Low-power 2-input NAND gate (open drain)

Rev. 7 — 4 April 2016

Product data sheet

1. General description

The 74AUP1G38 provides the single 2-input NAND gate with open-drain output. The output of the device is an open drain and can be connected to other open-drain outputs to implement active-LOW wired-OR or active-HIGH wired-AND functions.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - ◆ HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \ \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

nexperia

Low-power 2-input NAND gate (open drain)

3. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74AUP1G38GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1				
74AUP1G38GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886				
74AUP1G38GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891				
74AUP1G38GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115				
74AUP1G38GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202				
74AUP1G38GX	–40 °C to +125 °C	X2SON5	X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body $0.8 \times 0.8 \times 0.35$ mm	SOT1226				

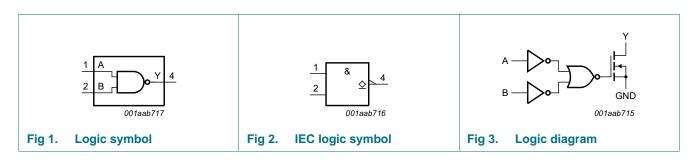
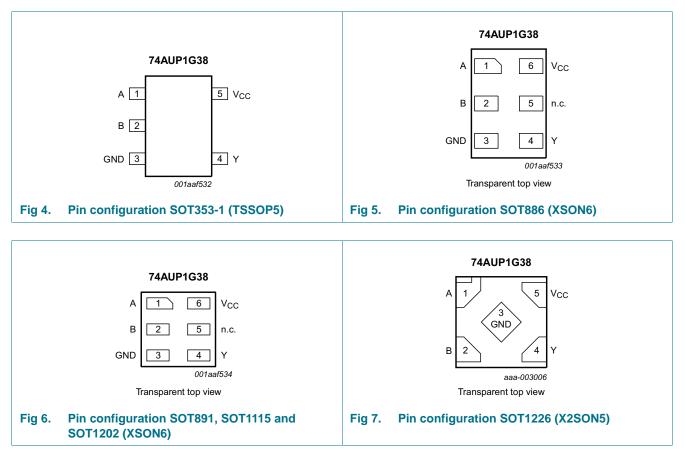

4. Marking

Table 2. Marking

Type number	Marking code ^[1]
74AUP1G38GW	aB
74AUP1G38GM	aB
74AUP1G38GF	aB
74AUP1G38GN	aB
74AUP1G38GS	aB
74AUP1G38GX	aB

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram



74AUP1G38 Product data sheet

Low-power 2-input NAND gate (open drain)

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.Pin description			
Symbol	Pin		Description
	TSSOP5 and X2SON5	XSON6	
A	1	1	data input
В	2	2	data input
GND	3	3	ground (0 V)
Y	4	4	data output
n.c.	-	5	not connected
V _{CC}	5	6	supply voltage

Low-power 2-input NAND gate (open drain)

Functional description 7.

Function table^[1] Table 4.

Input C		Output
Α	В	Y
L	L	Z
L	Н	Z
Н	L	Z
Н	Н	L

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF state.

Limiting values 8.

Table 5. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		<u>[1]</u>	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u>	-0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}		-	+20	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[2]	-	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. [2]

For XSON6 and X2SON5 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.

Recommended operating conditions 9.

	coolinine naca operating condition	2115			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode and Power-down mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	0	200	ns/V

Table 6. **Recommended operating conditions**

74AUP1G38 **Product data sheet**

Low-power 2-input NAND gate (open drain)

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C		1			
VIH	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70\times V_{CC}$	-	-	V
		$V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 \text{ V} \text{ to } 1.95 \text{ V}$	-	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-	0.9	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-					
		$I_O = 20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
I _I	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.1	μA
I _{OZ}	OFF-state output current	LOW); $V_0 = 0 V$ to 3.6 V; $V_{CC} = 0 V$ to	-	-	±0.1	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA
ΔI_{OFF}	•		-	-	±0.2	μA
I _{CC}	supply current		-	-	0.5	μA
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	40	μA
CI	input capacitance	$V_{CC} = 0$ V to 3.6 V; $V_I = GND$ or V_{CC}	-	0.8	-	pF
Co	output capacitance	output enabled; $V_0 = GND$; $V_{CC} = 0 V$	-	1.7	-	pF
		output disabled; $V_0 = GND$; $V_{CC} = 0 V$	-	1.1	-	pF
T _{amb} = -	40 °C to +85 °C		1		1	
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70\times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V

Low-power 2-input NAND gate (open drain)

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 \text{ V}$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	$0.30 \times V_{CC}$ $0.35 \times V_{CC}$ 0.7 0.9 0.1 $0.3 \times V_{CC}$ $0.33 \times V_{CC}$ $0.35 \times V_{CC}$ $0.35 \times V_{CC}$ $0.35 \times V_{CC}$ 0.37 $0.35 \times V_{CC}$ 0.45 0.45 0.45 0.45 ± 0.5 0.9 50 $ 0.25$	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3\times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V
I _I	input leakage current	$V_{I} = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.5	μA
I _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} (and at least one input LOW); $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μA
ΔI_{OFF}	additional power-off leakage current		-	-	±0.6	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; to \; 3.6 \; V \end{array}$	-	-	0.9	μA
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	50	μA
T _{amb} = -4	40 °C to +125 °C		I.			
VIH	HIGH-level input voltage	V _{CC} = 0.8 V	$0.75 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
$V_{OL} \qquad L$ $I_{I} \qquad iI$ $I_{OZ} \qquad C$ $I_{OFF} \qquad F$ $\Delta I_{OFF} \qquad F$ $\Delta I_{OFF} \qquad F$ $I_{CC} \qquad s$ $\Delta I_{CC} \qquad s$ $\Delta I_{CC} \qquad t$ $T_{amb} = -40$ $V_{IH} \qquad H$		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	$ \begin{array}{ c c c c c c } \mbox{LOW-level input voltage} & V_{CC} = 0.8 \ V & V_{CC} = 2.3 \ V to 1.95 \ V & - & - & 0.35 \ \times V_{CC} \ V \\ \hline V_{CC} = 2.3 \ V to 1.95 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 2.3 \ V to 2.7 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.1 \ V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.1 \ V \\ \hline V_{10} = 1.1 \ mA; \ V_{CC} = 1.4 \ V & - & - & 0.3 \ \times V_{CC} \ V \\ \hline I_{0} = 1.1 \ mA; \ V_{CC} = 1.65 \ V & - & - & 0.33 \ V \\ \hline I_{0} = 1.7 \ mA; \ V_{CC} = 2.3 \ V & - & - & 0.33 \ V \\ \hline I_{0} = 1.9 \ mA; \ V_{CC} = 2.3 \ V & - & - & 0.33 \ V \\ \hline I_{0} = 2.7 \ mA; \ V_{CC} = 2.3 \ V & - & - & 0.45 \ V \\ \hline I_{0} = 2.7 \ mA; \ V_{CC} = 0.1 \ V 0 \ - & - & 0.45 \ V \\ \hline I_{0} = 2.7 \ mA; \ V_{CC} = 0.1 \ V 0 \ - & - & 0.45 \ V \\ \hline I_{0} = 2.7 \ mA; \ V_{CC} = 0.1 \ V 0 \ - & - & 0.45 \ V \\ \hline I_{0} = 2.7 \ mA; \ V_{CC} = 0.1 \ V 0 \ - & - & 0.45 \ V \\ \hline I_{0} = 2.7 \ mA; \ V_{CC} = 0 \ V 0 \ 3.6 \ V \ - & - & 0.45 \ V \\ \hline I_{0} = 4.0 \ mA; \ V_{CC} = 0 \ V 0 \ 3.6 \ V \ - & - & 0.45 \ V \\ \hline I_{0} = - 0 \ V 0 \ 3.6 \ V; \ V_{CC} = 0 \ V 0 \ 3.6 \ V \ - & - & 0.45 \ V \\ \hline I_{0} = - 0 \ V 0 \ 3.6 \ V; \ V_{CC} = 0 \ V 0 \ 3.6 \ V \ - & - & - & 0.45 \ V \\ \hline I_{0} = 0 \ V 0 \ 3.6 \ V \ - & - & - & 0.45 \ V \\ \hline I_{0} = - \ V_{0} \ V_{0} = 0 \ V 0 \ 3.6 \ V; \ V_{CC} = 0 \ V \ - & - & - & 0.45 \ V \\ \hline I_{0} = - \ V_{0} \ V_{0} = 0 \ V 0 \ 3.6 \ V \ - & - & - & 0.45 \ V \\ \hline I_{0} = 0 \ V 0 \ 3.6 \ V \ - & - & - & 0.5 \ V \\ \hline I_{0} = 0 \ V 0 \ 3.6 \ V \ - & - & - & 0.7 \ V \\ \hline V_{CC} = 0.8 \ V \ 0.75 \ V_{CC} \ - & - \ V \\ \hline V_{CC} = 0.8 \ V \ 0.75 \ V_{CC} \ - & - \ V \ V_{CC} \ - \ - & V \ V_{CC} \ - \ 0.9 \ V \\ \hline V_{CC} = 0.9 \ V 0 \ 3.6 \ V \ - \ - & 0.75 \ V_{CC} \ - \ - \ V \ V_{CC} \ - \$	V				
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.30\times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
V _{OL}	$ \begin{array}{ c c c c c c } \mbox{LOW-level input voltage} & V_{CC} = 0.8 \ V & - & - & 0.30 \ \times V_{CC} \\ \hline V_{CC} = 0.9 \ V to 1.95 \ V & - & - & 0.7 \\ \hline V_{CC} = 2.3 \ V to 2.7 \ V & - & - & 0.7 \\ \hline V_{CC} = 2.3 \ V to 3.6 \ V & - & - & 0.7 \\ \hline V_{CC} = 2.3 \ V to 3.6 \ V & - & - & 0.7 \\ \hline V_{CC} = 2.3 \ V to 3.6 \ V & - & - & 0.7 \\ \hline V_{CC} = 2.0 \ V to 3.6 \ V & - & - & 0.7 \\ \hline V_{CC} = 0.9 \ V to 3.6 \ V & - & - & 0.7 \\ \hline I_0 = 1.1 \ mA; \ V_{CC} = 1.1 \ V & - & - & 0.3 \ V_{CC} \\ \hline I_0 = 1.7 \ mA; \ V_{CC} = 1.6 \ V & - & - & 0.33 \\ \hline I_0 = 2.3 \ mA; \ V_{CC} = 3.0 \ V & - & - & 0.33 \\ \hline I_0 = 2.3 \ mA; \ V_{CC} = 3.0 \ V & - & - & 0.33 \\ \hline I_0 = 2.7 \ mA; \ V_{CC} = 3.0 \ V & - & - & 0.45 \\ \hline I_0 = 2.7 \ mA; \ V_{CC} = 3.0 \ V & - & - & 0.45 \\ \hline I_0 = 2.7 \ mA; \ V_{CC} = 3.0 \ V & - & - & 0.45 \\ \hline I_0 = 2.7 \ mA; \ V_{CC} = 3.0 \ V & - & - & 0.45 \\ \hline I_0 = -1 \ mA; \ V_{CC} = 0 \ V to 3.6 \ V & - & - & 0.33 \\ \hline I_0 = -4 \ mA; \ V_{CC} = 0 \ V to 3.6 \ V & - & - & 0.45 \\ \hline \ power-off \ leakage \ current \ V_1 = GND \ to 3.6 \ V; \ V_{CC} = 0 \ V to 3.6 \ V & - & - & 0.5 \\ \hline power-off \ leakage \ current \ V_1 \ O \ V_0 = 0 \ V to 3.6 \ V; \ V_{CC} = 0 \ V to 3.6 \ V & - & - & 0.5 \\ \hline \ power-off \ leakage \ current \ V_1 \ O \ V_0 = 0 \ V to 3.6 \ V; \ V_{CC} = 0 \ V to 3.6 \ V & - & - & 0.5 \\ \hline \ power-off \ leakage \ current \ V_1 \ O \ V_0 \ O \ V \ O \ 2 \ V \ O \ 2 \ V \ O \ 2 \ V \ C \ 2 \ V \ O \ 2 \ V \ C \ 2 \ V \$					
		$I_0 = 20 \ \mu\text{A}; \ V_{CC} = 0.8 \ \text{V} \text{ to } 3.6 \ \text{V}$	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
			-	-	0.39	V
				-	0.36	V
			-	-	0.50	V
			-	-		V
					1	1

Low-power 2-input NAND gate (open drain)

At recom	mended operating conditions,	; voltages are referenced to GND (ground = 0	V).			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _l	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.75	μA
I _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} (and at least one input LOW); $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.75	μA
I _{OFF}	power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.75	μA
ΔI_{OFF}	additional power-off leakage current	$V_{I} \text{ or } V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μA
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; \text{ I}_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	75	μA

Table 7. Static characteristics ... continued

11. Dynamic characteristics

Table 8. **Dynamic characteristics**

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 9

Symbol	Parameter	Conditions	25 °C			-40) °C to +1	25 °C	Unit
			Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 p	F				·				
t _{pd}	propagation delay	A or B to Y; see Figure 8							
		V _{CC} = 0.8 V	-	13.5	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	1.9	4.6	10.4	1.8	11.4	12.6	ns
		V _{CC} = 1.4 V to 1.6 V	1.5	3.3	6.5	1.4	7.4	8.2	ns
		V _{CC} = 1.65 V to 1.95 V	1.2	2.9	5.1	1.1	5.9	6.5	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.0	2.2	3.8	0.9	4.5	4.9	ns
		V _{CC} = 3.0 V to 3.6 V	0.9	2.3	4.0	0.8	4.5	4.9	ns
C _L = 10	pF								
t _{pd}	propagation delay	A or B to Y; see Figure 8 [2]							
	V _{CC} = 0.8 V	-	16.3	-	-	-	-	ns	
		V _{CC} = 1.1 V to 1.3 V	2.3	5.6	12.3	2.1	13.7	15.1	ns
		V _{CC} = 1.4 V to 1.6 V	1.8	4.1	7.6	1.7	8.8	9.7	ns
		V _{CC} = 1.65 V to 1.95 V	1.6	3.8	6.1	1.4	7.1	7.8	ns
		V_{CC} = 2.3 V to 2.7 V	1.4	2.9	4.6	1.2	5.4	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.3	3.2	5.7	1.1	6.4	7.0	ns
C _L = 15	pF								
t _{pd}	propagation delay	A or B to Y; see Figure 8							
		V _{CC} = 0.8 V	-	19.0	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.6	6.6	14.2	2.4	15.8	17.4	ns
		V _{CC} = 1.4 V to 1.6 V	2.1	4.8	8.7	1.9	10.1	11.1	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	4.6	7.6	1.7	8.5	9.3	ns
		V_{CC} = 2.3 V to 2.7 V	1.6	3.6	5.6	1.5	6.3	6.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.6	4.1	7.5	1.4	8.3	9.1	ns

Low-power 2-input NAND gate (open drain)

Symbol	Parameter	Conditions		25 °C		-40) °C to +1	25 °C	Unit
			Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 30	pF								_
t _{pd}	propagation delay	A or B to Y; see Figure 8 [2]							
		V _{CC} = 0.8 V	-	27.0	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.6	9.5	19.5	3.2	21.8	24.0	ns
		V _{CC} = 1.4 V to 1.6 V	2.9	7.0	11.5	2.6	13.6	15.0	ns
		V _{CC} = 1.65 V to 1.95 V	2.6	7.0	12.1	2.3	13.3	14.6	ns
		V_{CC} = 2.3 V to 2.7 V	2.4	5.4	8.9	2.1	9.9	10.9	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.3	6.5	12.7	2.1	13.9	15.3	ns
C _L = 5 pl	F, 10 pF, 15 pF and	30 pF							
C _{PD}	power dissipation capacitance	$ f_i = 1 \text{ MHz}; $ [3] $ V_I = \text{GND to } V_{\text{CC}} $							
		V _{CC} = 0.8 V	-	0.6	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	0.7	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	0.8	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	0.9	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V	-	1.1	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	1.4	-	-	-	-	pF

Table 8. Dynamic characteristics ...continued

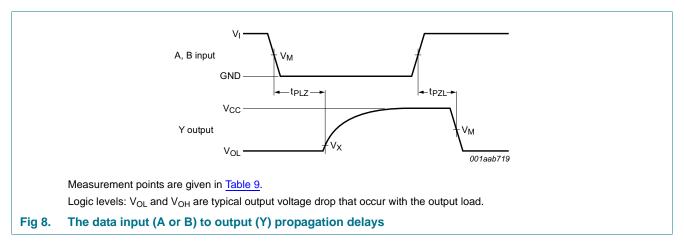
Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 9

[1] All typical values are measured at nominal $V_{\mbox{CC}}.$

 $\label{eq:tpd} [2] \quad t_{pd} \text{ is the same as } t_{PZL} \text{ and } t_{PLZ}.$

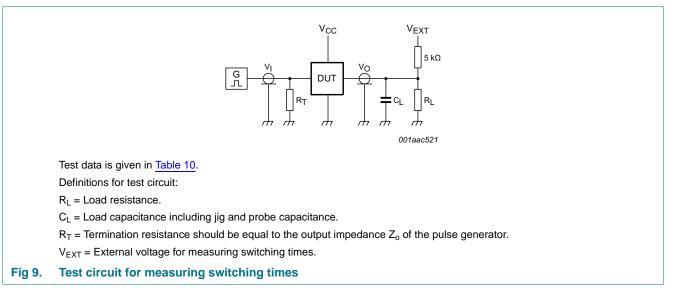
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 P_{D} = $C_{PD} \times V_{CC}{}^{2} \times f_{i} \times N$ where:


 $f_i = input frequency in MHz;$

 V_{CC} = supply voltage in V;

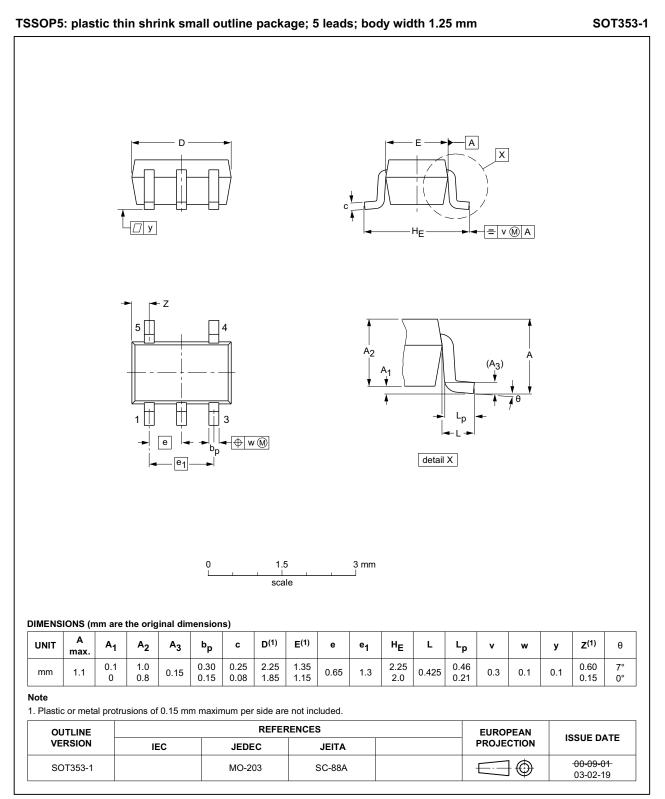
N = number of inputs switching.


Low-power 2-input NAND gate (open drain)

12. Waveforms

Table 9.Measurement points

Supply voltage	Input	Output	
V _{cc}	V _M	V _M	V _X
0.8 V to 1.6 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.1 V
1.65 V to 2.7 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.15 V
3.0 V to 3.6 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.3 V


Table 10. Test data

Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

Low-power 2-input NAND gate (open drain)

13. Package outline

Fig 10. Package outline SOT353-1 (TSSOP5)

All information provided in this document is subject to legal disclaimers.

Low-power 2-input NAND gate (open drain)

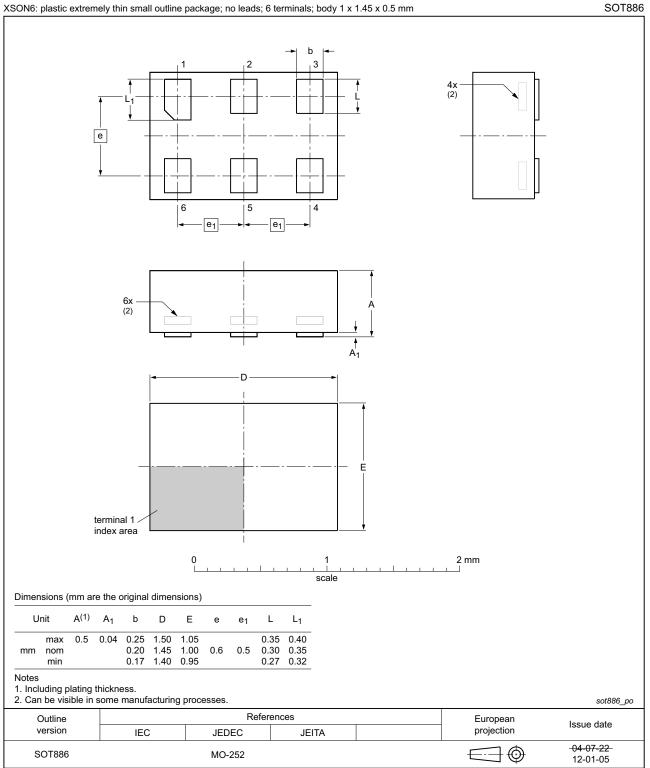


Fig 11. Package outline SOT886 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power 2-input NAND gate (open drain)

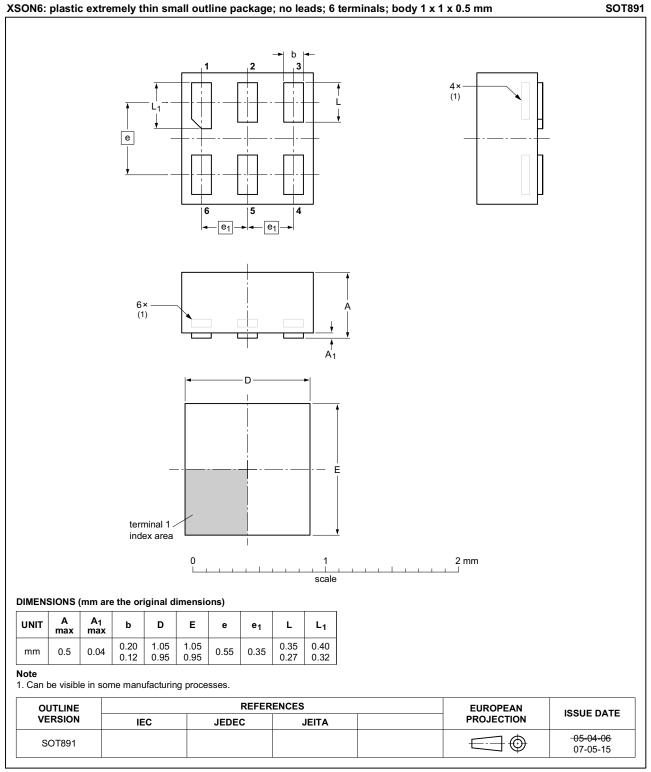
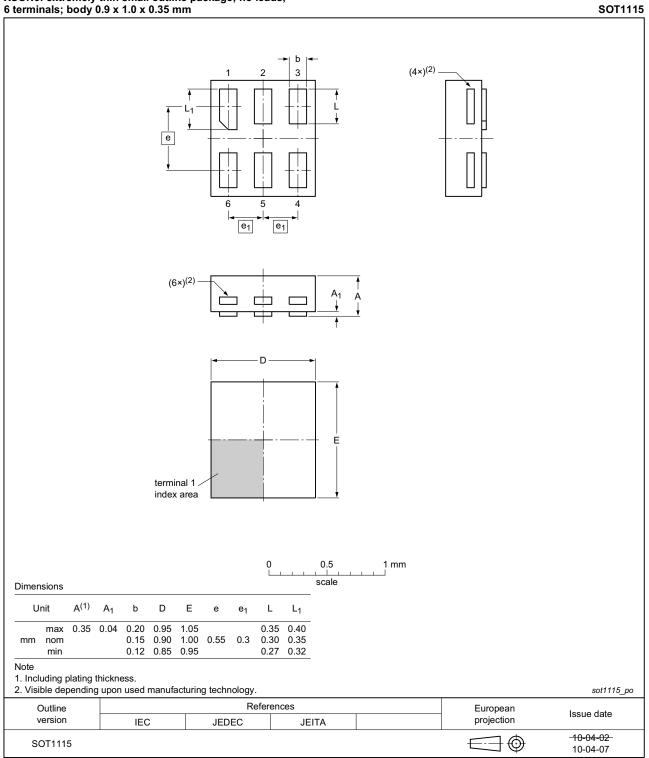
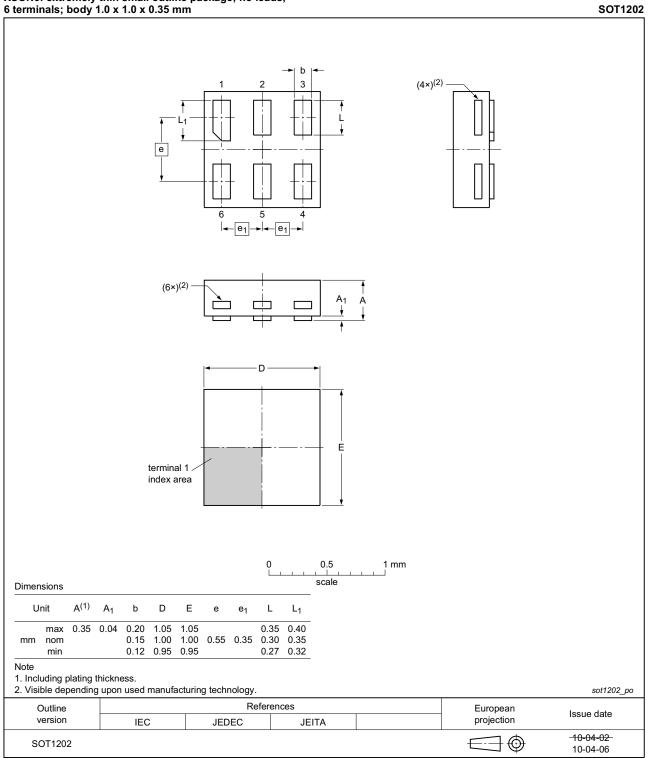



Fig 12. Package outline SOT891 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power 2-input NAND gate (open drain)



XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 13. Package outline SOT1115 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power 2-input NAND gate (open drain)

XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 14. Package outline SOT1202 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power 2-input NAND gate (open drain)

X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals: body 0.8 x 0.8 x 0.35 mm

Fig 15. Package outline SOT1226 (X2SON5)

All information provided in this document is subject to legal disclaimers.

Low-power 2-input NAND gate (open drain)

14. Abbreviations

Table 11. Abbreviations		
Acronym	Description	
CDM	Charged Device Model	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
ММ	Machine Model	

15. Revision history

Table 12.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G38 v.7	20160404	Product data sheet	-	74AUP1G38 v.6
Modifications:	• Figure 7: Ty	po corrected in pin naming	(pins A and B swapped	(k
74AUP1G38 v.6	20120628	Product data sheet	-	74AUP1G38 v.5
Modifications:	Added type number 74AUP1G38GX (SOT1226)			
	 Package ou 	tline drawing of SOT886 (F	igure 11) modified.	
74AUP1G38 v.5	20111129	Product data sheet	-	74AUP1G38 v.4
Modifications:	 Legal pages 	s updated.		
74AUP1G38 v.4	20101007	Product data sheet	-	74AUP1G38 v.3
74AUP1G38 v.3	20090622	Product data sheet	-	74AUP1G38 v.2
74AUP1G38 v.2	20070614	Product data sheet	-	74AUP1G38 v.1
74AUP1G38 v.1	20061020	Product data sheet	-	-

Low-power 2-input NAND gate (open drain)

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Nexperia

74AUP1G38

Low-power 2-input NAND gate (open drain)

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Low-power 2-input NAND gate (open drain)

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 7
12	Waveforms
13	Package outline 10
14	Abbreviations
15	Revision history 16
16	Legal information 17
16.1	Data sheet status 17
16.2	Definitions 17
16.3	Disclaimers
16.4	Trademarks 18
17	Contact information 18
18	Contents 19

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.