

H25 | ABSOLUTE ENCODER

Introduction

Long considered the industry standard for shafted incremental encoders, the Model H25 is now available in an absolute version with up to 13 Bits of resolution. It incorporates many of the great standard features of the incremental version, including: EMI shielding, 40-lb ABEC 7 bearings, matched thermal coefficients on critical components, and custom optics. This encoder features a 12 or 13 Bit absolute parallel gray code output, a selection line for count direction, and an output latch as standard. Output is standard gray code with options for natural binary or SSI compatible signals. Signals can be provided in either a single-ended multi-voltage line driver (TTL compatible when provided with 5 volts) or as an open-collector style of output. Typical applications include dam gate control, cranes, telescopes, tool changers, and robotics.

Mechanical

Shaft Diameter	3/8" (1/2"as special feature)
Flat On Shaft	3/8" Shaft: 0.80 long X 0.03" deep; 1/2" Shaft: 0.80 long X 0.04" deep (1/2" shaft w/flat must be ordered as a special feature)
Shaft Loading	3/8" shaft: Up to 40 pounds axial and 35 pounds radial; 1/2" shaft: Up to 90 pounds axial and 80 pounds radial
Shaft Runout	0.0005 T.I.R. at midpoint regardless of shaft diameter
Starting Torque at 25°C	Without shaft seal 1.0 in-oz (max); With shaft seal 2.5 in-oz (max); 1/2" shaft with shaft seal:3.5 in-oz (max)
Bearings	Class ABEC 7 standard, ABEC 5 for 1/2" shaft
Shaft Material	416 stainless steel
Bearing Housing	Die cast aluminum with protective finish; stainless steel (special feature)
Cover	Die cast aluminum; stainless steel (special feature)
Bearing Life	$2X10^8$ revs (1300 hrs at 2500 RPM) at rated load 1 X 10^{10} revs (67,000 hrs at 2500 RPM) at 10% of rated load
Maximum RPM	12,000 RPM nominal, 8000 RPM with 1/2" shaft (see Frequency Response, below) 30,000 RPM available on units with 3/8" shaft—consult with factory
Moment of Inertia	4.1 X 10 ⁻⁴ oz-in-sec2; 5.2 X 10 ⁻⁴ oz-in-sec ² with 1/2" shaft
Weight	13 oz typical, 14.5 oz typical with 1/2" shaft

Electrical

Code	12 or 13 bits NB or GC; excess gray and BCD available
Counts Per Shaft Turn	4096 or 8192
Count Transition Accuracy	± 1/2 bit maximum
Supply Voltage	5–28 VDC
Current Requirements	120 mA typical
Output Formats	Parallel: Gray Code, Natural Binary and Binary Coded Decimal; Serial: Serial Synchronous Interface (SSI) compatible; Analog: 4—20 mA, 0—10V
Voltage/Output	(see note 3) 28V/V: Line Driver, 5–28 VDC in, Vout = Vin 28V/5: Line Driver, 5–28 VDC in, Vout = 5 VDC 28V/OC: Open Collector, 5–28 VDC in OCout SSI: 5–28 VDC In/5Vout
Protection Level	Reverse, overvoltage and output short circuit protection
Frequency Response	100kHz (1200 RPM for 12-bits, 600 RPM for 13-bits)
Output Termination Pinouts	see Table 1, page 7

Environmental

Enclosure Rating	NEMA 4 & 13 (IP 66) when ordered with shaft seal (on units with an MS connector) or a cable gland (on units with cable termination).
Temperature	Operating, 0° to 70° C; extended temperature testing available (see note 5); Storage, -25° to 90° C unless extended temperature option called out.
Shock	50 g's for 11 msec duration
Vibration	5 to 2000 Hz @ 20 g's
Humidity	98% RH without condensation

Environmental

MS3112E14-19P, 19-pin connector on encoder body, mates to MS3116J14-19S (or equivalent)

Notes & Tables: All notes and tables referred to in the text can be found on page 6 and 7.

SERIAL SYNCHRONOUS INTERFACE (SSI)

SSI output provides effective synchronization in a closed-loop control system. A clock pulse train from a controller is used to clock out sensor data: one bit of position data is transmitted to the controller per one clock pulse received by the sensor. The use of a differential driver permits reliable transmission of data over long distances in environments that may be electrically noisy. The encoder utilizes a clock signal, provided by the user interface, to time the data transmission. Receiving electronics must include an appropriate receiver as well as line terminating resistors.

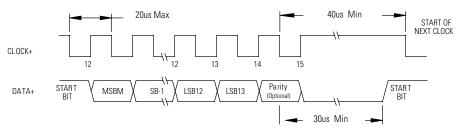
Data Transmission Sequence

- **1.** Output driver of the encoder is a MAX 491 transceiver in transmit mode. The recommended receiver is a MAX 491 transceiver in receive mode.
- 2. Controller provides a series of pulses (or differential pulse pairs) on the CLOCK input lines.
- **3.** On the first HIGH-to-LOW CLOCK transition, the encoder latches its data at the current position and prepares to transmit.
- **4.** Controller reads data on the falling edge of the next 15 clock cycles.
- **5.** The first bit is a START bit and is always HIGH.
- **6.** Next comes 13 data bits beginning with the most significant bit (MSB) and ending with the parity bit. On 12 bit encoders, bit 13 is LOW. When parity is not ordered, parity is LOW.
- **7.** After the last CLOCK HIGH-to-LOW transition, a minimum of 40 microseconds must pass before the beginning of the next CLOCK series.

Interfacing Long Data Lines

Ordering SSI: HOW TO SPECIFY SSI OUTPUT IN THE ENCODER

MODEL NUMBER: Use the designation, S3 between the **Code Format** designation and the **Connector** designation.


Example: H25D-SS-12GC-S3-CW-SM18

Cable impedance can create a transmission delay, in effect, shifting the phase relationship between the clock pulse and the data. If this phase shift exceeds 180°, then the wrong bit position will be sampled by the receiver. As a result, the maximum allowable clock frequency is a function of the cable length. For 24 AWG, stranded, 3 pair cable (BEI part number 37048-003 or equivalent) the group delay is 1.36ns/ft. The table below shows the maximum transmission rate allowable as a function of cable length to ensure a phase shift of less than 90°.

CLOCK, Maximum (kHz) = 92,000 / Cable Length (ft)CW

Cable Length (ft)	50	100	200	300	500	1000
Max Frequency (kHZ)	1800	900	500	300	200	100

SSI Timing

Features

- Synchronous transmission
- Transmission lengths to 1000 feet
- Accepts clock rates from 100 KHz to 1.8 MHz

Output Code and Terminations				
	Paralle	el Code	Termination	on Type
	Gray Code 12 Bit	Natural Binary 12 Bit	Cable	M14/19 Conn.
MSB	G ₁₁	2 ₁₁	WHT/BLK	Α
	G ₁₀	2 ₁₀	WHT/BRN	В
	$G_{\scriptscriptstyle{9}}$	2,	WHT/RED	С
	$G_{_{8}}$	2 ₈	WHT/ORN	D
	G ₇	2,	WHT/YEL	Е
	$G_{_{\!6}}$	2 ₆	WHT/GRN	F
	$G_{_{5}}$	2 ₅	WHT/BLU	G
	$G_{_{4}}$	2,	WHT/VIO	Н
	$G_{_3}$	2 ₃	WHT/GRY	J
	$G_{_{2}}$	2 ₂	WHT	K
	$G_{\scriptscriptstyle{1}}$	2 ₁	GRY/BLK	L
LSB ₁₂	$G_{_{\scriptscriptstyle{0}}}$	2 ₀	GRY/BRN	М
LSB ₁₃			GRY/RED	N
	0V (Circuit Common)1		GRY/ORN	Р
	Direction of Count		ORN	R
	Case Ground		GRN	S
	OV (Circuit Common)		BLK	T
	Latch Control		YEL	U
	+V (Supply Voltage)		RED	V
	Shield Drain		BARE	_

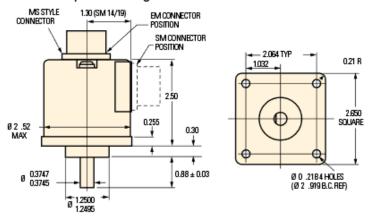
¹Pin P is available for a tri-state option

SERIAL SYNCHRONOUS INTERFACE (SSI) (CONTINUED)

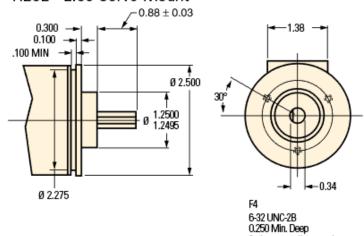
SSI Output Termination Table				
	M18 Connection	M14/19 Connection	Cable Connection	
DATA+	А	А	YEL	
DATA-	Н	В	WHT/YEL	
CLOCK+	В	С	BLU	
CLOCK-	I	D	WHT/BLU	
DIR CONTROL	С	R	ORN	
CASE GROUND	G	S	GRN	
CIRCUIT COMMON	F	Т	BLK	
+V SUPPLY VOLTAGE	D	V	RED	
SHIELD DRAIN	_	_	BARE	

Direction of Count: Standard is CW increasing when viewed from the shaft end. Pin R is normally HI (or N/C) and is pulled up internally to +V. To reverse the count direction, Pin R must be pulled LO (COMMON).

Latch control: Encoder outputs are active and provide continuous parallel position information when Pin U is HI (or N/C). Pin U is pulled up internally to +V. When Pin U is LO (COMMON) the encoder outputs are latched at the logic state that is present when the latch is applied and will stay latched until Pin U is no longer grounded.


M18 Connector is a MS3102R18-1P, 10-pin connector on the encoder body and mates to an MS3106F18-1S connector or can be used with a standard cable/connector assembly, BEI P/N 924-31186-18XX (Where XX = 10, 20 30 or 50 for a 10, 20, 30, or 50 foot length). This is the preferred connector for SSI output.

M14/19 Connector is a MS3112E14-19P, 19-pin connector on the encoder body and mates to an MS3116J14-19S or equivalent.



H25D - Square Flange

H25E - 2.50 Servo Mount

H25G - 2.62 Dia Servo Mount

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.128 Min. Deep
3 places equally spaced on a Ø 1.875 bolt circle.

3 places equally spaced

on a Ø 2.00 bolt circle.

- **1.** Mounting is usually done either using the D-style square flange mount, E- or G-style servo mounts, or one of the standard face mounts, F1 for example. Consult factory for additional face mount options.
- **2.** The shaft seal is recommended in virtually all installations. The most common exceptions are applications requiring a very low starting torque or those requiring operation at both high temperature and high speed.
- **3. Output IC's:** Output IC's are available as either Line Driver (LD) or NPN Open Collector (OC) types. Open Collectors require pull-up resistors, resulting in higher output source impedance (sink impedance is similar to that of line drivers). In general, use of a Line Driver style output is recommended. Line Drivers source or sink current and their lower impedance mean better noise immunity and faster switching times. **Warning:** Do not connect any line driver outputs directly to circuit common/OV, which may damage the driver. Unused outputs should be isolated and left floating. Our applications specialists would be pleased to discuss your system requirements and the compatibility of your receiving electronics with Line Driver type outputs.
- **28V/V:** Multi-voltage Line Driver (7272*): 100 mA source/sink. Input voltage 5 to 28 VDC +/- 5% standard (Note: Vout = Vin). This driver is TTL compatible when used with 5 volt supply. Supply lines are protected against overvoltage to 60 volts and reverse voltage. Outputs are short circuit protected for one minute. Supply current is 120 mA typical (plus load current). This is the recommended replacement for 3904R and 7406R open collector outputs with internal pullup resistors. It is also a direct replacement for any 4469, 88C30, 8830 or 26LS31 line driver
- **28V/5:** Multi-voltage Line Driver (7272*): 100 mA source/sink. Input voltage 5 to 28 VDC +/- 5% standard, internally regulated with 5V (TTL compatible) logic out. Supply lines are protected against overvoltage to 60 volts and reverse voltage. Outputs are short circuit protected for one minute. Supply current is 90 mA typical (plus load current). **Note:** Limit encoder load to 2.5W max at ambient. Example at 12 VDC: 2.5W/ (+12VDC minus +5VDC) = 357 mA total allowed current. Consult factory for your specific requirements.
- **28V/OC:** NPN Open Collector (3904*, 7273*). Current sink of 80 mA max. Current sourced by external pull- up resistor. Output can be pulled up to voltage other than supply voltage (30 V max). Input voltage 5 to 28 VDC +/- 5% standard. Supply current is 120 mA typical. This replaces prior IC's with designations of 3904, 7406, 3302, 681 and 689.
- **4.** Special —S at the end of the model number is used to define a variety of nonstandard features such as special shaft lengths, voltage options, or special testing. Please consult the factory to discuss your special requirements.
- **5.** Extended temperature ratings are available in the following ranges: -40 to 70°C, -40 to 85°C. Some models can operate down to 55°C. Extended temperature ranges can affect other performance factors. Consult with factory for more specific information.

^{*} Products manufactured prior to April 2007 used the line driver IC number instead of voltage output in model number.

Figure 1: Gray Code

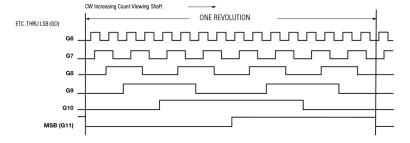
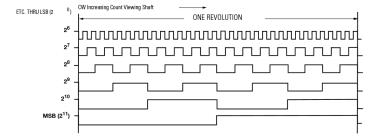



Figure 2: Natural Binary

Table 1: Incremental Output Terminations

The connector style will determine pinouts. For example, an encoder with ABC channels and an M18 connector uses the table to the right.

M14 Connector	M16 Connector	Channels Designate	ed in Model Number
Pin	Pin	ABZ	ABC
Е	А	А	А
D	В	В	В
С	С	Z	Ā
В	D	+V (Suppl	y Voltage)
F	Е		B
А	F	0V (Circuit	: Common)
	G	Case Ground (C	G) (except H2O)

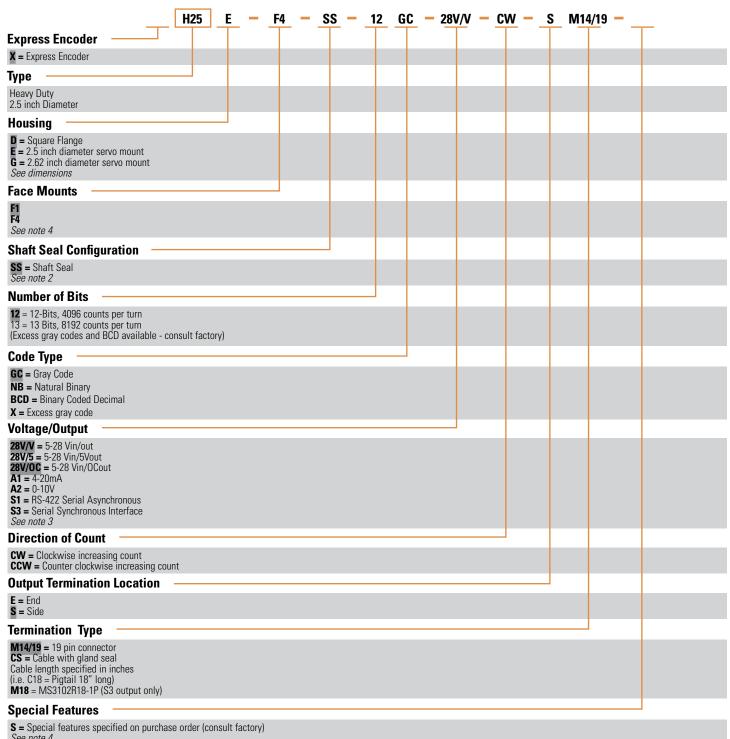
Wire Color	DA 15P Connector	Channels	Designated in Mod	el Number
(22AWG)	DA 13P Connector	ABZ	ABC	ABZC
YEL	13	А	А	А
BLUE	14	В	В	В
ORN	15	Z		Z
W-Yel	10		Ā	Ā
W-Blu	11	_	B	B
W-Orn	12	_		Z
RED	6		+V (Supply Voltage)	
BLK	1	0V (Circuit Common)		
GRN	9	Case Ground (CG0) (except H20)		
WHITE		Shield	Drain (Shielded Cabl	e Only)

M14 Connector			
Pin	Channel		
А	А		
В	В		
С	Z		
D	+V		
E			
F	0V		
G	CG		
Н	Ā		
I	B		
J	Z		

M12 Connector			
Pin	Channel		
А	А		
В	В		
С	Z		
D	+V		
E			
F	0V		
G	CG		
Н	Ā		
J	B		
K	Z		

Table 2: Disc Resolutions for Incremental Encoder Models H25, H38, H40, L25, E25

Resolutions highlighted with are available H25 EXPRESS ENCODERS® that ship in one to three days.


1, 2, 5, 6, 7, 8, 10, 13, 16, 20, 24, 25, 26, 30, 32, 33, 34, 36, 37, 40, 45, 48, 50, 51, 56*, 60, 64, 66, 72, 75, 80, 86, 88, 90, 100, 102, 120, 122, 125, 127, 128, 132, 144, 148, 150, 158, 160, 175, 176, 180, 187, 192, 200, 202, 204*, 217, 220, 240, 250, 254, 255, 256, 264*, 274, 280, 283, 288, 292, 300, 312, 320, 321, 325, 360, 366, 372, 375, 377, 380, 381, 384, 385, 393, 400, 430, 432, 450, 462, 480, 490, 500, 502, 508, 512, 522, 530, 550, 560*, 576, 598, 600, 604, 625, 635, 638, 640, 660, 672, 676, 680, 687, 690, 700, 720, 725, 735, 740, 744, 748, 750, 762, 768, 780, 785, 800, 812, 825, 850, 864, 878, 888, 900, 912, 914, 938, 942, 955, 960, 1000, 1016, 1024, 1030, 1035, 1036, 1040, 1054, 1056, 1074, 1076, 1080, 1088, 1100, 1101, 1125, 1136, 1200, 1237, 1250, 1257, 1270, 1280, 1300, 1314, 1332, 1333, 1390, 1400, 1414, 1427, 1440, 1484, 1500, 1562, 1570, 1596, 1600, 1650, 1666, 1718, 1745, 1774, 1800, 1840*, 1850, 1855, 1875, 1894, 1920, 1952, 1968, 1979,1995, 2000, 2048, 2080, 2094, 2100, 2160, 2164, 2199, 2200, 2250, 2356, 2400, 2485, 2500, 2514, 2519, 2540, 2821, 2827, 2833, 3000, 3125, 3600, 4000, 4096, 5000

*AB or ABC output only. NOTE: Resolutions up to 72,000 are available.

Contact the factory for special versions, ex: special flanges, electronics, connections...

See note 4

EXPRESS ENCODERS: Items highlighted with are standard Express Encoders and ship in one to three days.

Page 9

Sensata Technologies, Inc. ("Sensata") data sheets are solely intended to assist designers ("Buyers") who are developing systems that incorporate Sensata products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products. Sensata data sheets have been created using standard laboratory conditions and engineering practices. Sensata has not conducted any testing other than that specifically described in the published documentation for a particular data sheet. Sensata may make corrections, enhancements, improvements and other changes to its data sheets or components without notice.

Buyers are authorized to use Sensata data sheets with the Sensata component(s) identified in each particular data sheet. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER SENSATA INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN. SENSATA DATA SHEETS ARE PROVIDED "AS IS". SENSATA MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE DATA SHEETS OR USE OF THE DATA SHEETS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. SENSATA DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO SENSATA DATA SHEETS OR USE THEREOF.

All products are sold subject to Sensata's terms and conditions of sale supplied at www.sensata.com SENSATA ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR THE DESIGN OF BUYERS' PRODUCTS. BUYER ACKNOWLEDGES AND AGREES THAT IT IS SOLELY RESPONSIBLE FOR COMPLIANCE WITH ALL LEGAL, REGULATORY AND SAFETY-RELATED REQUIREMENTS CONCERNING ITS PRODUCTS, AND ANY USE OF SENSATA COMPONENTS IN ITS APPLICATIONS, NOTWITHSTANDING ANY APPLICATIONS-RELATED INFORMATION OR SUPPORT THAT MAY BE PROVIDED BY SENSATA.

Mailing Address: Sensata Technologies, Inc., 529 Pleasant Street, Attleboro, MA 02703, USA.

CONTACT US

Americas

+1 (800) 350 2727 - Option 1 sales.beisensors@sensata.com Europe, Middle East & Africa +33 (3) 88 20 8080 position-info.eu@sensata.com Asia Pacific

sales.isasia@list.sensata.com China +86 (21) 2306 1500 Japan +81 (45) 277 7117 Korea +82 (31) 601 2004 India +91 (80) 67920890 Rest of Asia +886 (2) 27602006

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.