HEF40175B

Quad D-type flip-flop Rev. 9 — 21 March 2016

Product data sheet

1. **General description**

The HEF40175B is a quad edge-triggered D-type flip-flop with four data inputs (D0 to D3), a clock input (CP), an overriding asynchronous master reset input (MR), four buffered outputs (Q0 to Q3), and four complementary buffered outputs (Q0 to Q3). Information on D0 to D3 is transferred to Q0 to Q3 on the LOW-to-HIGH transition of CP if MR is HIGH. When LOW, \overline{MR} resets all flip-flops (Q0 to Q3 = LOW; $\overline{Q0}$ to $\overline{Q3}$ = HIGH), independent of CP and D0 to D3.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to $V_{\text{DD}},\,V_{\text{SS}},$ or another input.

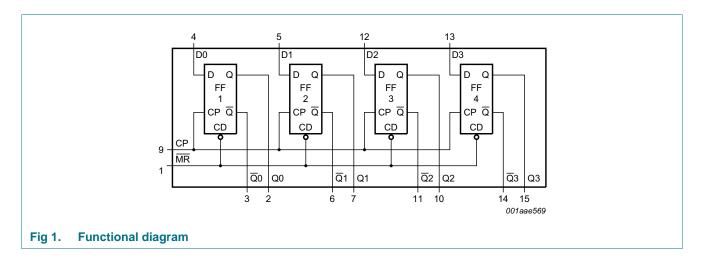
Features and benefits 2.

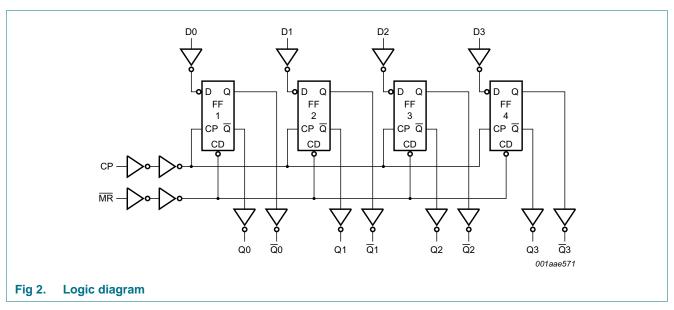
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from -40 °C to +125 °C
- Complies with JEDEC standard JESD 13-B

Applications

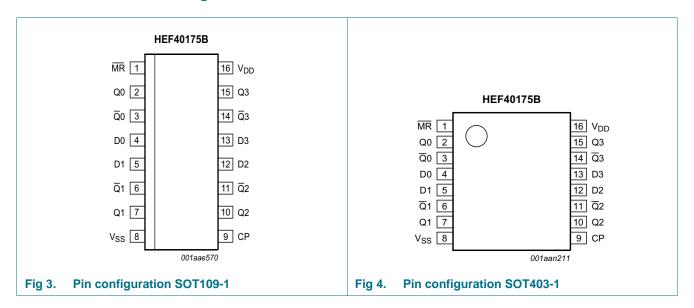
- Shift registers
- Buffer/storage register
- Pattern generator

Ordering information 4.


Table 1. **Ordering information**


All types operate from −40 °C to +125 °C.

Type number									
	Name	Description	Version						
HEF40175BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1						
HEF40175BTT	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1						


5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
MR	1	master reset input (active LOW)
Q0 to Q3	2, 7, 10, 15	buffered output
$\overline{Q}0$ to $\overline{Q}3$	3, 6, 11, 14	complementary buffered output
D0 to D3	4, 5, 12, 13	data input
V _{SS}	8	ground supply voltage
СР	9	clock input (LOW-to-HIGH edge-triggered)
V_{DD}	16	supply voltage

7. Functional description

Table 3. Function table [1]

Input		Output				
СР	Dn	MR	Qn	Qn		
↑	Н	Н	Н	L		
↑	L	Н	L	Н		
\	X	Н	no change	no change		
X	X	L	L	Н		

^[1] $H = HIGH \text{ voltage level}; L = LOW \text{ voltage level}; X = don't care}; \uparrow = positive-going transition}; \downarrow = negative-going transition.$

HEF40175B

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD}	supply voltage			-0.5	+18	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$		-	±10	mA
VI	input voltage			-0.5	V _{DD} + 0.5	V
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{DD} + 0.5 \text{ V}$		-	±10	mA
I _{I/O}	input/output current			-	±10	mA
I _{DD}	supply current			-	50	mA
T _{stg}	storage temperature			-65	+150	°C
T _{amb}	ambient temperature			-40	+125	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$				
		SO16 package	[1]	-	500	mW
		TSSOP16 package	[2]	-	500	mW
Р	power dissipation	per output		-	100	mW

^[1] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
VI	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{DD} = 5 V	-	-	3.75	μs/V
		V _{DD} = 10 V	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

^[2] For TSSOP16 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

Nexperia HEF40175B

Quad D-type flip-flop

10. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_{I} = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	-40 °C	T _{amb} = +25 °C		T _{amb} =	+85 °C	T _{amb} = +125 °C		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	-
V _{IH}	HIGH-level	I _O < 1 μA	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V _{IL}	LOW-level	I _O < 1 μA	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V _{OH}	HIGH-level	I _O < 1 μA	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V _{OL}	LOW-level	I _O < 1 μA	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level output current	V _O = 2.5 V	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
		V _O = 4.6 V	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		V _O = 9.5 V	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		V _O = 13.5 V	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
I _{OL}	LOW-level	V _O = 0.4 V	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	V _O = 0.5 V	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
I _I	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μА
I _{DD}	supply current	all valid input	5 V	-	1.0	-	1.0	-	30	-	30	μΑ
		combinations;	10 V	-	2.0	-	2.0	-	60	-	60	μΑ
		$ I_{O} = 0 A$	15 V	-	4.0	-	4.0	-	120	-	120	μА
C _I	input capacitance		-	-	-	-	7.5	-	-	-	-	pF

11. Dynamic characteristics

Table 7. Dynamic characteristics

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see }$ Figure 6; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	CP to Qn or $\overline{\mathbb{Q}}$ n;	5 V	53 ns + (0.55 ns/pF) C _L	-	80	160	ns
	propagation delay	see Figure 5	10 V	24 ns + (0.23 ns/pF) C _L	-	35	70	ns
			15 V	17 ns + (0.16 ns/pF) C _L	-	25	50	ns
		MR to Qn;	5 V	48 ns + (0.55 ns/pF) C _L	-	75	155	ns
		see Figure 5	10 V	19 ns + (0.23 ns/pF) C _L	-	30	65	ns
			15 V	17 ns + (0.16 ns/pF) C _L	-	25	50	ns

HEF40175B

Nexperia HEF40175B

Quad D-type flip-flop

 Table 7.
 Dynamic characteristics ...continued

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; for test circuit see } \frac{\text{Figure 6}}{\text{circuit see }}; \text{ unless otherwise specified.}$

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t _{bLH} L t _t t	LOW to HIGH	CP to Qn or Qn;	5 V [1]	43 ns + (0.55 ns/pF) C _L	-	70	140	ns
	propagation delay	see Figure 5	10 V	19 ns + (0.23 ns/pF) C _L	-	30		ns
			15 V	17 ns + (0.16 ns/pF) C _L	-	25		ns
		MR to Qn;	5 V	43 ns + (0.55 ns/pF) C _L	-	70	140	ns
		see Figure 5	10 V	19 ns + (0.23 ns/pF) C _L	-	30	65	ns
			15 V	17 ns + (0.16 ns/pF) C _L	-	25	50 120 60 40 - - - - - -	ns
t _t	transition time	see Figure 5	5 V [1]	10 ns + (1.00 ns/pF) C _L	-	60	120 60 0 40 0 - 0 - 55 - 56 -	ns
			10 V	9 ns + (0.42 ns/pF) C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF) C _L	-	20	65 45 140 65 50 120 60 40 - - - - - - - - - - -	ns
t _{su}	set-up time	Dn to CP;	5 V		60	30	-	ns
		see Figure 5	10 V		20	10	-	ns
			15 V		15	5	-	ns
t _h	hold time	Dn to CP;	5 V		+25	-5	-	ns
		see Figure 5	10 V		10	0	-	ns
			15 V		10	0	140 65 50 120 60 40 - - - - - - - - - - - - - -	ns
t _W	pulse width;	CP input LOW;	5 V		90	45	-	ns
		minimum pulse	10 V		35	15	-	ns
		width see Figure 5	15 V		25	10	65 45 140 65 50 120 60 40 - - - - - - - - - - - - -	ns
		MR input LOW;	5 V		80	40	-	ns
		minimum pulse width see Figure 5	10 V		30	15	-	ns
		width see <u>Figure 5</u>	15 V		20	10	-	ns
t _{rec}	recovery time	MR input;	5 V		0	-30	-	ns
		see Figure 5	10 V		0	-20	-	ns
			15 V		0	-15	-	ns
f _{max}	maximum frequency		5 V		5	11	-	MHz
			10 V		15	30	-	MHz
t _{rec}			15 V		20	45	-	MHz

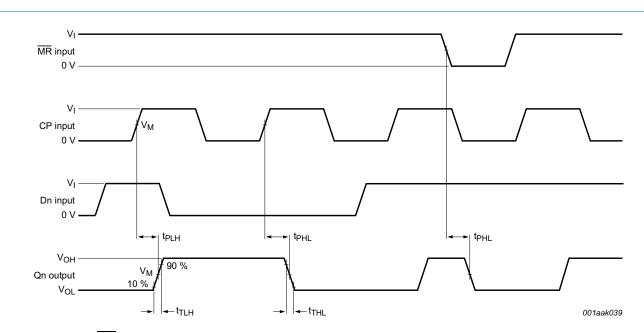
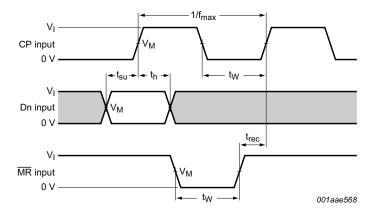

^[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formula shown (C_L in pF).

Table 8. Dynamic power dissipation P_D

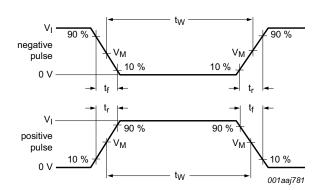

 P_D can be calculated from the formulas shown. $V_{SS} = 0 \ V$; $t_r = t_f \le 20 \ ns$; $T_{amb} = 25 \ ^{\circ}C$.

Symbol	Parameter	V_{DD}	Typical formula for P _D (μW)	where:
P_D	dynamic power dissipation	5 V	$P_D = 2000 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	f_i = input frequency in MHz,
		10 V	$P_D = 8400 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	fo = output frequency in MHz,
		15 V	$P_D = 22500 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	C_L = output load capacitance in pF,
				V_{DD} = supply voltage in V,
				$\Sigma(f_0 \times C_L)$ = sum of the outputs.

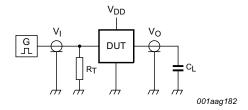
12. Waveforms

a. CP and MR to Qn Propagation delays and Qn transition times

b. Minimum pulse widths for CP and MR, MR to CP recovery time, and set-up and hold time for Dn to CP


V_{OH} and V_{OL} are typical output voltage levels that occur with the output load.

Set-up and hold times are shown as positive values but may be specified as negative values.


The shaded area are where input changes result in predicable output performance.

Measurement points are given in Table 9.

Fig 5. Waveforms showing switching times

a. Input waveforms

b. Test circuit

Test and measurement data is given in Table 9

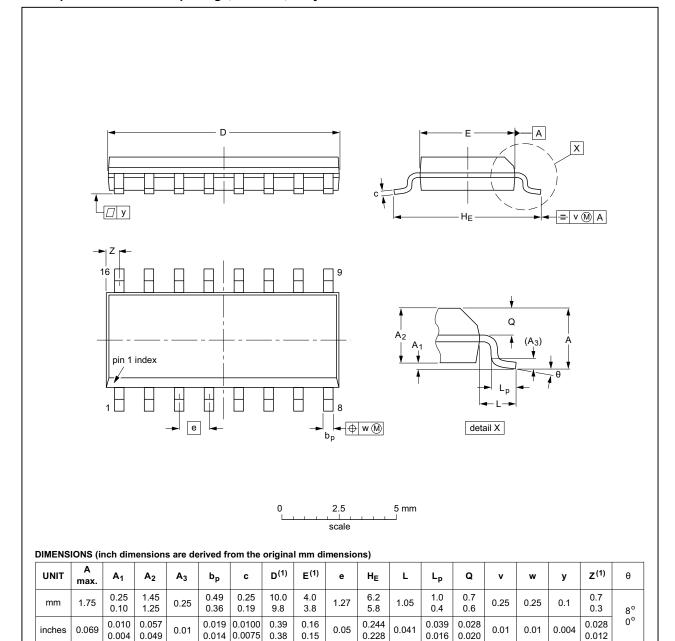
Definitions test circuit:

DUT = Device Under Test;

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator;

 C_L = Load capacitance including jig and probe capacitance.

Fig 6. Test circuit for measuring switching times


Table 9. Measurement points and test data

Supply voltage	Input	Load	
V_{DD}	VI	t _r , t _f	CL
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	50 pF

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

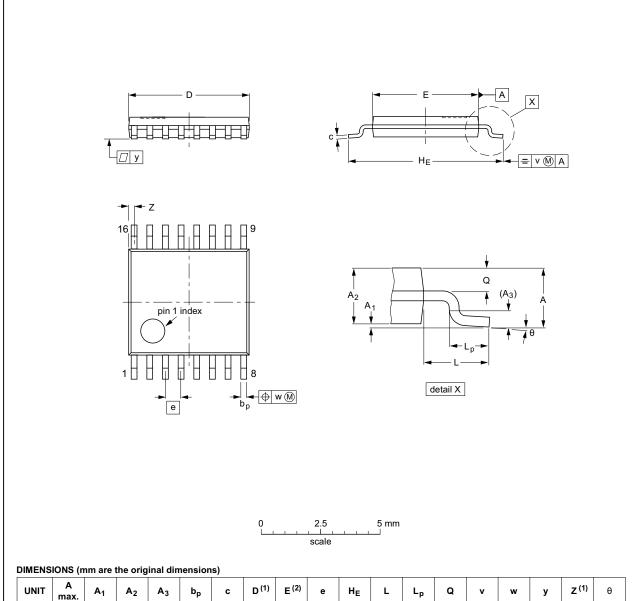

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 7. Package outline SOT109-1 (SO16)

HEF40175B

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

IEC					
IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	MO-153				-99-12-27 03-02-18
		MO-153	MO-153	MO-153	MO-153

Fig 8. Package outline SOT403-1 (TSSOP16)

HEF40175B

14. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
HEF40175B v.9	20160321	Product data sheet	-	HEF40175B v.8	
Modifications:	Type number HEF40175BP (SOT38-4) removed.				
HEF40175B v.8	20111121	Product data sheet	-	HEF40175B v.7	
Modifications:	Legal page:	Legal pages updated.			
	 Changes in 	"General description", "Feature:	s and benefits" and	"Applications".	
HEF40175B v.7	20110503	Product data sheet	-	HEF40175B v.6	
HEF40175B v.6	20101214	Product data sheet	-	HEF40175B v.5	
HEF40175B v.5	20100105	Product data sheet	-	HEF40175B v.4	
HEF40175B v.4	20090813	Product data sheet	-	HEF40175B_CNV v.3	
HEF40175B_CNV v.3	19950101	Product specification	-	HEF40175B_CNV v.2	
HEF40175B_CNV v.2	19950101	Product specification	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

HEF40175B

Nexperia HEF40175B

Quad D-type flip-flop

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

HEF40175B

Quad D-type flip-flop

17. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information 1
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 5
12	Waveforms
13	Package outline 9
14	Revision history
15	Legal information 12
15.1	Data sheet status
15.2	Definitions12
15.3	Disclaimers
15.4	Trademarks13
16	Contact information 13
17	Contents 14

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.