113 | | | | T _J | Operating virtual junction temperature | | 150 | °C | | | | | T _{stg} | Storage temperature range | | | | | | | - (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND. - 3) Differential voltages are at IN+ with respect to IN-. - (4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction. - (5) Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability. - (6) The package thermal impedance is calculated in accordance with JESD 51-7. #### **Recommended Operating Conditions** | | | | MIN | MAX | UNIT | |------------------|--|---------------|-----|------------------------|------| | V_{CC} | Supply voltage (single-supply operation) | | 2.7 | 5.5 | V | | V _{OUT} | Output voltage | | | V _{CC+} + 0.3 | V | | T _A | Operating free-air temperature | I temperature | -40 | 125 | °C | #### **Electrical Characteristics** $V_{CC+} = 2.7 \text{ V}$, GND = 0 V, at specified free-air temperature (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | | |------------------------------------|---|-------------------------------|-------------------|-----|-----------|-----|-------|--| | V _{IO} | Input offset voltage | | 25°C | | 1.7 | 7 | mV | | | α_{VIO} | Average temperature coefficient of input offset voltage | | -40°C to 125°C | | 5 | | μV/°C | | | | | | 25°C | | 15 | 250 | | | | I _{IB} Input bias current | Input bias current | | -40°C to
125°C | | | 400 | nA | | | I _{IO} Inp | | | 25°C | | 5 | 50 | | | | | Input offset current | | -40°C to
125°C | | | 150 | nA | | | lo | Output current (sinking) | V _O ≤ 1.5 V | 25°C | 5 | 23 | | mA | | | | | | 25°C | | 0.003 | | | | | | Output Leakage Current | | -40°C to
125°C | | | 1 | μΑ | | | V_{ICR} | Common-mode input voltage range | | 25°C | | -0.1 to 2 | | V | | | V_{SAT} | Saturation voltage | I _O ≤ 1.5 mA | 25°C | | 200 | | mV | | | | | LMV331 | 25°C | | 40 | 100 | | | | I_{CC} | Supply current | LMV393 (both comparators) | 25°C | | 70 | 140 | μΑ | | | | | LMV339 (all four comparators) | 25°C | | 140 | 200 | | | ### **Switching Characteristics** $T_A = 25$ °C, $V_{CCA} = 2.7$ V, $R_L = 5.1$ k Ω , GND = 0 V (unless otherwise noted) | 1 A - 20 | 1A = 20 0, V _{CC+} = 2.7 V, R _C = 0.1 R _{C2} , GRB = 0 V (already called wide field d) | | | | | | | | | | | |------------------|---|--------------------------|------|------|--|--|--|--|--|--|--| | | PARAMETER | TEST CONDITIONS | TYP | UNIT | | | | | | | | | | Propagation delay high to low level output | Input overdrive = 10 mV | 1000 | | | | | | | | | | t _{PHL} | switching | Input overdrive = 100 mV | 350 | ns | | | | | | | | | | Propagation delay low to high level output | Input overdrive = 10 mV | 500 | | | | | | | | | | t _{PLH} | switching | Input overdrive = 100 mV | 400 | ns | | | | | | | | #### **Electrical Characteristics** $V_{CC+} = 5 \text{ V}$, GND = 0 V, at specified free-air temperature (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |------------------|---|-------------------------------|-------------------|-----|------------|-----|-------| | | | | 25°C | | 1.7 | 7 | | | V_{IO} | Input offset voltage | | -40°C to
125°C | | | 9 | mV | | α_{VIO} | Average temperature coefficient of input offset voltage | | 25°C | | 5 | | μV/°C | | | | | 25°C | | 25 | 250 | | | I_{IB} | Input bias current | | -40°C to
125°C | | | 400 | nA | | | | | 25°C | | 2 | 50 | | | I _{IO} | Input offset current | | -40°C to
125°C | | | 150 | nA | | Io | Output current (sinking) | V _O ≤ 1.5 V | 25°C | 10 | 84 | | mA | | | | | 25°C | | 0.003 | | | | 0 | Output Leakage Current | | -40°C to
125°C | | | 1 | μA | | V_{ICR} | Common-mode input voltage range | | 25°C | _ | 0.1 to 4.2 | | V | | A_{VD} | Large-signal differential voltage gain | | 25°C | 20 | 50 | | V/mV | | | | | 25°C | | 200 | 400 | | | V_{SAT} | Saturation voltage | I _O ≤ 4 mA | -40°C to
125°C | | | 700 | mV | | | | | 25°C | | 60 | 120 | | | | | LMV331 | -40°C to
125°C | | | 150 | | | | | | 25°C | | 100 | 200 | | | I _{CC} | Supply current | LMV393 (both comparators) | -40°C to
125°C | | | 250 | _ | | | | | 25°C | | 170 | 300 | | | | | LMV339 (all four comparators) | -40°C to
125°C | | | 350 | | ### **Switching Characteristics** $T_A = 25$ °C, $V_{CC+} = 5$ V, $R_L = 5.1$ k Ω , GND = 0 V (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | TYP | UNIT | |------------------|--|--------------------------|-----|------| | | Propagation delay high to low level output | Input overdrive = 10 mV | 600 | | | ^T PHL | switching | Input overdrive = 100 mV | 200 | ns | | | Propagation delay low to high level output | Input overdrive = 10 mV | 450 | | | ₹PLH | switching | Input overdrive = 100 mV | 300 | ns | ### **REVISION HISTORY** | Changes from Revision M (November 2005) to Revision N | Page | |---|------| | Changed document format from Quicksilver to DocZone | 1 | | Added RUC package pin out and RUC package ordering information | 1 | | Changes from Revision N (April 2011) to Revision O | Page | | Changed V_I in the Absolute Maximum Ratings from 5.5 V to V_{CC+} | 3 | | Changes from Revision O (February 2012) to Revision P | Page | | Updated Ordering Information Table for Top Side Marking, R9 | 2 | | Changes from Revision P (March 2012) to Revision Q | Page | | Updated the Top Side Marking for RUC package, RT | 2 | | Changes from Revision Q (April 2012) to Revision R | Page | | Added RUC to marking list | 2 | | Changes from Revision R (May 2012) to Revision S | Page | | Updated Operating Temperature Range | 2 | | Added thermal impedance data | 3 | 26-Mar-2013 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Sample | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|-------------------------|--------| | LMV331IDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R1I2 ~ R1IC ~
R1II) | Sample | | LMV331IDBVRE4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R1I2 ~ R1IC ~
R1II) | Sample | | LMV331IDBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R1I2 ~ R1IC ~
R1II) | Sample | | LMV331IDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R1I2 ~ R1IC ~
R1II) | Sample | | LMV331IDBVTE4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R1I2 ~ R1IC ~
R1II) | Sample | | LMV331IDBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R1I2 ~ R1IC ~
R1II) | Sample | | LMV331IDCKR | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R2C ~ R2I ~ R2R) | Sampl | | LMV331IDCKRE4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R2C ~ R2I ~ R2R) | Sampl | | LMV331IDCKRG4 | ACTIVE | SC70 | DCK | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R2C ~ R2I ~ R2R) | Sampl | | LMV331IDCKT | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R2C ~ R2I ~ R2R) | Sampl | | LMV331IDCKTE4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R2C ~ R2I ~ R2R) | Sampl | | LMV331IDCKTG4 | ACTIVE | SC70 | DCK | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R2C ~ R2I ~ R2R) | Sampl | | LMV339ID | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LMV339I | Sampl | | LMV339IDE4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LMV339I | Sampl | | LMV339IDG4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LMV339I | Samp | | LMV339IDR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LMV339I | Samp | | LMV339IDRE4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LMV339I | Samp | 26-Mar-2013 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|-------------------|---------| | LMV339IDRG4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LMV339I | Samples | | LMV339IPW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV339I | Samples | | LMV339IPWE4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV339I | Samples | | LMV339IPWG4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV339I | Samples | | LMV339IPWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV339I | Samples | | LMV339IPWRE4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV339I | Samples | | LMV339IPWRG4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV339I | Samples | | LMV339IRUCR | ACTIVE | QFN | RUC | 14 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | RT | Sample | | LMV393ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IDDUR | ACTIVE | VSSOP | DDU | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | RABR | Samples | | LMV393IDDURE4 | ACTIVE | VSSOP | DDU | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | RABR | Sample | | LMV393IDDURG4 | ACTIVE | VSSOP | DDU | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | RABR | Samples | | LMV393IDE4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R9B ~ R9Q ~ R9R) | Samples | | LMV393IDGKRG4 | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | (R9B ~ R9Q ~ R9R) | Samples | | LMV393IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Sample | | LMV393IDRE4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | ### PACKAGE OPTION ADDENDUM 26-Mar-2013 | Orderable Device | Status | Package Type | _ | Pins | _ | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|-------------------|---------| | | (1) | | Drawing | | Qty | (2) | | (3) | | (4) | | | LMV393IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IPW | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IPWE4 | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IPWG4 | ACTIVE | TSSOP | PW | 8 | 150 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IPWR | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IPWRE4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | | LMV393IPWRG4 | ACTIVE | TSSOP | PW | 8 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | MV393I | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. ### **PACKAGE OPTION ADDENDUM** 26-Mar-2013 **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF LMV331, LMV393: Automotive: LMV331-Q1, LMV393-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects ### **PACKAGE MATERIALS INFORMATION** www.ti.com 14-Mar-2013 ### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | LMV331IDBVR | SOT-23 | DBV | 5 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | LMV331IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | LMV331IDBVT | SOT-23 | DBV | 5 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | LMV331IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.2 | 3.17 | 3.23 | 1.37 | 4.0 | 8.0 | Q3 | | LMV331IDCKR | SC70 | DCK | 5 | 3000 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | LMV331IDCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | LMV331IDCKT | SC70 | DCK | 5 | 250 | 180.0 | 9.2 | 2.3 | 2.55 | 1.2 | 4.0 | 8.0 | Q3 | | LMV331IDCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | LMV339IDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | LMV339IPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | LMV339IRUCR | QFN | RUC | 14 | 3000 | 180.0 | 8.4 | 2.3 | 2.3 | 0.55 | 4.0 | 8.0 | Q2 | | LMV393IDDUR | VSSOP | DDU | 8 | 3000 | 180.0 | 8.4 | 2.25 | 3.35 | 1.05 | 4.0 | 8.0 | Q3 | | LMV393IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.3 | 1.3 | 8.0 | 12.0 | Q1 | | LMV393IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | LMV393IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | LMV393IDRG4 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 14-Mar-2013 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------|------|-------------|------------|-------------| | LMV331IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 180.0 | 18.0 | | LMV331IDBVR | SOT-23 | DBV | 5 | 3000 | 205.0 | 200.0 | 33.0 | | LMV331IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 180.0 | 18.0 | | LMV331IDBVT | SOT-23 | DBV | 5 | 250 | 205.0 | 200.0 | 33.0 | | LMV331IDCKR | SC70 | DCK | 5 | 3000 | 205.0 | 200.0 | 33.0 | | LMV331IDCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | LMV331IDCKT | SC70 | DCK | 5 | 250 | 205.0 | 200.0 | 33.0 | | LMV331IDCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | LMV339IDR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | LMV339IPWR | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | | LMV339IRUCR | QFN | RUC | 14 | 3000 | 202.0 | 201.0 | 28.0 | | LMV393IDDUR | VSSOP | DDU | 8 | 3000 | 202.0 | 201.0 | 28.0 | | LMV393IDGKR | VSSOP | DGK | 8 | 2500 | 370.0 | 355.0 | 55.0 | | LMV393IDGKR | VSSOP | DGK | 8 | 2500 | 364.0 | 364.0 | 27.0 | | LMV393IDR | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | | LMV393IDRG4 | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | # DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # DBV (R-PDSO-G5) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DCK (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AA. # DCK (R-PDSO-G5) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DGK (S-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. # DDU (R-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-187 variation CA. DDU (S-PDSO-G8) PLASTIC SMALL OUTLINE PACKAGE (DIE UP) NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # D (R-PDSO-G14) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. # D (R-PDSO-G14) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G14) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G14) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - В. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-lead) package configuration.D. This package complies to JEDEC MO-288 variation X2GFE. # RUC (S-PX2QFN-N14) #### PLASTIC QUAD FLATPACK NO-LEAD - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. # D (R-PDSO-G8) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. # D (R-PDSO-G8) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G8) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.